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Abstract—A mammal’s body can be seen as a blood vessel with 

complex tunnels. When heart pumps blood periodically, blood runs 
through blood vessels and rebounds from walls of blood vessels. 
Blood pressure signals can be measured with complex but periodic 
patterns. When an artery is clamped during a surgical operation, the 
spectrum of blood pressure signals will be different from that of 
normal situation. In this investigation, intestinal artery clamping 
operations were conducted to a pig for simulating the situation of 
intestinal blocking during a surgical operation. Similarity theory is a 
convenient and easy tool to prove that patterns of blood pressure 
signals of intestinal artery blocking and unblocking are surely 
different. And, the algorithm of Hilbert Huang Transform can be 
applied to extract the character parameters of blood pressure pattern. 
In conclusion, the patterns of blood pressure signals of two different 
situations, intestinal artery blocking and unblocking, can be 
distinguished by these character parameters defined in this paper. 
 

Keywords—Blood pressure, spectrum, intestinal artery, similarity 
theory and Hilbert Huang Transform.  

I. INTRODUCTION 
LOOD pressure signal is a non-stationary time series. 
Standard spectral analysis by Fourier Transform (FT) can 

provides a spectrum of the signal as well as stationary signals 
[1]. A method for time-frequency decomposition (SDA) was 
presented for the analysis of cardiovascular signals, during 
steady state as well as under transient conditions [2]. Means of 
Fourier Transform for spectral analysis provides a spectral 
decomposition of the signal [3,4]. Most of the methods 
available for processing non-stationary data still depend on 
Fourier analysis. They are limited to linear systems only [5]. 
Hilbert Huang Transform (HHT) is a new method for analyzing 
nonlinear and non-stationary data. The key part of the method 
is the ‘Empirical Mode Decomposition (EMD)’ method with 
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which any complicated data set can be decomposed into a finite 
and often small number of ‘Intrinsic Mode Function (IMF)’ 
that admit well-behaved Hilbert transforms [5], from which the 
Instantaneous Frequency (IF) can be calculated. Thus, the local 
energy and the instantaneous frequency derived from the IMFs 
through the Hilbert Huang transform can give us a full 
energy-frequency-time distribution of the data [5]. Therefore, 
Hilbert-Huang transform is widely applied to analyze different 
nonlinear time series (i.e. earthquake [6], surface waveform of 
ocean [7] and bio-signals [8]). In 1998, Huang et al. applied 
HHT for engineering analysis of blood pressure [8]. 
    Hence, in this investigation, a surgical operation was 
conduct to a healthy pig by a legal surgeon. During the 
operation, two different situations, intestinal artery blocking 
and normal situation, were simulated by clamping intestinal 
artery and relaxing intestinal artery. Each situation was 
remained for 1 minute and exchanged for twice. Totally, 4 
minutes recording of blood pressure signal was taken for 
off-line analysis. Whole recording was divided to 4 sections, 
two sections of experimental recordings and two sections of 
contrastive recordings. 
    Before identifying the character parameters of blood 
pressure signal, similarity theory was applied for confirming 
that the difference between two sets of recordings with 
different situations surely exists. A measurement of similarity 
between two complex signals was proposed by Yang et al. in 
2003 [9]. Heart rate recordings of different groups (i.e., healthy 
young, healthy elderly, congestive heart failure, and arterial 
fibrillation) were successfully assorted. In this paper, the 
similarity measurement is applied for intra-section and 
inter-section comparisons. Results of comparisons show that 
two recordings of different situations have different patterns of 
signals because of bigger weighted distance between similarity 
measurements of time series of different situations.  

When the existence of difference between two sets of 
recordings with different situations was confirmed, HHT 
algorithm was applied for decomposing the sampled 
recordings. The first eight IMFs of recordings were extracted 
and energy-frequency-time distributions of IMFs were also 
derived. Then, the concept of gravity center was used to define 
the central frequency of IMF and average kinetic energy in the 
fixed interval as two character parameters of IMF. Finally, 
eight pairs of character parameters can be applied for 
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expressing the pattern of recording.   
 
 

II.   ANALYSIS ALGORITHM 
 

A.  Measurement of Similarity  
Consider an blood pressure time series, {x0,x1,x2,….,xN}, 

where xi is the voltage value of the ith sampling point of blood 
pressure recording. The complex time series can be simplified 
via mapping time series to binary sequences, where the increase 
and decrease of voltage values are denoted by 1 and 0. This 
mapping can be expressed as below: 

 
(1) 

 
    

Then, we map successive binary sequence of length 8 called 
an 8-bit word. Each word represents a unique pattern of 
fluctuations in the time series. By shifting one sampling point at 
a time, a collection of 8-bit words over the whole time series is 
derived. Count the frequencies of occurrences of different 
words and sort them according to descending frequency. We 
obtain the ranks of frequency distribution. This set of ranks of 
words represents the statistical hierarchy of symbolic words of 
the original time series.  

To define a measurement of similarity between two time 
series, a weighted distance, Dm, between to symbolic 
sequences, S1 and S2, can be expressed as below: 
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    Where pi(wk), and Ri(wk) represent probability and rank of a 
specific word, wk, in time series Si, i=1 or 2. Two time series 
with similar patterns of fluctuations have similar probabilities 
and ranks of words, and result a smaller distance. Contrastively, 
two time series with different patterns of fluctuations derives a 
bigger distance. That’s the reason we apply similarity theory to 
make sure that the time series of blood pressure signals of 
different situations are different and those of similar situations 
are similar.  
 

B.  Empirical Mode Decomposition (EMD) 
In this investigation, the difference between two time series 

of blood pressure signals with different situations was proven 
by similarity theory. The next target for our study is to identify 
what is the difference. The empirical mode decomposition is a 
new method for analyzing nonlinear and non-stationary data. It 
can be applied to decompose a nonlinear and non-stationary 
time series to several IMF components. Here, the character 
parameters of intrinsic mode function are defined and 
calculated as a set of character parameters of time series data. 

An IMF is a function that satisfies two conditions: (1) in the 
whole data set, the number of extrema and the number of zero 
crossings must either equal or differ at most by one. (2) at any 
point, the mean value of the envelop defined by the local 
maxima and the envelop defined by the local minima is zero. 

So, Hilbert Transform can provide the description of the 
frequency content for an IMF component as part of original 
time series data.  

The decomposition method is based on the assumptions. (1) 
the signal has at least two extrema- one maximum and one 
minimum ; (2) the characteristic time scale is defined by the 
time lapse between the extrema; and (3) if the data were totally 
devoid of extrema but contained only inflection points, then it 
can be differentiated once or more times to reveal the extrema. 
Final results can be obtained by integration(s) of components. 
IMF simply use the envelopes defined by the local maxima and 
minima separately. All the local maxima are connected by a 
cubic spline line of identified maxima as the upper envelop. 
Repeat the procedures for local minima to produce the lower 
envelop. The upper and lower envelopes should cover all the 
data between them. Their mean is designated as m1, and the 
difference between the data and m1 is the first component, h1, 
i.e. 

                                  11)( hmtX =−                                  (3) 
 

The process for deriving a component by producing mean of 
envelopes and calculating the difference between data and m1 is 
named a sifting process. The sifting process servers two 
purposes: to eliminate riding waves; and to make the 
wave-profiles more symmetric. The sifting process has to be 
repeated more times. In the second sifting process, h1 is treated 
as the data, then 
                                    11111 hmh =−                                 (4) 

 
The sifting process is repeated k times, until the criterion of 

stopping shifting is satisfied. The criterion can be accomplished 
by limiting the size of the standard deviation, SD, computed 
from the two consecutive sifting results as 
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A typical value for SD can be set between 0.2 and 0.3. When 

the criterion is satisfied, the result after k siftings is designated 
as khc 11 = , the first IMF component from the data. The first 
IMF contains the finest scale or shortest period component of 
the signal. The rest of data can be derived by calculating the 
difference between the original data and the first IMF. 
 
                                  11 )( ctXr −=                                 (6) 

 
Since the residue, r1, still contains information of longer 

period components, it is treated as the new data and subjected 
to the same sifting process as described above. Then, n IMFs 
and the n-th residue can be obtained. The relationship among 
the original data, IMFs, and the n-th residue can be expressed 
below: 
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In this study, the first eight IMFs are derived for identifying 
the character parameters of pattern of blood pressure signals. 

 
C.  Instantaneous Frequency 
Instantaneous frequency is accepted only for special 

‘mono-component’ signals[10,11]. For an arbitrary time series, 
X(t), We can always have its Hilbert Transform, Y(t), as 
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Where P indicates the Cauchy principal value. This 

transform exists for all functions of class LP[12]. With this 
definition, X(t) and Y(t) form the complex conjugate pair, so we 
can have an analytic signal, Z(t), as  

 
                 )()()()()( tietatiYtXtZ θ=+=                          (9) 

 
in which, the amplitude, a(t), and phase, θ (t), can be derived 
as 
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Thus, instantaneous frequency can be defined as 
 

                                      
dt
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In principle, some limitations on the data are necessary, for 

the instantaneous frequency given in eq. (11) is a single value 
function of time. At any given time, there is only one frequency 
value; therefore, it can only represent one component, hence 
‘mono-component’. But, there is no clear definition of the 
‘mono-component’. ‘Narrow band’ was adopted as a limitation 
on data for the instantaneous frequency to make sense. 

The instantaneous frequency and instantaneous amplitude 
derived from the IMFs through the Hilbert transform can give 
us a full energy-frequency-time distribution of the data. The 
local energy at any time point is the square of the instantaneous 
amplitude and expressed as 
 

                                   2)()( tatE =                                    (12) 
 

D.  Central Frequency and Averaged Local Energy 
For any IMF extracted by EMD method has fluctuating 

instantaneous frequency and instantaneous amplitude, it is 
difficult to define the central frequency and average local 
energy of an IMF as character parameters of IMF. In this paper, 
the central frequency of IMF is defined as the central frequency 
of energy distribution and calculated by eq. (13). 
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Where t0 is time of the first sampling point, and Δ t is 
sampling time interval. In eq.(13), the denominator part is the 
total  energy of IMF during the fixed interval. We also define 
the average local energy as the total energy divided by 
sampling time interval and expressed as 
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In this study, central frequency and averaged local energy 

are defined as two character parameters for a IMF and the first 
eight IMFs are extracted from a time series of blood pressure 
signal. Thus, there are eight sets of character parameters to 
determine the pattern of a time series data. Comparing patterns 
of two time series datum by checking their character parameters 
can give us more information about the differences of energy 
distribution and central frequency. 
 

III.  MATERIAL AND METHODOLOGY 
In this investigation, the datum of time series of blood 

pressure signal were obtained by an experimentally surgical 
operation conducted to a healthy pig. During this surgical 
operation, pig’s intestinal artery was blocked by clamping for 
one minute and relaxed the clamping for next minute for 
producing two time series datum for two different situations, 
intestinal artery blocking and unblocking. This procedure was 
repeated two times consecutively and four-minute time series 
data was recorded as Fig. 1. 
 

 
Fig. 1 The four-minute time series data of blood pressure signal 

 
Based on the recording of blood pressure signal shown in 

Fig. 1, recordings of the first and the third minutes are 
experimental data, data recorded in the situation of intestinal 
artery blocking, noted as section 1 and section 3. Recordings of 
the second and the fourth minutes are control data, data 
recorded in the situation of intestinal artery relaxing, noted as 
section 2 and section 4. It is clear to be observed by Fig. 1 that 
the transition state always happens when situations exchanged. 
Excluding the data of transition state, we captured a 
twelve-second recording as a sample and took two samples 
from a section. Then, we have eight samples of datum, four 
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experimental data and four control data. The notations of 
samples and sampling intervals are shown in Table I. 
 

TABLE I 
NOTATIONS AND TIME INTERVALS OF SAMPLES OF BLOOD PRESSURE 

RECORDING. THE COLUMNS WITH GREY BACKGROUND MEAN EXPERIMENTAL 
DATA AND THOSE WITH WHITE BACKGROUND MEAN CONTROL DATA 

 

IV.  RESULTS 
A.  Results of Comparisons by the Measurement of Similarity 
Each sample compared to any other sample by similarity 

theory. The results of comparisons can be noted by quantitative 
values, the distance of two measurements of similarity, shown 
in Table II. When the distance between two samples is small 
means two samples have similar patterns. Otherwise, two 
samples have relatively different patterns.  

For Table II, it is clear that the distance between two samples 
both belonging to experimental data or control data is smaller 
than that between two samples in different situations. The value 
of weighted distance between two samples in similar situation 
is in the range from 0.0004 to 0.0073, and the value of distance 
between two samples of different situations is in the range from 
0.026 to 0.035. By the similarity theory, the two groups of 
samples can be separated easily because of the different 
measurements of similarity. 

 
B.  Results of HHT Analysis 
The samples of data are non-linear and non-stationary time 

series and were treated by HHT method. In the procedure of 
HHT, eight IMFs were extracted from original data. The IMFs 
of experimental data and control data are shown as Fig. 2(a) 
and Fig 2(b). The IMF 4 and IMF 5 have clearly different 
patterns between experimental data and control data. For IMF 
4, the waveform is conspicuous for experimental data but plain 
for control data. For IMF 5, the amplitude of experimental data 
is larger than that of contrastive data.  

Each IMF can derive time-IF distributions, shown in Fig. 3,      

time-amplitude distributions, shown in Fig. 4, and time-energy 
distributions, shown in Fig. 5. The sample 2 presents the 
characteristics of experimental data and the sample 4 presents 
the characteristics of control data. 

 

 
Fig. 2(a) The first eight IMFs of Sample 2 

 

 
Fig. 2(b) The first eight IMFs of Sample 4 

 
Fig. 3 shows the time-amplitude distributions of sample 2 

and sample 4. The distributions of IMF 4 and 5 have clearly 
difference between experimental and control data. We also can 
observe there are many differences between the time-IF 
distributions and time-energy distributions of those two groups 
of data. But, it is hard to describe what the difference is on these 
figures. Thus, the central frequency and averaged local energy 
are defined for identifying the characteristics of IMFs. These 
parameters of IMFs of sample time series were calculated and 
shown in Table III.

 
TABLE II 

THE RESULTS OF COMPARISONS AMONG THE SAMPLES OF BLOOD PRESSURE SIGNAL. IN THIS TABLE, COLUMNS WITH LIGHTLY GREY BACKGROUND MEAN THE 
WEIGHTED DISTANCES RESULTED BY TWO SAMPLES IN SIMILAR SITUATION AND COLUMNS WITH DARK GRAY BACKGROUND MEAN  SAMPLES OF EXPERIMENTAL 

DATA 
ID of sample Distance 

1  2 3 4 5 6 7 8 
1 0. 0.000435 0.027042 0.028088 0.005991 0.004708 0.029681 0.030757 
2  0 0.026157 0.027025 0.006095 0.004935 0.028702 0.029320 
3   0 0.004260 0.029561 0.027888 0.005557 0.007269 
4    0 0.031891 0.029229 0.002698 0.004382 
5     0 0.002017 0.033445 0.034771 
6      0 0.030957 0.031755 
7       0 0.005794 
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Fig. 3(a) Time-amplitude distribution of Sample 2 

 

 
Fig. 3(b) Time-amplitude distribution of Sample 4 

 

 
Fig. 4(a) Time-IF distribution of Sample 2 

 

 
Fig. 4(b) Time-IF distribution of Sample 4 

 
Fig. 5(a) Time-energy distribution of Sample 2 

 

 
      Fig. 5(b) Time-energy distribution of Sample 4 

 
The results shown in Table III explicate the differences 

between the data of experimental and control groups by central 
frequencies and averaged local energy of IMFs. They have 
totally different central frequencies and averaged local 
energies in IMF 4 and IMF 5. Especially, the fourth central 
frequencies of control data are bigger than those of 
experimental data and the averaged local energies of IMF 4 for 
experimental data are ten times of those of control data.  

In this study, the essential frequency of the blood pressure 
signal is around 3 Hz for a pig. The central frequencies of the 
first three IMFs are much higher than the essential frequency 
and their averaged local energies are relatively small. They 
contribute little information for distinguishing the difference 
between experimental and control data. Moreover, the central 
frequencies of the IMF 4, IMF 5 and IMF 6 are located in the 
interval from 3 Hz to 6 Hz. These frequencies represent the 
first and second harmonic frequencies of blood pressure 
signals. Based on the results of analysis by HHT, there are 
significantly differences between samples of two groups.  
Thus, central frequency and averaged local energy can be 
applied as indicators for verifying the characteristics of IMF.  
 

V.  CONCLUSION 
Table II shows the results of analysis by similarity theory. 

Similarity theory is a powerful tool for verifying the difference 
of fluctuation pattern between two time series. But, it can’t be 
applied to identify in what situation the time series is recorded. 
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TABLE III 
CENTRAL FREQUENCIES AND AVERAGED LOCAL ENERGIES OF THE FIRST EIGHT IMFS FOR EIGHT SAMPLES. IN THIS TABLE, COLUMNS WITH GREY BACKGROUND 

MEAN DATA OF EXPERIMENTAL DATA AND THOSE WITH WHITE BACKGROUND MEAN DATA OF CONTROL DATA 
Sample ID   1 2 3 4 5 6 7 8 

Central freq 224.769 224.457 217.839 216.882 232.714 231.014 217.434 218.549 
IMF 1 

Averaged  LE 0.000065 0.000063 0.000063 0.000064 0.000062 0.000061 0.000065 0.000063 

Central freq 141.535 146.686 132.693 133.067 148.768 154.006 125.246 137.380 
IMF 2 

Averaged  LE 0.000012 0.000013 0.000010 0.000009 0.000016 0.000015 0.000009 0.000010 

Central freq 58.398 40.147 34.789 31.275 26.277 48.620 25.438 43.652 
IMF 3 

Averaged  LE 0.000010 0.000016 0.000018 0.000023 0.000041 0.000013 0.000033 0.000011 

Central freq 6.297 6.038 7.464 9.843 6.591 6.622 7.024 15.227 
IMF 4 

Averaged  LE 0.015552 0.022150 0.001275 0.000456 0.017626 0.014590 0.001591 0.000266 

Central freq 3.905 3.578 5.870 5.788 3.743 4.181 4.974 6.289 
IMF 5 

Averaged  LE 0.058352 0.059783 0.013181 0.011054 0.094856 0.064959 0.015907 0.005998 

Central freq 3.015 2.937 3.030658 3.006 3.071 3.245 3.106 3.159 
IMF 6 

Averaged  LE 0.046340 0.039263 0.049859 0.040046 0.077276 0.075204 0.044932 0.030376 

Central freq 1.921 1.688 1.888 2.293 1.718 0.891 1.216 2.755 
IMF 7 

Averaged  LE 0.004723 0.002606 0.018962 0.021455 0.007839 0.011667 0.002624 0.009451 

Central freq 0.565 0.826 0.859 1.499 0.639 0.504 0.523 1.161 
IMF 8 

Averaged  LE 0.031976 0.009403 0.019732 0.004196 0.030159 0.036562 0.009057 0.003496 

 
 

EMD provides another powerful tool for decomposing a 
complex time series to limited number of IMFs. Each IMF 
represents fluctuation of a character band. In this study, IMF 4, 
IMF 5 and IMF 6 present the most important fluctuation 
patterns of blood pressure signal. On the other hand, the 
phenomenon of mode shifting can be observed in Fig. 2. We 
can figure out that there two or three different patterns of 
fluctuations in an IMF. The patterns of fluctuation in some 
segments are different from those in most segments of the 
same IMF. Those patterns are similar to the pattern of the last 
or next IMF. The phenomenon of mode mixing should be 
solved in the following research. 
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