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Abstract—Multi criteria decision making (MCDM) methods like 

analytic hierarchy process, ELECTRE and multi-attribute utility 
theory are critically studied. They have irregularities in terms of the 
reliability of ranking of the best alternatives. The Routing Decision 
Support (RDS) algorithm is trying to improve some of their 
deficiencies. This paper gives a mathematical verification that the 
RDS algorithm conforms to the test criteria for an effective MCDM 
method when a linear preference function is considered. 
 

Keywords—Decision support systems, linear preference 
function, multi-criteria decision-making algorithm, analytic hierarchy 
process.  

I. INTRODUCTION 
ULTI-CRITERIA decision-making (MCDM) methods 
evolved as a response to the observed inability of people 

to effectively analyze multiple streams of dissimilar 
information. They can help to improve quality of decisions by 
making decision-making process more explicit, rational, and 
efficient [1]. As a consequence, MCDM methods are used 
widely in engineering [1], [3], manufacturing [4] and business 
[5]. However, most of these techniques have irregularities in 
terms of the reliability of ranking of the best alternatives. 
Because many of the criteria are subjective in nature and have 
uncertainty associated with them, it is difficult to determine in 
a multiple criteria problem how the alternatives should be 
ranked. Hence different MCDM techniques used for a multi-
criteria problem could produce different ranked alternatives. 

The Analytic Hierarchy Process (AHP) [7] technique is 
widely used. However, there are a number of arbitrary aspects 
of the AHP procedure. For example, the scale that is used is 
ad-hoc. Why the 1-9 range? In addition, the ranking scale can 
be manipulated to get a preferred outcome. Furthermore, there 
is the hidden assumption that if  is weakly preferred to  and  
is weakly preferred to , then a consistent decision maker 
must have  absolutely preferred to . However, the use of a 
word such as weakly does not necessary make this transitive 
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relationship hold. Consequently, this can lead to a decision 
maker forgetting prior assessments as he goes, which in turn 
can result in inconsistencies in the decision process. Another 
problem with the AHP approach is that when asked to rank a 
list of things according to some criterion, such as preference 
value, risk or cost, numbers are assigned to the relative objects 
position in the list. The main problem with this approach is 
that the measurement scale chosen is ordinal at best. A ranking 
of 10 does not mean that the preference for an item is twice 
that of an item rated 5. The AHP approach provides insight 
into the tradeoffs embedded in a decision making process. 
However, it is clear that preferences are extracted by many 
pair-wise comparisons. This can make large decision problems 
very difficult to analyze. More importantly, it complicates 
group decision making since new pair-wise comparisons must 
be done for each decision maker. 

Apart from the widely used AHP technique there is another 
family of MCDM models that uses “outranking relations” to 
rank a set of alternatives - the ELECTRE method and its 
derivatives. Most of the ELECTRE methods were shown to 
have a rank reversal problem [1]. This occurs when a non-
optimal alternative is replaced by a worse alternative and the 
decision method changes the ranking of the alternative that 
was the best before the change was made. This means that 
most of the ELECTRE methods cannot be trusted. 

Value functions [12] are considered to be part of another 
family of MCDM models. Multi-Attribute Utility Theory 
(MAUT) [13] uses value functions to map changes of values 
of performance of the alternatives in terms of a given criterion 
into a dimensionless value.  However, MAUT is very difficult 
to use because it utilizes non-intuitive concepts of subjective 
probabilities which are difficult to measure. For example, 
what is the probability that Australia will beat England in 
Ashes 2009? This probability cannot be obtained by dividing 
the number of favorable outcomes by the number of possible 
outcomes. Rather, assigning probability of say, 0.7 to this 
event by a cricketing expert is more feasible. Such an 
approach to probability seems to be a mere opinion. 

The Routing Decision Support (RDS) algorithm [6] is a 
MCDM technique that was originally used to find the best 
paths to route packets in a computer network based on a set of 
network constraints and user goals. The algorithm was 
designed primarily to find a Pareto optimal path [6] from a set 
of paths in a computer network in such a way that the quality 
of service (QoS) goals of the user and network can be 
satisfied. The basic rational behind the RDS was to design a 
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fast simple decision process for QoS criteria such as 
bandwidth, cost, delay and jitter. The input required for the 
RDS to make a “good” decision was significantly less than 
other decision techniques like the analytic hierarchy process 
[7] and the ELECTRE methods [8]-[11]. In addition, the RDS 
was designed with measurement concepts in mind and with 
the goal of improving on the mathematical deficiencies of 
other techniques. 

This paper is organized as follows. The next section 
describes the RDS algorithm and gives examples of how it 
works. The third section discusses the three test criteria that 
have been used in [1] to test the performance of MCDM 
models and describes mathematical proofs that the RDS 
method meets the three test criteria. Some concluding 
comments are presented in the last section.  

II. THE RDS ALGORITHM 
In this section the RDS algorithm will be explained. 

Because the RDS has its origins in a networking environment, 
an example will be given of how the RDS can be used to assist 
IP traffic engineers with finding suitable routes for a given set 
of user requirements. To make the RDS algorithm applicable 
for business decision-making, a key modification to the 
algorithm will be presented. Finally, another example will be 
given to illustrate how the RDS can be used with a regular 
type of decision problem. 

A. Introduction to the RDS Stage 
The RDS algorithm uses the structure of the decision matrix 

(cf. Fig. 1).  
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Fig. 1 Structure of decision matrix 

The algorithm uses a scale  to convert values of  for 
each criterion 1,  into a dimensionless value in the 
domain 1,1 . The domain of 1,1  rather than 0,1  as in 
the case of value functions is the first difference that the RDS 
method presents. The rationale for the 1,1  domain will be 
explained later. The scale  can be any monotone continuous 
increasing or decreasing function whose domain exists in 

1,1 . In addition,  behaves differently for benefit and cost 
criteria [14], [15] (A benefit criterion means that the higher an 
alternative scores in terms of it, the better the alternative is. 
The opposite is considered true for the cost criteria). This is 
because for a given benefit criterion the highest value of 
criterion amongst the alternatives is assigned to  and the 
lowest value is assigned to . For example, if a person wishes 
to buy bandwidth of 250, 300, 400 Mbps from Internet service 

providers A, B and C respectively, each selling at the same 
price then 400 and 250. Similarly, if a person wishes 
to buy a car from a set of three cars costing $2000, $ 3000 and 
$4000, then 2000 and 4000 . 
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Fig. 2 Linear mapping function for s 

The RDS algorithm takes four major concepts into 
consideration in the decision process. The first concept is the 
formulation of a decision matrix and the scaling of each 
element in this matrix based on scale . The second concept is 
that the RDS algorithm allows a given decision maker to 
express a set of preferences  for each criterion.  The third 
concept is the weightings for each criterion such that 
∑ 1. Note that a decision makers set of preferences is 
different from the weightings of the criterion for a given 
decision problem. For example, in a computer network, the 
Internet service provider (ISP) in a given decision problem 
may set the weightings of bandwidth to 0.6 and delay to 0.4. 
However, a given network user may wish to indicate that 
delay is more important for them than bandwidth. The RDS 
algorithm allows for this type of flexibility in the decision 
making process. Finally, the fourth concept is an output vector 

  which is a 1  vector of real points. Each position in this 
vector is associated with an alternative and the position that 
carries the largest value is the best alternative. Similarly, an 
ordering of the  will result in the decision alternatives being 
ranked. Fig. 3 shows how these four concepts work together. 

 

…
…
…
…

 

 
Fig. 3 Pictorial view of concepts that make up the  

RDS decision process 
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B. IP Traffic Engineering Example of the RDS 
Fig. 4 shows the topology of the network used to 

demonstrate the RDS algorithm. Each link is characterized by 
three weights that correspond to bandwidth, delay and 
preferred customers (PC) respectively; PC is a metric that 
determines the degree that a given customer traffic is 
welcomed on the link (3 = highly welcomed, 2 = can 
moderately use, 1 = can use but not desired). In the network 
node A is used as the ingress router and node E is used as the 
egress router. In addition, the requests that network users 
could make on the network are summarized in Table 1. The 
route server collects routing protocol updates by peering with 
a link state protocol. In this way the entire topology of the 
network can be constructed at the route server. By this 
topology are calculated all the possible routes between ingress 
and egress nodes. The weightings for all criteria are assumed 
to be equal. 

A

B

D

C
E

10 Mbps, 50 ms, 3

8 Mbps, 50 ms, 3

10 Mbps, 20 ms, 1 10 Mbps, 30 ms, 1

7 Mbps, 50 ms, 3

10 Mbps, 30 ms, 2

Route Server

 Fig. 4 Example network that illustrates how the RDS works. 
Each link is has bandwidth, delay and PC metrics 

TABLE I 
USER GOALS FOR TRAFFIC 

Goal User Request 
1 6 Mbps, 50 ms, PC = 1 
2 6 Mbps, 50 ms, PC = 1 
3 6 Mbps, 100 ms, PC = 1 

 

Since no links are less than 6 Mbps the feasible paths 
connecting A and B are A-B-E, A-C-E, and A-D-E. These 
paths are passed to the RDS algorithm, which addresses goals 
1 to 3 given in Table I. For the given paths, the matrix in Fig. 
5 shows the value of each metric on each of the three routes 
that connect A and E. Fig. 6 shows the matrix after preference 
function scaling. 
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Fig. 5 Matrix containing columns of metric vales for each 

network path 
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Fig. 6 Matrix M after preference function scaling has been 
performed 

 

Table II shows a summary of the scaled values user traffic 
goals vector v, the product of Mv and the path that the 
algorithm selected. It can be seen from the results that the 
RDS algorithm selected paths that match the user goals.  

TABLE II  
PATHS SELECTED BY RDS ALGORITHM BASED ON USER GOALS IN TABLE I 

Goal V Mv Path Selected 
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C. Generalization of the RDS Algorithm  
The RDS algorithm in its original format may not meet the 

needs of a typical business problem. This is because the way 
the RDS handles tradeoffs is by using a set of criterion 
preferences (v is the example above) which is a part of the 
matrix multiplication process Mv and measures what a user 
desires for a given criteria against an alternative. However, in 
most decision problems the user is concerned with the 
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optimization of a particular criterion rather than finding an 
alternative closest to the value specified for that criterion by 
the user. Since the maximum value for a criterion is always 
mapped into 1 and the minimum value is always mapped into -
1, the possible range of values that the set of user preferences 
for a given set of criteria can take is [1, 0,-1]. The value of 0 
for a given criterion means that the user does not wish this 
criterion to participate in the decision making process. The 
value of -1 means that the user wishes an alternative that has 
the worst possible value for the given criterion – this is why -1 
multiplied by 1−=ija  would lead to a positive value and 

thus increase the chances of that alternative having the highest 
weighting in . Furthermore, it is important to note that the set 
[1, 0,-1] makes it easy for the user to perform ‘what-if’ 
analysis for a given decision problem. 

D. Buying a Car (Example of the RDS) 
Suppose a woman by the name of Cheryl wishes to buy a 

used car from the set of used cars in Table III and considers 
low mileage and low price to be very important criteria. 
However, since she has little experience in buying cars, she 
does not wish to put any weighting on the criteria. To find the 
best alternative from the set of cars for Cheryl, Fig. 7 shows 
how the RDS procedure is carried out. The best car for Cheryl 
to buy is car 1, followed by car 3 and car 2. 

It is important to note that car 3 seems to be the best option. 
However, considering the fact that Cheryl is interested in low 
price and low mileage makes the problem interested. Car 1 has 
a lower price than car 3 whilst car 3 has a better mileage than 
car 1. However, when the “global picture” is taken into 
account $3000 difference in price between car 1 and car 3 is 
more valuable than a 2 mileage difference (note: mileage and 
price have the same weights). Hence car 1 is the better option.  
 

TABLE III  
SET OF USED CARS AND THEIR PROPERTIES (CRITERIA) 

 Price MPG Mileage Age 
Car 1 15000 10 100000 10 
Car 2 12000  6 200000   7 
Car 3 18000 12 50000   8 
Car 4 23000  7 100500 11 
Car 5 13000  5 300000   7 
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Fig. 7 Pictorial view of RDS algorithm for finding the best 
used car 

III. TESTING THE RDS ALGORITHM 
Three test criteria were proposed in [1] to test the relative 

performance of various MCDM methods. These tests are as 
follows: 
 

TEST CRITERION #1 
An effective MCDM method should not change the 

indication of the best alternative when a non-optimal 
alternative is replaced by another worse alternative (given 
that the relative importance of each decision criterion remains 
unchanged 
 

Proof that the RDS satisfies Criterion #1 
Benefit criteria are assumed to simplify the proof. However, 

because the RDS algorithm uses a function to map user values 
to 1,1  the result would also be true for cost criteria or a 
combination of benefit and cost criteria. 

Suppose that the RDS (Routing Decision System) method 
produces the following ranking for a set of alternations: 
 

nAAAA ≥≥≥≥ ......321  
 

Now suppose alternative , 2,  is selected. If  
is replaced by a dominant (non-optimal) alternative, say , 
then by definition of “dominance”: 

 
, 1,          (1)  

 
For the new set of alternatives let  
 

2 1 1 2        (2) 

 
Now, as  decreases (because of (1)),  increases.  

Therefore, 2  decreases. Hence  decreases. So that 

 and hence  
∑ ∑   
due to the fact that the user preferences  and  are the 
same for both problems. 

Since  had the highest value of ∑  and 
was not replaced, and every real point in the new problem 
∑  is less than the original problem, it 
follows that  would retain the same position in the output 
vector of the RDS, with the highest value. Hence the RDS 
satisfies test criterion #1. 

Remark 1: It must be emphasized here that the function s does 
not have to be linear. Any function which is continuous and 
increasing or decreasing in the domain 1,1  will work.  
 

TEST CRITERION #2 
The rankings of alternatives by an effective MCDM method 

should follow the transitivity property. 
 

Proof that the RDS satisfies Criterion #2 
Suppose that the RDS algorithm ranked a set of alternatives 
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of a decision problem in some way. Next, suppose that this 
problem is decomposed into a set of smaller problems, each 
defined on two alternatives at a time and the same number of 
criteria as in the original problem. Then, according to this test 
criterion all the rankings which are derived from the smaller 
problems should satisfy the transitivity property. That is, if 
alternative  is better than alternative , and alternative  
is better than alternative ,then one should also expect 
alternative  is better than alternative . This will now be 
shown as follows: 

Given the decision problem A, defined on a set of n 
(assumed to be odd and divisible by 3) alternatives ranked as 
follows: 
 

nAAAA ≥≥≥≥ ......321                           (3) 
 

Suppose that A is decomposed into sets of smaller 
problems, each consisting of pairs of alternatives as follows: 

}.......,{},,{},,{ 23121 −− nnn AAAAAA                
(4) 
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the assumption that zp AA < . Hence given that zq AA ≥  and 

qp AA ≥  in systems },{ zq AA  and },{ qp AA  respectively 

then in system zp AA < then zp AA ≥ . 

Remark 2: 0)(
1

≥−∑
=

m

j
zjpj xx  is true for benefit 

objectives. If the objective is a cost-metric, then

0)(
1

≤−∑
=

m

j
zjpj xx .  

For simplicity, benefit-objectives were assumed. However, 
for a problem having a mixture of benefit and cost metrics the 
following rule has to be applied: If metric j is a benefit metric 
then )( zjpj xx − is used and if j is a cost metric then 

)( pjzj xx − is used. Using this simple decision step means that 

the above proof still holds when cost and benefit objectives 
are considered in the same system. 
 

TEST CRITERION #3 
For the same decision problem and when using the same 

MCDM method, after combining the rankings of the smaller 
problems that an MCDM problem is decomposed into, the new 
overall ranking of the alternatives should be identical to the 
original overall ranking of the un-decomposed problem.  

 
Explanation: As before, suppose that an MCDM problem 

is decomposed into a set of smaller problems, each defined on 
two alternatives and the original decision criteria. Next 
suppose that the rankings of the smaller problems follow the 
transitivity property. Then, according to this test criterion 
when the rankings of the smaller problems are all combined 
together, the new overall ranking of the alternatives should be 
identical to the original overall ranking before the problem 
decomposition.   
 

Proof that the RDS satisfies Criterion #3 
Given the decision problem , defined on a set of n 

alternatives ranked as follows: 
 

nAAAA ≥≥≥≥ ......321  
 

Suppose that A is decomposed into sets of smaller 
problems, each consisting of pairs of alternatives as follows: 

npppp AAAAAAAAA }...,}{,},....{,{},,{ 314321 +++    (5) 
 
Combining },}{,{ 321 +++ pppp AAAA gives  
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=∪ +++ },{},{ 321 pppp AAAA },,,{ 321 +++ pppp AAAA  

We wish to show that 321 +++ ≥≥≥ pppp AAAA  

The interesting system is },{ 21 ++ pp AA  

In the un-decompose problem we know that 

0)(
1

)2()1( >−∑
=

++

m

j
jpjp xx  

Hence ( ) 0)()(
2 1

)2()1( ≥−
−

∑
=

++

m

j
jpjjpj

jj xsxs
ba   

                     ⇒ ∑∑
=

+
=

+ ≥
m

j
jpj

m

j
jpj xsxs

1
)2(

1
)1( )()(  

                    ⇒ 21 ++ ≥ pp AA  

By the same reasoning we have that },{ 1+pp AA and 

},{ 32 ++ pp AA  implies that 1+≥ pp AA  and 32 ++ ≥ pp AA . 

From criterion #2, the transitive property would imply that: 

321 +++ ≥≥≥ pppp AAAA . Hence criterion #3 is satisfied. 

IV. CONCLUSION 
Most papers related to this work use simulation to show that 

established MCDM models meet the three test criteria outlined 
in this paper. However, no research to the best of the author’s 
knowledge has used Mathematics to show the effectiveness of 
the AHP or variants of the ELECTRE against the outlined test 
criteria in [1], [15]. And even when simulation was used the 
results were not encouraging. Hence this paper demonstrates 
that the RDS algorithm has a strong basis and could provide 
the reliability and consistency that is lacking from many of the 
other MCDM models. Furthermore, these advantages of RDS 
algorithm can be tested by case studies with real data 
applications. 
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