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Abstract—In this paper, the innovative intelligent fuzzy weighted 

input estimation method (FWIEM) can be applied to the inverse heat 
transfer conduction problem (IHCP) to estimate the unknown 
time-varying heat flux efficiently as presented. The feasibility of this 
method can be verified by adopting the temperature measurement 
experiment. We would like to focus attention on the heat flux 
estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) 
with the same 3mm thickness. The temperature measurements are then 
regarded as the inputs into the FWIEM to estimate the heat flux. The 
experiment results show that the proposed algorithm can estimate the 
unknown time-varying heat flux on-line. 
 

Keywords—Fuzzy Weighted Input Estimation Method, IHCP and 
Heat Flux.  
 

NOMENCLATURE 

( )B k  Sensitivity matrix  
ŝ
q  Estimated heat flux 

B⎡ ⎤⎢ ⎥⎣ ⎦  Gradient matrix  R  Measurement noise covariance 

p
C  

Sample specific heat 
( /J Kg K⋅ ) s  Innovation covariance 

H  Measurement matrix  t  Time 

I  Identity matrix  
f
t  Sampling time 

k  Time (discretized) T  Temperature 

k  
Sample thermal 
conductivity 
( / ( )J m s K⋅ ⋅ ) 0

T  Initial temperature 

K  Kalman gain  ( )v t  Measurement noise vector 

b
K  Correction gain  ( )X k  State vector 

( )M k  Sensitivity matrix  ( )Z k  Observation vector  
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M⎡ ⎤⎢ ⎥⎣ ⎦
Global conductance matrix α  Thermal diffusivity 

N  Total number of nodes γ  Weighting factor 

n  Total number of time steps Γ  
Input matrix 

P  
Filter’s error covariance 
matrix  δ  Kronecker delta function 

b
P  Error covariance matrix ρ  Density of the sample ( 3/Kg m )

Q  Process noise covariance 
p
cρ  Heat-melting coefficient of the 

sample 

( )q k  Heat flux Ω  Coefficient matrix 

(̂ )q k  
The unknown input 
estimated heat flux ω  Process noise vector 

σ  Standard deviation tΔ  Sampling time interval 

Φ  State transition matrix xΔ  Discrete space interval 

Ψ  Coefficient matrix   

I. INTRODUCTION 
IVEN the known initial conditions, boundary conditions, 
and the thermal properties of materials in the heat 

conduction problem, to investigate the temperature distribution 
in the solid by utilizing the heat-conducting equations is called 
the direct heat conduction problem (DHCP). On the other hand, 
the estimation of unknown heat flux, heat contact coefficient, 
heat conduction coefficient, and heat source by utilizing the 
temperature measurements inside the heat-conducting solid is 
called the inverse heat conduction problem (IHCP). Inverse 
problems in heat conduction have been of interest for many 
researchers in recent years [1]–[3]. It is sometimes necessary to 
calculate the transient surface heat flux and the surface 
temperature from a temperature measured at some location 
inside a body. Typical examples include the skin surface heat 
flux estimation for a reentry vehicle, new rocket heat-shield 
materials and heat-dissipating control of electronic devices [4]. 

The related researches about the inverse heat transfer 
experiment with modern estimation theory based on the 
Kalman filtering technique and the recursive least square 
algorithm are discussed as follows. Tuan [5] presented an 
adaptive weighted input estimation method, which combines 
the Kalman filter (KF) [6] with a recursive least square 
estimator (RLSE) [7]. The residual innovation sequence is 
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generated by the Kalman filter and applied to the real-time 
recursive least square algorithm to estimate the unknown heat 
flux. The constant weighting factor is applied to the RLSE to 
emphasize the weights of the latest data. In order to improve the 
adaptation and estimation capability of the estimator, the 
adaptive weighting function is used to replace the constant 
weighting factor in 1998 [8]. Although the input estimates 
converge slowly in the initial time when the adaptive weighting 
function is used in the RLSE, the estimator has relatively better 
overall tracking performance when the unknown input is 
time-varying regardless of the influence of the measurement 
noise interference. A non-destruction ballistic experimental 
method was established in 2006 to measure the temperature by 
using the thermocouple equipped on the outer wall of gun 
barrel during the firing process [9]. A feasibility investigation 
to estimate the heat flux is produced with regard to the 
estimation of the high temperature due to the rapidly burning 
propellant in the inner wall of the gun tube [10]. The input is 
time-varying and may not be predicted easily. As the result, it is 
difficult to choose an adaptive and efficient weighting function. 
To resolve this situation, Chen et al. [11], [12]] in 2008 
presented an intelligent fuzzy weighting function to replace the 
weighting factor,  , of the RLSE. 

Improving the weighting efficiency of the RLSE is essential, 
because the unknown input is time-varying and changes 
continuously. The adaptive weighting function takes any input 
variation into consideration. Therefore, the inverse method is 
developed to rapidly track the target and effectively reduce the 
effect due to the noise. In this paper, the feasibility of this 
method can be verified by adopting the temperature 
measurement experiment. Three different kinds of samples 
(Copper, Iron and Steel/AISI 304) with the same 3mm 
thickness are adopted in the experiment. The bottoms of 
samples are heated by applying the standard heat source. The 
thermocouples are used to measure the temperatures on the top 
of samples. The temperature measurements are then regarded 
as the input into the presented method, which can estimate the 
heat flux in the bottoms of samples. The influence on the 
estimation will be investigated by utilizing the experiment 
verification.. The results show that this method is efficient and 
robust to estimate the unknown time-vary heat flux.  

II. EXPERIMENT EQUIPMENT 
The entire experiment modular includes the signal source, 

the test samples, the sensors, the data acquisition device, and 
the computer module. The purpose of experiment is to 
inversely estimate the temperature and heat flux of the sample 
by using the temperature measurements of the sample surface. 
Therefore, the samples are heated by adopting the standard heat 
source, and the thermocouples (K type) are equipped on the 
sample surface. The structure chart of experiment are shown in 
Figure 1. The experiment devices and the samples used are 
illustrated as follows: 

A.  The signal source: 
The standard heat source generator with the maximum 

output power of 200W is compatible with an alternating/direct 
current power source of 110 volt. The 60 VDC power is series 
connected and can supply stable power to the heater. The 
standard heat source generator provides heat from its bottom 
layer. The inner wall and top of this device is insulated. It is a 
critical technique to perform the experiment in the insulated 
condition for the direct heat conduction problem. In addition, 5 
holes with the diameter of 2mm have been punched on the top 
of the generator for the thermocouples to measure the surface 
temperatures of the test samples. 

B.  The test samples: 
The pure copper, iron and stainless steel (AISI 304) with the 

same thicknesses of 3mm are used. The following thermal 
properties are used in the calculation. 

copper：  =401 , ρ =8933 , and  =385 . 

Iron：  =80.2 , ρ =7870 , and  =447 . 

Steel： =14.9 , ρ =7900 , and  =477 . 

C.  Sensors: 
The thermocouples (K type) are used in this experiment 

D.  The temperature data acquisition device: 
The device with the type of NI-9211 is manufactured by the 

National Instruments Company and can be used to implement 
the signal acquisition, procedure and transformation. It is 
composed of the high performance measurement and control 
card, the signal process modular, the filter amplifier, and the 
electric charge amplifier. 

E.  The computer module (including the software programs): 
1. Intel processor 2.1Ghz computer, the signal express 

software, and the Matlab programming language can be used to 
process the signal data. 

2. The SIGNAL EXPRESS acquisition software: The 
software in coordination with the data acquisition system 
developed by the National Instruments Company can collect 
data from the subject system in real time. The sampling rate, the 
temperature range, the sampling time, the sensor type, the 
compensation of the cold junction, the frequency channel, and 
the record style to record the real-time signal of the system can 
be configured. 

3. The FWIEM algorithm can be programmed by using the 
Matlab programming language. The temperature measurements 
are then regarded as the inputs into the method, which is to 
estimate the heat flux in the bottoms of samples. 
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 Fig. 1. The structure chart of the experiment. 

 

III. MATHEMATICAL FORMULATION 

    The boundary condition at the position, x
s

x = , is 
assumed to be heat-insulated . By equipping the thermocouple 
sensor at the position, x

s
x = , and measuring the surface 

temperature of the test sample, the heat-conducting model is 
formed as shown in Figure 2. 

 
Fig.  2. The heat-conducting model. 

 
The heat-conducting governing equations are as follows: 

( ) ( )2

2

, ,
p

T x t T x t
c k

t x
ρ

∂ ∂
=

∂ ∂
    0 x

s
x< <  0

f
t t< ≤       (1) 

( ) 0
, 0T x T=                    0 x

s
x≤ ≤         0t =                   (2) 

( ) ( )
0,T t

k q t
x

∂
− =

∂
             0x =            0t >                   (3) 

( )x ,
0s

T t

x

∂
=

∂
                      x

s
x =          0t >                   (4) 

( ) ( ) ( )x ,
s

Z t T t v t= +        x
s

x =          0t >                  (5) 

where ( ),T x t  represents that the temperature is a function 

of time, t , and the position, x . 
0
T  is the initial temperature. k  

is the heat-conducting coefficient of the sample material. 
p
cρ  

is the heat-melting coefficient of the sample material. 

p
k cα ρ= , the heat-diffusing coefficient. ( )v t  is the 

measurement noise. ( )z t  is the temperature measurement, 
which is assumed to be the Gaussian white noise with zero 
mean. By using the central differential method to disperse 
Equation (1) with respect to the space derivative, the following 
equation is obtained. 

( ) ( ) ( ) ( )1 12
2i i i i

T t T t T t T t
x

α
+ −

⎡ ⎤= − +⎢ ⎥⎣ ⎦Δ

i

 

for  1,2,........,i N=                 (6) 

where x / ( 1)
s

x NΔ = − ,the space interval, and 

( ) ( ),
i i
T t T x t= . By setting 0i = , the boundary condition, 

Equation (3), at the position, 0x = ,can be written as follows: 

 
( ) ( ) ( ) ( )1 2 0

2

T t T t T t
k k q t

x x

∂ −
− = − =

∂ Δ
 

( ) ( ) ( )0 2

2 x
T t T t q t

k

Δ
= +                          (7) 

By substituting Equation (7) in Equation (6), the time 
derivative equation when 1i =  can be obtained as the 
following equation. 
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( ) ( ) ( ) ( )
1 1 22

2
2 2

q t
T t T t T t

k xx

α ⎡ ⎤= − + +⎢ ⎥⎣ ⎦ ΔΔ

i

           (8) 

When 2, 3,........, 1i N= − , the equation can be presented 
as follows: 

    ( ) ( ) ( ) ( )1 12
2i i i i

T t T t T t T t
x

α
+ −

⎡ ⎤= − +⎢ ⎥⎣ ⎦Δ

i

         (9) 

On the other hand, when i N= , and x
N s

x x= = , the 
boundary condition in Equation (4), can be presented as 
follows: 

1 1N N
T T+ −=  

( ) ( ) ( )12
2 2N N N

T t T t T t
x

α
−

⎡ ⎤= − +⎢ ⎥⎣ ⎦Δ

i

                    (10) 

By rearranging Equations (8), (9) and (10) along with a 
simulated noise input, the continuous-time state equation can 
be obtained as the following: 

( ) ( ) ( ) ( )T t T t q t Gw t= Ψ +Ω +
i

                      (11) 

where ( )w t is assumed to be the Gaussian white noise with 

zero mean, and it represents the modeling error. Furthermore, 

( ) ( ) ( ) ( )1 2
................

T

N
T t T t T t T t⎡ ⎤= ⎢ ⎥⎣ ⎦                         (12) 

2
0.........0

T

k x

⎡ ⎤
⎢ ⎥Ω = ⎢ ⎥Δ⎣ ⎦

                                             (13) 

2

2 2 0 0

1 2 1 0

0 1 2 1

1 2 1

0 2 2

x

α

⎡ ⎤−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥Ψ = ⎢ ⎥
⎢ ⎥Δ
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

"
"
" #

# % % #
#

"

                (14)  

The continuous-time state equation ( Equation (11)), can be 
discretized with the sampling time, tΔ . The discrete-time state 
equation and its relative equations are shown as follows. 

( ) ( ) ( ) ( )X k X k q k w k= Φ + Γ +                    (15) 

( ) ( ) ( ) ( )1 2
................

T

N
X k T k T k T k⎡ ⎤= ⎢ ⎥⎣ ⎦       (16) 

teΨΔΦ =                                             (17) 

( ){ }( )1
exp 1

k t

k t
k t dτ τ

+ Δ

Δ

⎡ ⎤Γ = Ψ + Δ − Ω⎢ ⎥⎣ ⎦∫           (18) 

( ) ( ) ( )( )1k t

k t
w k G w dτ τ τ

+ Δ

Δ
= Φ∫                          (19) 

In the equations above, ( )X k  is the state vector. Φ  is the 

state transition matrix. Γ  is the input matrix. ( )q k  is the 

definite input array. ( )w k  is the processing error input vector, 

which is assumed to be the Gaussian white noise with zero 
mean and with the variance, { ( ) ( )} QT

kj
E w k w j δ= . 

kj
δ  is the 

Dirac delta function. The discrete-time measurement equation 
is shown below. 

( ) ( ) ( )Z k HX k v k= +                                                       (20)  

 where Z( )k  is the observation vector at the kth sampling 

time. The measurement matrix, 0 0.......1H ⎡ ⎤= ⎢ ⎥⎣ ⎦ . ( )v k  is the 

measurement error vector, which is assumed to be the Gaussian 
white noise with zero mean and with the variance, 

{ ( ) ( )}T
kj

E v k v j Rδ= . After the state equation is obtained, the 

inverse estimation process is carried out by using the on-line 
input estimation method, which is the combination of the 
Kalman filter mechanism and the adaptive fuzzy weighting 
function of the recursive least square estimation (RLSE) 
algorithm. 

 

IV. THE INTELLIGENT FUZZY WEIGHTED RLSE INPUT 
ESTIMATION APPROACH 

The conventional input estimation approach has two parts: 
one is the Kalman filter without the input term, and the other is 
the fuzzy weighted recursive least square estimator. The system 
input is the unknown time-varying heat flux. The Kalman filter 
is operating under the setting of the processing error variance, 
Q , and the measurement error variance, R . It is to use the 
difference between the measurements and the estimated values 
of the system temperature as the functional index. Furthermore, 
by using the fuzzy weighted recursive least square algorithm, 
the heat flux can be precisely estimated. The detailed 
formulation of this technique can be found in Ref. 

A.  The equations of the Kalman filter are shown as follows:  

( ) ( )/ 1 1/ 1X k k X k k− = Φ − −                    (21) 

( / 1) ( 1 / 1) QTP k k P k k− = Φ − − Φ +                   (22) 

( ) ( / 1) Ts k HP k k H R= − +                (23) 
1( ) ( / 1) ( )TK k P k k H s k−= −                        (24) 

( )( / ) [ ] ( / 1)P k k I K k H P k k= − −                      (25) 

( ) ( ) ( / 1)Z k Z k HX k k= − −                             (26) 

( / ) ( / 1) ( ) ( )X k k X k k K k Z k= − +                        (27) 

B.  The recursive least square algorithm: 
( ) [ ( 1) ]B k H M k I= Φ − + Γ                             (28) 

( ) [ ( ) ][ ( 1) ]M k I K k H M k I= − Φ − +                   (29) 
1

1 1( ) ( 1) ( ) ( ) ( 1) ( ) ( )T T
b b b
K k P k B k B k P k B k s kγ γ

−
− −⎡ ⎤= − − +⎢ ⎥⎣ ⎦  

(30) 
1( ) ( ) ( ) ( 1)

b b b
P k I K k B k P kγ−⎡ ⎤= − −⎢ ⎥⎣ ⎦                 (31) 

ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)bq k q k K k Z k B k q k⎡ ⎤= − + − −⎣ ⎦     (32) 

( ) ( )ˆ ˆ ˆ/ 1 1/ 1 ( )X k k X k k q k− = Φ − − + Γ                  (33) 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ/ / 1 / 1X k k X k k K k Z k HX k k⎡ ⎤= − + − −⎣ ⎦       (34) 

(̂ )q k  is the estimated input vector. ( )
b
P k  is the error 
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covariance of the estimated input vector. B(k) and M(k) are the 
sensitivity matrices. ( )

b
K k  is the correction gain. ( )Z k  is the 

bias innovation produced by the measurement noise and the 
input disturbance. ( )s k  is the covariance of the residual. γ  is 
the weighting constant or weighting factor. 

C.  The construction of the intelligent fuzzy weighting factor: 
The fuzzy weighting factor is proposed based on the fuzzy 

logic inference system. It can be operated at each step based on 
the innovation from the Kalman filter. It performs as a tunable 
parameter which not only controls the bandwidth and 
magnitude of the RLSE gain, but also influences the lag in the 
time domain. To directly synthesize the Kalman filter with the 
estimator, this work presents an efficient robust forgetting 
zone, which is capable of providing a reasonable compromise 
between the tacking capability and the flexibility against 
noises. In the recursive least square algorithm, ( )kγ is the 

weighting factor in the range between 0 and 1. The weighting 
factor ( )kγ  is employed to compromise between the upgrade 
of tracking capability and the loss of estimation precision. The 
relation has already been derived as follows (Tuan et al. 1998 
[8]): 

1 ( )

( )
( )

( )

Z k

k
Z k

Z k

σ
σγ

σ

⎧⎪ ≤⎪⎪⎪= ⎨ >⎪⎪⎪⎪⎩

                           (35) 

The weighting factor, ( )kγ , as shown in Equation (34) is 
adjusted according to the measurement noise and input bias. In 
the industrial applications, the standard deviation σ  is set as a 
constant value. The magnitude of weighting factor is 
determined according to the modulus of bias innovation, 

( )Z k . The unknown input prompt variation will cause the 

large modulus of bias innovation. In the meantime, the smaller 
weighting factor is obtained when the modulus of bias 
innovation is larger. Therefore, the estimator accelerates the 
tracking speed and produces larger vibration in the estimation 
process. On the contrary, the smaller variation of unknown 
input causes the smaller modulus of bias innovation. In the 
meantime, the larger weighting factor is obtained according to 
the small modulus of bias innovation. The estimator is unable 
to estimate the unknown input effectively. For this reason, the 
intelligent fuzzy weighting factor for the inverse estimation 
method which efficiently and robustly estimates the 
time-varying unknown input will be constructed in this 
research.  

The intelligent fuzzy weighted input estimation method is 
derived following as:  

The range of fuzzy logic system input, ( )kθ , may be chosen 

in the interval, 0,1⎡ ⎤⎢ ⎥⎣ ⎦ . The input variable is defined as:  

( )
2 2

( )

( )

Z k
k

Z k t
θ =

+

+

+ +
                                          (36)                         

where ( ) ( ) ( 1)Z k Z k Z kΔ = − − . t+  is the sampling 
interval. The proposed intelligent fuzzy weighting factor uses 
the input variable ( )kθ  to self-adjust the factor ( )kγ  of the 

recursive least squares estimator. Therefore, the fuzzy logic 
system consists of one input and one output variables. The 
range of input, ( )kθ , may be chosen in the interval, 0,1⎡ ⎤⎢ ⎥⎣ ⎦ , and 

the range of output, ( )kγ , may also be in the interval, 0,1⎡ ⎤⎢ ⎥⎣ ⎦ . 

The fuzzy sets for ( )kθ  and ( )kγ  are labeled in the linguistic 

terms of EP (extremely large positive), VP (very large 
positive), LP (large positive), MP (medium positive), SP (small 
positive), VS (very small positive), and ZE (zero). The specific 
membership is defined by using the Gaussian functions. 

A fuzzy rule base is a collection of fuzzy IF-THEN rules:  
IF ( )kθ  is zero (ZE), THEN ( )kγ  is an extremely large 

positive (EP); 
IF ( )kθ  is a very small positive (VS), THEN ( )kγ  is a very 

large positive (VP); 
IF ( )kθ  is a small positive (SP), THEN ( )kγ  is a large 

positive (LP); 
IF ( )kθ  is a medium positive (MP), THEN ( )kγ  is a 

medium positive (MP); 
IF ( )kθ  is a large positive (LP), THEN ( )kγ  is a small 

positive (SP); 
IF ( )kθ  is a very large positive (VP) THEN ( )kγ  is a very 

small positive (VS); 
IF ( )kθ  is an extremely large positive (EP) THEN ( )kγ  is 

an extremely small postive (ES), 
where ( )k Uθ ∈  and ( )k V Rγ ∈ ⊂  are the input and 

output of the fuzzy logic system, respectively. Therefore, the 
nonsingleton fuzzier can be expressed as the following 
equation: 

( )( )
( )( )
( )

2

2
exp

2

l
i

A
l
i

k x
k

θ
θ

σ
μ

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

=            (37)                   

( )( )A
kθμ  decreases from 1 as ( )kθ  moves away from l

i
x . 

( )2liσ  is a parameter characterizing the shape of ( )( )A
kθμ .  

The Mamdani maximum-minimum inference engine was 
used in this paper. The max-min-operation rule of fuzzy 
implication is shown below: 

( )( ) ( )( ) ( ) ( )( ){ }1 1
max min , ,j j j

i i

c d
B j i A A B

k k k kμ γ μ θ μ θ γ= = →

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

  (38) 
where c is the fuzzy rule, and d is the dimension of input 

variables. 
The defuzzier maps a fuzzy set B  in V  to a crisp point 
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Vγ ∈ . The fuzzy logic system with the center of gravity is 
defined below: 

( )( )
( )( )

1*

1

( )

n l l
Bl

n l
Bl

y k
k

k

μ γ
γ

μ γ

=

=

=
∑
∑

                                                  (39)                                 

n  is the number of outputs. ly  is the value of the lth  

output. ( )( )l
B

kμ γ  represents the membership of ( )l kγ  in the 

fuzzy set B . Substituting ( )* kγ  of Equation (39) in Equations 

(30) and (31) allows us to configure an adaptive fuzzy 
weighting function of the recursive least square estimator 
(RLSE). 

 

V. DISCUSSION OF THE EXPERIMENT AND 
ESTIMATIMATION RESULTS 

To verify the performance of the proposed method, a 
standard heat source is modeled. The heat flux in the bottom is 
estimated inversely by measuring the temperature on the top. 
The test sample is heated by the standard heat source with the 
fixed power. The test sample is heated in the bottom. The inner 
wall and the top of the environment are insulated. The 
thermocouples are placed at the location, 3x =  mm on the test 
sample. The total time period, 850

f
t = sec. The sampling 

interval, 1tΔ = sec. The measurement temperature curves of 
different test samples are shown in Figure 3. 

The measurement error of the thermocouple is 
approximately ±1% (with the measurement noise variance, 

R = 410− ). The space step, s
x

x
N

Δ =  (N =10). The process 

noise covariance matrix, 3Q 10=  [12]. Since the standard heat 
source is not in an absolutely insulated condition in the 
measurement process, in order to reduce the influence of the 
sampling noise, the interpolation method is used to increase the 
samples. The two sets of chosen sampling time, tΔ  = 0.05sec. 
Figure 4 shows that the heat flux in the bottom is estimated 
inversely by substituting the temperature data into the 
presented method. 

The Kalman filter is operating under the processing error 
variance, Q , and the measurement error variance, R . Figure 
5,6,7 show the estimation results of the heat flux using three 
difference parameters, 1Q 10−= , 310  and 910  to samples. We 
can see that the process noise variance Q  increases, the error 
covariance matrix will increase, which causes the Kalman gain 

( )K k . to increase. 
The estimation results reveal that the maximum heat flux 

have consistency by the standard heat source and demonstrate 
that the penetration delay of temperature may exist in the 
estimation process. In this paper, we are not deal with the 
conformity decay to heat flux; but it is interesting to note the 
feasibility to estimate the thermal contact resistance between 
heat source and test sample. 

 
 Fig. 3. The curves of temperature measurements. 

 

 
 Fig. 4. The curves of estimated heat flux. 

 

 
 Fig. 5. The Heat Flux Estimation with Different Parameters Q to 

Copper 

. 
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Fig.  6. The Heat Flux Estimation with Different Parameters Q to Iron. 

 
. 

 
Fig. 7. The Heat Flux Estimation with Different Parameters Q to Steel. 

VI. CONCLUSIONS 
In this paper, the bottoms of three different material samples 

with the same 3mm thickness and are heated by applying the 
standard heat source, and the temperatures on the top are 
measured by using the thermocouples. The FWIEM is utilizing 
the measured temperature data to estimate the heat flux in the 
bottoms of samples. The results reveal that the experiment 
verification shows the FWIEM has the properties of targat 
tracking capability and effective noise reduction, and that it is 
an efficient, adaptive, and robust inverse estimation method for 
the estimation of the unknown heat flux. The nonlinear 
influence on the estimation to IHCP will be research by 
utilizing the experiment verification with different heat 
conduction coefficients to iron and steel in the future. 
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