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Abstract An inverse problem of doubly center matrices is 

discussed. By translating the constrained problem into unconstrained 
problem, two iterative methods are proposed. A numerical example 
illustrate our algorithms. 
 

Keywords doubly center matrix, electric network theory, 
iterative methods, least-square problem.

I. INTRODUCTION

ATRIX inverse problem is an important field. Doubly 
center matrices have widely applications in  the electric 

network theory, in  which are called  the indefinite admittance 
matrices, see [1]-[4]. In  recent years, some results have been 
obtained for solving the inverse problem AX B  and the 
existence of the solution has been discussed in [5]. However, 
the matrix X  and B  are often derived from experiment and 
measure, we cannot make sure that the problem has the exact 
solution. So, we have to discuss its least-square solution. 

Definition 1:[5] A matrix ( ) n n
ijA a R  is called a doubly 

center matrix if the sum of all the elements in each row and 
the sum of all the elements in each column are equal to zero, 
i.e., 

1 1
0( 1,2, , ), 0( 1,2, , ).

n n

ij ij
i j

a j n a i n . 

The set of all such matrices is denoted by n nDCR . If A  is 
also a real symmetric matrix meanwhile, it is called a 
symmetric doubly center matrix.  The set of all such matrices is 
denoted by n nDCSR . 

Suppose that an electric network system has n  terminals. 
The input currents and the corresponding voltages are 

1 2, , ni i i  and 1 2, , nu u u , respectively. Here  we denote 

1 2( , , )T
ni i i i  as current vector and 1 2( , , )T

nu u u u  as 
voltage vector. There exists a linear relationship between them 
and we express it as follows 

i Au . 
According to the Kirchoff electric current law and the 

relative law of potentials, A  satisfy the following relat ions: 
0, 0T

n nAe e A  (i.e . n nA DCR ). A is called the indefinite 
admittance matrix in  electric network theory.  If phase shifter 
branches don t exist, A  is a symmetric matrix. Each element  
of A  has the dimension of admittance and we can get the 
parameter by connecting one terminal to the voltage source 
and shorting other terminals with the reference node. For 
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example, if keeping the voltage source of terminal k , and 
short the others, we get

0 , , 1,2, ,
j

j
jk u

k

i
a j k j n

u
. 

Affected by the measurement error or random disturbance, 
we can hardly get a doubly center matrix o f A . Here, we 
consider some iterative methods to solve the problems. 

In this paper, we will d iscuss the following problem 
minAX B                (p roblem 1) 

where , n mX B R are given, n nA DCR (doubly center matrix)  
is to find. 

The notations used in this paper can be summarized as 
follows. The set of all n  dimensional column vectors is 
written as nR and the identity matrix in  n nR  is written as nI ; 

The set of all real matrices is denoted by n nR . ( )tr A  and 
A  represent the trace and the Moore-Penrose pseudo-inverse 

of A , respectively. A B  represent the Kronecker product 
of A  and B  and ( )vec A  means to straighten the matrix A  
according to its columns to form a vector. In addition, the 
Frobenius norm of A  is denoted by A . We define the inner 

product ( , ) ( )TA B tr B A , and thus ( )TA tr A A . 

II. ITERATIVE METHODS FOR PROBLEM 2 
The general form of the solutions has been given and the 

necessary and sufficient conditions for the solvability of the 
problem 1 have been discussed in [5]. However, the general 
form is complex and we have to compute P  using singular 
value decomposition. When it comes to large matrices, it s 
difficult to get the solutions. Here, we consider iterat ive 
methods.

Zhou and Wu have discussed the structure of n nDCR  and 
n nDCSR  in [5]. Let us review it as fo llows. 

Lemma 1:[5] Let (1,1, 1)T n
ne R , then n nA DCR  if 

and only if  
0, 0T

n nAe e A . 
Proof. Use Definit ion 1.1, we can get the result. 
Lemma 2:[6] Let , , ,n n n m m l n lA R B R C R D R , then 

linear matrix equations ,AX B XC D  have common 
solutions if and only if each equation has solution and 
AD BC . When the common solutions exist, and a special 

solution is 
cX A B DC A ADC , 

the common solutions are 
( ) ( ), n m

c n mX X I A A Y I CC Y R . 
Lemma 3:[5] Let (1,1, 1)T n

ne R , then 
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1 1 1, ( )T T T
n n n n n n n ne e I e e I e e

n n n
, 

21 1( )T T
n n n n n nI e e I e e

n n
. 

Proof. Use of the Moore-Penrose pseudo-inverse, we can 
easily get the results .  

Theorem 1 :[5] Suppose n nA DCR , (1,1, 1) n
ne R . 

Then 
1 1( ) ( ).T T

n n n n n nA I e e Y I e e
n n

         (1) 

Especially, when n nY R is a symmetric matrix, n nA DCSR . 
Proof. By Lemma 1-3, we can get (1). Especially, when 

Y is symmetric,  
1 1( ) ( )

1 1( ) ( )

T T T T
n n n n n n

T T
n n n n n n

A I e e Y I e e
n n

I e e Y I e e A
n n

 

holds, i.e., n nA DCSR . 
Now we consider problem 1. Let  

1 1, ( )T T T
n n n n n nS S I e e L SX I e e X

n n
    (2) 

then, we can rewrite the problem as follows. 
Theorem 2: The solution of problem 1 is 

A SYS . 
Here, n nY R is the solution of the least squares problem 

minSYL B                (p roblem 2), 

where , ,n n n m n mS R L R B R are given, n nY R  is to find. 
It s easy to prove the theorem when we replace A with (1) 

and (2). By  this way, we can translate the constrained problem 
into the unconstrained problem. We only need to discuss 
problem 2. 

A.  CG-like Method 
Y. Peng has proposed an iterative method to find the 

solution of ( )n mAXB C X R  in his PhD thesis [7]. We will 
use his idea to solve our problem. 

Lemma 4: Problem 2 is equivalent to the linear matrix 
equation

T T T T n nS SYLL S BL Y R          (3) 

Proof. By  ( ) ( ) ( )Tvec SYL L S vec Y , we get that problem 
2 is equivalent to the least squares problem 

2
( ) ( ) ( ) minTL S vec Y vec B           (4) 

Considering the normal equation of (4), we get 
( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.

T T T T T

T T T

T T T

T T T T

L S L S vec Y L S vec B
L S L S vec Y L S vec B
LL S S vec Y L S vec B

S SYLL S BL

 

Now, we apply the CG-like method to (3), then we get the 
following algorithm. 

Algorithm 1: 
(1). Initialization 

1 1
T TR SBL SSY LL  

1 1( ) TP S SR L L  

1 1Q P . 
(2). Iteration. For 1,2,i  

2

1 2
i

i i i
i

R
Y Y Q

Q
 

1 1
T T

i iR SBL SSY LL  

1 1
T

i iP SSR LL  

1
1 1 2

( )T
i i

i i i
i

trace P QQ P Q
Q

. 

(3). Check convergence. 
Remark 1. Algorithm 1 will terminate in fin ite iterations 

and we can get the min imum norm solution of problem 2, see 
[7] for details. 

Remark 2. The minimum norm solution of problem 1 is 
A SYS , where Y can be obtained by Algorithm 1. 

B. LSQR Method
In 1982, Paige and Sauders proposed the LSQR method [8] 

to solve the following problem 

2
minMx f                   (5) 

where ,m n mM R f R are given, nx R  is to find. 
In order to use the LSQR method, we first change problem 

2 into a similar form with (5). It  is easy to obtain the following 
result. 

Theorem 3: Problem 2 is equivalent to the following 
problem. 

2
minMy b            (problem 3) 

where , ( ), ( )TM L S y vec Y b vec B . 
Let us denote ( ) ( ( ))mat x mat vec X X , that is, ( )mat x  is 

the inverse of ( )vec X . Then we get 
( ) ( ) ( ( ))T Tmat Mv mat L S v mat L S vec V SVL  

( ) (( ) ) ( ( ))T T T T T T Tmat M u mat L S u mat L S vec U S UL SUL
 

Now we write the LSQR algorithm to problem 3 as follows. 
Algorithm 2: 

(1). Initialization. 
0 0Y , 1 B , 1 1/U B  

1 1
TV SU L , 11 V , 11 1/V V  

1 1H V , 1 , 1  
(2). Iteration. For 1,2,i  

1i i i iU SV L U  

1 1i iU , 11 1/ii iU U  

1 1 1
T

i i i iV SU L V  

1 1i iV , 11 1/ii iV V  

2 2
1i i i  

/i i ic , 1 /i i is , 1 1i i is  
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1 1i i ic , i i ic , 1i i is  

1 ( / )i i i i iY Y H  

1 1 1( / )i i i i iH V H . 
(3). Check convergence. 

Remark 3. If AX B  is consistent, we can get the 
minimum norm solution of problem 3,see [8] for details. 

Remark 4. The minimum norm solution of problem 1 
is A SYS , where Y can be obtained by Algorithm 2. 

III. NUMERICAL EXAMPLE 
  In this section, we will use an example to illustrate our 
algorithm. A ll the tests are performed by MATLAB 7.0 and 
the initial iterative matrices are chosen as zero matrices in  
suitable size. 
Example . When designing the network system, three groups 
of energizing voltages and response currents are given (see 
TABLE I). Find the indefin ite admittance matrix. 
 

TABLE I 
THREE GROUPS OF ENERGIZING VOLTAGES AND RESPONSE CURRENTS 

n terminals   1      2      3      4      5 

1u  1      2      1      2      2 

1I  0.8000 -0.6000  -0.6000  2.4000 -2.0000 

2u  2      2      1      3      5 

2I  3.0000 -2.4000  0.6000  8.6000 -9.8000 

3u  9      5      3      2      8 

3I  -5.0000 2.4000  5.4000  2.4000 -5.2000  
 
According to TABLE I, we have 

1 2 9
2 2 5
1 1 3
2 3 2
2 5 8

X ,

0.8000 3.0000 5.0000
0.6000 2.4000 2.4000
0.6000 0.6000 5.4000

2.4000 8.6000 2.4000
2.0000 9.8000 5.2000

B . 

We use Algorithm 1 and Algorithm 2 to  compute the 
indefinite admittance matrix. After iterat ions, we get the 
minimum norm solution  

0.9714 0.9143 0.1714 0.9857 0.7286
0.6000 0.6000 0.0000 0.6000 0.6000
0.6571 0.4286 0.0571 0.5286 0.3571
1.0572 0.5714 1.3429 0.8286 2.1429

0.7714 1.3143 1.2286 0.6857 2.6286

A  

Furthermore, if we consider the normal equation of problem 
1, we get T TAXX BX (similar to the proof of Lemma 4). And 
we denote 

log10( )T T
k BX AXX  

as the residual of Algorithm 1 and Algorithm 2 after k  steps. 
Then, we compare the two algorithms in Fig 1. 
 
 

 
 

Fig. 1 The Residual Curves Generated By CG Method And LSQR 
Method 
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