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Abstract—Dichotomization of the outcome by a single cut-off 

point is an important part of various medical studies. Usually the 
relationship between the resulted dichotomized dependent variable 
and explanatory variables is analyzed with linear regression, probit 
regression or logistic regression. However, in many real-life situa-
tions, a certain cut-off point dividing the outcome into two groups is 
unknown and can be specified only approximately, i.e. surrounded by 
some (small) uncertainty. It means that in order to have any practical 
meaning the regression model must be robust to this uncertainty. In 
this paper, we show that neither the beta in the linear regression 
model, nor its significance level is robust to the small variations in 
the dichotomization cut-off point. 

As an alternative robust approach to the problem of uncertain 
medical categories, we propose to use the linear regression model 
with the fuzzy membership function as a dependent variable. This 
fuzzy membership function denotes to what degree the value of the 
underlying (continuous) outcome falls below or above the dichoto-
mization cut-off point. In the paper, we demonstrate that the linear 
regression model of the fuzzy dependent variable can be insensitive 
against the uncertainty in the cut-off point location. 

In the paper we present the modeling results from the real study of 
low hemoglobin levels in infants. We systematically test the robust-
ness of the binomial regression model and the linear regression mod-
el with the fuzzy dependent variable by changing the boundary for 
the category Anemia and show that the behavior of the latter model 
persists over a quite wide interval. 
 

Keywords—Categorization, Uncertain medical categories, Bi-
nomial regression model, Fuzzy dependent variable, Robustness. 

I. INTRODUCTION 
HANGING a dependent variable from continuous to cate-
gorical form is a common part of many medical data ana-

lyses, since categorization makes it easier for clinicians to use 
information about the relationship between a dependent vari-
able and explanatory variables in medical decision-making 
models [9,11]. 

Often a single cut-off point that divides a dependent vari-
able into just two categories is sought. The resulted binary 
dependent variable may be used for making treatment recom-
mendations or determining study eligibility. 

Among the most popular techniques, employed to analyze 
the relationship of a dichotomized dependent variable with 
explanatory variables, are linear regression, probit regression 
and logistic regression models. 
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These techniques are well known and their procedures are 
well established. Troubles start when categories are becoming 
uncertain. Many clinical categories such as high, low, and the 
like, are linguistic ones, and therefore they do not suggest 
certain cut-off points, which divide the observations into two 
groups. Besides, in many real-life situations the boundary be-
tween categories can be identified only approximately, i.e. in 
some intervals. For that reason, when dichotomizing a con-
tinuous dependent variable, one can select any cut-off point 
within these intervals. 

It follows then, that the linear regression model of such 
“approximately” dichotomized dependent variable (as well as 
the probit or logit model) must be robust over these intervals, 
that is, insensitive to uncertainties in the category boundary. 

Whether the linear regression models are robust to small 
variations in the dichotomization cut-off point is needed to 
test theoretically. 

The principle alternative to the linear regression model of a 
dichotomous dependent variable on explanatory variables 
would be the linear regression model of a fuzzy dependent 
variable on the same explanatory variables. 

Indeed, a dichotomized dependent variable may be consid-
ered as some kind of crisp membership function denoting 
whether it is true that the observed value of the dependent 
continuous variable falls into the given category. In the same 
way, one can introduce into analysis a fuzzy dependent vari-
able, which will be a fuzzy membership function denoting to 
what degree the observed value of the dependent continuous 
variable falls into the given category. Using this fuzzy mem-
bership function as a dependent variable in a linear regression 
model is another way to deal with uncertain categories in 
medical data analysis [1-3]. 

Whether this model is robust to small variations in the pa-
rameters of the fuzzy membership function is needed to test 
theoretically as well. 

We test the robustness of the linear regression model to 
small variations in the dichotomization cut-off point in this 
paper. We also test the robustness of the linear regression 
model of a fuzzy dependent variable on explanatory variables 
to small variations in the parameters of the fuzzy membership 
function. To make theoretical conclusions more tangible we 
consider a practical example of the real study of iron defi-
ciency anemia in infants. 
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II. TESTING ROBUSTNESS OF LINEAR REGRESSION MODELS 

Let us consider a dataset containing N observations of the 
continuous dependent variable Y and, for the sake of simplic-
ity, the only independent variable X. Let yj denote the value of 
the variable Y for an observation j (j = 1,…, N), and let xj be 
the observed value of the independent variable X for the same 
observation. 

Suppose we have a category A, which corresponds to some 
values of the variable Y. We may think of the category A as a 
subset A of the set Y. We want to know the truth or falsity of 
the statement 

Ay j ∈  (1) 
and how the value xj of the independent variable X can be as-
sociated with it. 

A. Linear Probability Model 
Assume that the category A is defined as a mapping be-

tween elements of the set Y and elements of the set {0, 1}, 
1}{0,: ⇒jyA    , (2) 

where the value zero represents non-membership, and the 
value one represents membership. This mapping can be de-
scribed as a binary function, for example, as the function 
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where c is some cut-off point, or hurdle value. Thus, the 
statement (1) is true if the function ),( cy jAδ  is equal to 1, 
and the statement (1) is false if ),( cy jAδ  is 0. 

Let us convert the continuous dependent variable Y to the 
binary dependent variable ),( cYAδ  by the use of the formula 
(3). 

Let β be the regression coefficient on the variable X, and let 
α be the intercept. The linear regression of the binary depend-
ent variable ),( cYAδ  on the independent variable X (the lin-
ear probability model) takes the form: 

jjA xcy β+α=δ ),(    . (4) 
The regression coefficient β shows how a change in the in-

dependent variable X affects the probability of truth of the 
statement (1). 

The values α̂  and β̂  that minimize the sum of squares 
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are defined to be the least-squares estimators of α and β. Sub-
stituting the definition (3) for ),( cy jAδ  one finds 
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where cYN ≥  is the number of observations falling in the cate-
gory A (i.e. above the cut-off point c). 

Let us suppose that the unknown parameters α and β of the 
model (4) have been estimated by α̂  and β̂ . 

Imagine now that the cut-off point c of the binary depend-

ent variable ),( cYAδ  is changing from c to cc Δ+ , where 
0>Δc  is a small increment. This changes the model (4) 

jjA xccy β′+α′=Δ+δ ),(  (7) 
and hence the estimators α̂  and β̂  

αΔ+α=α′βΔ+β=β′ ˆˆˆ,ˆˆˆ , (8) 
where 
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x
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N ccc ⋅βΔ+−=αΔ Δ+ ˆˆ ),(    , (10) 

and ),( cccN Δ+  is the number of observations which fall into the 
interval ),( ccc Δ+ . Noting that 

cypNN mccc Δ⋅⋅=Δ+ )(),(    , (11) 
cxypNx mmcccy j

j
Δ⋅⋅⋅≈∑ Δ+∈
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   , (12) 

where p(ym) is the density function of the probability distribu-
tion of Y values at some interior point ym of the interval 

),( ccc Δ+ , and also setting 
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we can write (8) as 
cypbN m Δ⋅⋅+β=β′ )(ˆˆ    , (14) 
cypaN m Δ⋅⋅+α=α′ )(ˆˆ    . (15) 

It is readily seen, that the increments βΔ ˆ  and αΔ ˆ  in the 
model estimators β̂  and α̂  due to the increment cΔ  are of 
the same order as cΔ . It means that strictly speaking, the 
linear probability model (4) of the binary dependent variable 

),( cYAδ  cannot be robust to the small variations in the model 
cut-off point c. 

Nevertheless, let us consider whether the model (4) can be 
relatively robust, i.e. robust in terms of persistence of signifi-
cance level of the model estimators α̂  and β̂  over the small 
variations of the model cut-off point c. 

Using the estimator of the variance 2σ  based on the least-
squares estimators α̂  and β̂  
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we will get the variances for α̂  and β̂  
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and the t statistics  

β
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Giving the cut-off point c a small increment 0>Δc , we 
will eventually find 
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∑
∑

=

≥

+β+α+

++−

−β+α+−=

N

j jj

cy j

m

bxax

bxa
xS

j

1
))(ˆˆ(2

)(2
)ˆˆ(21

 (21) 

and )( cO Δ  denotes the terms of higher order than cΔ . 
Suppose that before the change in the cut-off point c, the 

coefficient β̂  was significant, namely εβ
= tt ˆ , where ε is the 

chosen significance level. After the change, the t statistic for 
the coefficient β̂  turns into 

βββ
Δ±=′ ˆˆˆ ttt , where 

ct ΔΔ
β

~ˆ    , (22) 
and we get the relation 

βεβ
Δ±=′ ˆˆ ttt , which means that the 

regression coefficient β̂  may become insignificant. 
Hence, neither the regression coefficient β̂ , nor its signifi-

cance level is robust to the small variations in the model cut-
off point c. 

B. Linear Regression of Fuzzy Dependent Variable 
Assume that the category A is defined as a mapping be-

tween elements of Y and values of the interval [0, 1], 
]10,[: ⇒jyA    , (23) 

where the value 0 represents complete non-membership, the 
value 1 represents complete membership, and the values in 
between represent transitional degrees of membership. This 
mapping can be described as a fuzzy membership function, for 
example as the function 
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where c1 and c2 are some edge points (c2 > c1), which isolate 
the transitional area where the function ),,( 21 ccy jAμ  varies 
between 0 and 1. Thus, the degree to which the statement (1) 
is true is determined by the value of the function 

),,( 21 ccy jAμ . 
Let us convert the continuous dependent variable Y to the 

fuzzy dependent variable ),,( 21 ccYAμ  by means of the for-
mula (24). 

The linear regression model of the fuzzy dependent variable 
),,( 21 ccYAμ  on the independent variable X takes the form: 

jjA xccy β+α=μ ),,( 21    . (25) 
The regression coefficient β on the variable X is assumed to 

be interpreted as a change in the degree of membership in the 
category A for a given change in X. In other words, the coeffi-
cient β determines how a change in the variable X affects the 
degree of truth of the statement (1). 

Let us suppose that the unknown parameters α and β of the 
model (25) have been estimated by the least-squares estima-
tors α̂  and β̂  
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xccYA β−μ=α ˆ),,(ˆ 21    . (27) 
Giving the left edging c1 a small increment 1cΔ  and the 

right edging c2 a small increment 2cΔ , and then assuming that 
0~~ 21 >ΔΔΔ ccc  we will find the corresponding incre-

ments in the estimators α̂  and β̂  
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where ),( 21 ccN  is the number of observations falling into the 
transitional area ),( 21 cc . If the transitional area ),( 21 cc  is 
large enough to hold the relation NN cc ~),( 21

, the 1st sample 
moment about the mean x  will be very close to zero 

∑∑ =∈
=−≈−

N

j jccy j xxxx
j 1

1

),(
0)()(

21
   , (30) 

and so, instead of (28) and (29), we will get 
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Computing 2σ̂Δ  and substituting its value in the t statistics 
for estimators α̂  and β̂  we will get 
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It follows, then, that the regression coefficient β̂  along with 
its significance level is insensitive to the increment cΔ . Thus, 
unlike the linear regression model (4) of the binary dependent 
variable ),( cYAδ , the linear regression model of the fuzzy 
dependent variable ),,( 21 ccYAμ  may be robust to the small 
variations in the model edge points c1 and c2. 

III. ANALYSIS OF ANEMIA IN CHILDREN 

To make these theoretical conclusions more tangible let us 
consider the following practical example. In the example, we 
will use the data obtained from the real study of iron defi-
ciency anemia in 618 infants (children of age 0 to 12 months) 
living in the Negev desert area, Israel. (The study was done by 
Prof. D. Fraser of Ben-Gurion University of the Negev and 
her colleagues in 2002-2005 years [7].) 

The study dataset comprises questionnaire information and 
laboratory findings. The dependent continuous variable of the 
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dataset is an infant's hemoglobin level (Hgb, measured in 
g/dl). The summary statistics calculated for the Hgb variable 
are shown in the Table I. 

TABLE I 
THE UNIVARIATE SUMMARY STATISTICS FOR THE HGB VARIABLE 

Parameters Values 

Nonmissing observations 200 
Mean 10.88 

Std. Dev. 0.96 
Variance 0.92 
Skewness -0.04 
Kurtosis 3.78 

1% percentile 8.20 
50% percentile 10.85 
99% percentile 13.40 

 
The dataset independent (explanatory) variables of our in-

terest along with their summary statistics are presented in the 
Table 2. 

TABLE II 
THE INDEPENDENT VARIABLES AND THEIR SUMMARY STATISTICS 

# Variable 

Non-
missing 
obser-
vations 

Mean ± S.D. Min Max 

1 Infant's age (months) 611 4.96 ± 1.33 1.60 11.77 

2 Ethnicity 618 binary variable: 
Jews = 212, Bedouins = 406 

3 Breastfeeding (BF) 
(times a day) 252 3.12 ± 3.08 0 9 

4 Intake of infant 
formula (times a day) 252 2.81 ± 2.00 0 8 

5 Intake of cow's milk 
(times a day) 252 0.11 ± 0.51 0 4 

6 Infant's age (months) 
when BF stopped 252 5.05 ± 1.88 0 7 

 
The age-matched normal values for hemoglobin are listed 

in the Table 3 [12]. 
TABLE III 

AGE-SPECIFIC HEMOGLOBIN VALUES 

Infant's age Hgb normal values Mean Hgb 

< 1 month 10.0÷20.0 13.9 
2÷6 months 9.5÷14.0 12.6 
6÷24 months 10.5÷13.5 12.0 

 
Iron deficiency anemia is defined as a low level of hemo-

globin [5]. In view of that, our task is to analyze whether the 
given independent variables can influence low levels of he-
moglobin in infants. 

A. Linear Probability Model of Pediatric Anemia 
According to the CDC Guidelines [12], a level of Hgb less 

than 11 g/dl is the criteria for anemia in infants and children 
under five. Therefore, we can start by generating the binary 

dependent variable )11,(HgbAnemiaδ  

⎪⎩

⎪
⎨
⎧

≥

<
=δ
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11,1
)11,(

j

j
jAnemia Hgb

Hgb
Hgb    , (34) 

which determines that an infant’s hemoglobin is low if the 
Hgb is less than 11 g per dl. Now we can fit the linear prob-
ability model of )11,(HgbAnemiaδ  on the independent vari-
ables Xi (i = 1,…,6) to our dataset 

∑ =
β+α=δ

6

1
)11,(

i jiijAnemia xHgb    . (35) 

Obviously, the CDC Guidelines are approximate. This 
means, that the boundary for the category Anemia is not pre-
cisely 11 but rather any value c0 within the interval cΔ−11  to 

cΔ+11 , where Δc is some small uncertainty. It follows then, 
that the model (35) must be very close (in terms of the regres-
sion coefficients βi and their significance levels) to any of the 
models 

∑ =
β′+α′=Δ±δ

6

1
)11,(

i jiijAnemia xcHgb    , (36) 

We have tested the models (36) by changing the value c0 
within the interval 11±0.4; the results are presented in the Ta-
ble 4. 

TABLE IV 
THE BETAS AND T-STATISTICS 

OF THE LINEAR PROBABILITY MODELS OF δANEMIA(HGB, C0) 
Boundary c0 for the category Anemia Terms in the equation 

and R-squared 10.6 10.8 11.0 11.2 11.4 

Infant's age (months)      

Ethnicity = Bedouins   0.28 
2.86 

0.23 
2.30 

0.26 
2.74 

Breastfeeding (BF) 
(times a day)   -0.04 

-2.71 
-0.04 
-2.39  

Intake of infant formula 
(times a day) 

-0.05 
-2.59 

-0.06 
-3.08 

-0.06 
-3.17 

-0.05 
-2.69 

-0.05 
-2.63 

Intake of cow's milk 
(times a day) 

0.13 
2.64 

0.12 
2.41    

Infant's age (months) 
when BF stopped      

α 
tα   0.56 

2.69 
0.69 
3.32 

0.87 
4.11 

R-squared 0.09 0.09 0.10 0.08 0.09 

Key for terms: the upper value is the beta; the lower value is its t statistic. 
Only coefficients, which are statistically significant at, at least, the 0.05 

level, are posted in the table. 
 
In perfect agreement with the theoretical conclusions of the 

previous chapter, the models presented in this table have dif-
ferent statistically significant predictors of anemia in infants. 
For example, we see that the variable Breastfeeding is statisti-
cally significant in the model of the )0.11,(HgbAnemiaδ , but it 
is not in the model of the )8.10,(HgbAnemiaδ  or in the model 
of the )4.11,(HgbAnemiaδ . This means that the analysis of the 
given dataset based on linear probability modeling may be 
biased. 
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B. Regression of the Fuzzy Dependent Variable for Ane-
mia 

Therefore, now we will try the approach based on the re-
gression analysis with a fuzzy dependent variable. 

First, using the boundary c0=11g/dl and the edge points 
)5.2(, 0201 =+=−= hhcchcc    , (37) 

we will construct the fuzzy dependent variable 
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   , (38) 

then we will try to fit the linear regression model of the 
)5.2,11,( jAnemia Hgbμ  to the dataset 

∑ =
β+α=μ

6

1
)5.2,11,(

i jiijAnemia xHgb    . (39) 

Since the boundary c0=11g/dl for the category Anemia is 
only approximate, the model (39) must be very close to any of 
the models 

∑ =
β′+α′=Δ±μ

6

1
)5.2,11,(

i jiijAnemia xcHgb    . (40) 

As we can see from the Table 1, more than 95% of the ob-
served values of Hgb fall into the transitional area (8.5, 13.5) 
of the fuzzy membership function (38). Hence, basing on the 
theoretical conclusions (31) and (32), we can anticipate that 
all the models (40) will be alike. 

By analogy with the previous case, we have tested the mod-
els (40) by changing the value c0 within the same range 
11±0.4; the results are presented in the Table 5. 

TABLE V 
THE BETAS AND T-STATISTICS 

OF THE LINEAR REGRESSION MODELS OF μANEMIA(HGB, C0, 2.5) 
Boundary c0 for the category Anemia Terms in the equation 

and R-squared 10.6 10.8 11.0 11.2 11.4 

Infant's age (months)      

Ethnicity= Bedouins 
0.12 
2.94 

0.12 
2.93 

0.12 
2.92 

0.12 
2.91 

0.12 
2.90 

Breastfeeding (BF) 
(times a day)      

Intake of infant formula 
(times a day) 

-0.03 
-3.41 

-0.03 
-3.41 

-0.03 
-3.41 

-0.03 
-3.40 

-0.03 
-3.40 

Intake of cow's milk 
(times a day)      

Infant's age (months) 
when BF stopped      

α 
tα 

0.41 
4.98 

0.45 
5.51 

0.45 
5.51 

0.54 
6.62 

0.58 
7.17 

R-squared 0.15 0.15 0.15 0.14 0.14 

Key for terms: the upper value is the beta; the lower value is its t statistic. 
Only coefficients, which are statistically significant at, at least, the 0.05 

level, are posted in the table. 
 
Indeed, we see that the models presented in this table are 

quite similar. They all show the same statistically significant 
predictors of low hemoglobin in children. (Namely, the child's 
Bedouin ethnicity increases the degree of truth of the state-

ment “the child has anemia”, while the intake of infant for-
mula decreases it.) 

Accordingly, we can conclude that, the analysis of the giv-
en dataset based on linear regression modeling with fuzzy 
dependent variables has no bias related to the choice of the 
boundary for the category Anemia. 

IV. CONCLUSION 

The linear regression models, which we considered in this 
paper, are in fact latent variable models. Indeed, the linear 
regression model of the binary dependent variable ),( cYAδ  
has the underlying variable Y, which is outside the model 
structure (i.e. it does not belong to the model variables). 
Therefore, the cut-off point c, which is placed on the Y-axis, is 
actually a latent model parameter. 

Binomial regression models have been studied well for ro-
bustness of their explicit parameters, not the latent ones. For 
example, there exist robust parameter estimates that provide a 
good fit to the bulk of the data (i.e. the observed values of the 
variables in the regression equation) when the data contain 
outliers, as well as when the data are free of them [8,11]. 

That is why one of the goals of our study was to test sensi-
tivity of the binomial regression model with the dependent 
variable ),( cYAδ  to small variations in the latent model pa-
rameter – the dichotomization cut-off point c. 

We found that neither the regression coefficient in this 
model, nor its significance level is robust to the uncertainty 

cΔ  in the model cut-off point cc Δ± . 
We also tested the linear regression with the simplest fuzzy 

membership function ),,( 21 ccYAμ  (which is nothing more 
than a collection of two edge points c1 and c2 placed on the Y-
axis) as a model dependent variable. This straight line mem-
bership function ),,( 21 ccYAμ  has the advantage of being the 
simplest generalization of the step-like function ),( cYAδ . 

We found that unlike the binomial regression model of the 
),( cYAδ , the linear regression model of the fuzzy dependent 

variable ),,( 21 ccYAμ  can be insensitive to the uncertainty cΔ  
in the position of the edge points cc Δ±1  and cc Δ±2 . This 
makes the model of the ),,( 21 ccYAμ  more proper choice for 
real-life modeling. 

To illustrate this theoretical conclusion we presented the 
model results from the real study of iron deficiency anemia in 
infants. We showed that the linear regression model with the 
fuzzy dependent variable depicted the category Anemia has a 
persistent behavior over a reasonably wide interval of hemo-
globin levels. 
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