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Abstract—In this study, an analysis has been performed for 

free convection with radiation effect over a thermal forming 
nonlinearly stretching sheet. Parameters n, k0, Pr, G represent 
the dominance of the nonlinearly effect, radiation effect, heat 
transfer and free convection effects which have been presented 
in governing equations, respectively. The similarity 
transformation and the finite-difference methods have been 
used to analyze the present problem. From the results, we find 
that the effects of parameters n, k0, Pr, Ec and G to the 
nonlinearly stretching sheet. The increase of Prandtl number Pr, 
free convection parameter G or radiation parameter k0 resulting 
in the increase of heat transfer effects, but increase of the 
viscous dissipation number Ec will decrease of heat transfer 
effect. 

 
Keywords—Nonlinearly stretching sheet, Free convection, 

Finite-difference, Radiation effect. 

I. INTRODUCTION 
HE study of viscous fluids pass a thermal forming 
nonlinearly stretching sheet has been become of increasing 

importance in the lately. Qualitative analyses of these studies 
have significant bearing on several industrial applications such 
as polymer sheet extrusion from a dye, drawing of plastic films, 
etc. When the manufacturing product of a thermal forming 
stretching sheet at high temperature and need cooling, it needed 
a good efficient fluid flow to reduce the heat form the sheet.  
And also, the fluid flow may have processed radiation effect, 
buoyancy effect or other kinds of effects couple with the fluid 
flow and stretching sheet and have become a hybrid system 
which need to analysis by many different ways. 

The pioneering work of Sakiadis [1], extensive literature is 
available on this topic for a linearly stretching sheet. A broad 
effort has been made to gain information regarding the 
stretching flow problems in various situations. Such situations 
include consideration of non-Newtonian fluids, MHD fluid, 
heat transfer; mass transfer, porous medium, slip effects, etc. A 
vast body of literature is now available on the topic. Some very 
recent attempts in this direction have been made in the 
investigations. Sadeghy [2] studied realistic viscoelastic fluid 
models such as a Maxwell model should be invoked in the 
analysis. Indeed, this fluid model has recently been used to  
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study the flow of viscoelastic fluids. Arial et al. [3] studied an 
elastic-viscous non-Newtonian fluid past a stretching sheet 
with partial slip effect, but the stretching sheet was linearly. 
Liao [4] had studied unsteady boundary-layer flows caused by 
an impulsively stretching plate. In his work, it used the 
homotopy analysis method (HAM) to find an analytical 
solution. Xu [5] had studied an explicit analytic solution for 
convective heat transfer in an electrically conducting fluid at a 
stretching surface with uniform free stream. The study 
considered the electrical force adding to momentum equation 
and obtained its heat transfer effect. Cortell [6,7] had studied 
the effects of viscous dissipation and work done by 
deformation on the MHD flow and heat transfer of a 
viscoelastic fluid over a stretching sheet, and considered with 
internal heat generation or absorption. All the above mentioned 
investigations deal with the flows over a linearly stretching 
sheet. Very little attention has been given to the flows over a 
nonlinearly stretching sheet. Cortell [8] studied the effects of 
viscous dissipation and radiation on the thermal boundary layer 
over a nonlinearly stretching sheet. On one side, the effects of 
thermal radiation are included in the energy equation, on the 
other hand, the prescribed wall heat flux case (PHF case) is also 
analyzed. Kechil and Hashim [9] studied series solution of flow 
over nonlinearly stretching sheet with chemical reaction and 
magnetic field, it is investigated by employing the Adomian 
decomposition method (ADM). Bataller [10] studied similarity 
solutions for flow and heat transfer of a quiescent fluid over a 
nonlinearly stretching surface. In this study, the viscous 
dissipation was considered in the energy equation. Cortell [11] 
studied viscous flow and heat transfer over a nonlinearly 
stretching sheet, the paper had employed a novel numerical 
procedure and two cases are studied, namely, (i) the sheet with 
constant surface temperature (CST case) and (ii) the sheet with 
prescribed surface temperature (PST case). Vajravelu [12] 
studied viscous flow over a nonlinearly stretching sheet and 
Abbas and Hayata [13] studied radiation effects on MHD flow 
in a porous space. From above, there are still not considering 
the free convection couple with radiation effect over a 
nonlinearly stretching sheet. In the present investigation, a 
study for free convection with radiation effect problem pass a 
nonlinearly stretching sheet has been processed.  

II. THEORETICAL AND ANALYSIS 
A.  Flow Field Analysis 
In this study, consider the flow of an incompressible viscous 

fluid past a thermal forming stretching sheet coinciding with 
the plane y = 0, the flow being confined to y >0. Two equal and 
opposite forces are applied along the x-axis, so that the wall is 
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stretched keeping the origin fixed. The well-known Boussinesq 
approximation is used to represent the buoyancy mixed term. 
The steady two-dimensional boundary layer equations for this 
fluid, in the usual notation, are:  

u v 0,
x y
∂ ∂

+ =
∂ ∂

                                                                           (1) 

2

x2

u u uu v g (T T )
x y y ∞

∂ ∂ ∂
+ = υ + β −

∂ ∂ ∂
                                          (2) 

Where (x, y) denotes the Cartesian coordinates along the sheet 
and normal to it, u and v are the velocity components of the 
fluid in the x and y directions, respectively, xg is the magnitude 
of the gravity, β  is the coefficient of thermal expansion and υ  
is the kinematic viscosity. The boundary conditions to the 
problem are: 

n
wu (x) Cx ,= v 0=  at y =0,                                                    (3) 

u 0→  as  y →∞ ,                       
Where C and n are parameters related to the surface stretching 
speed. Defining new similarity variables as: 

n 1
2C(n 1)y x ,

2v

−+
η =  ( )nu Cx f ' ,= η                                       (4) 

( ) n 1
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Defining the non-dimensional temperature ( )
W

T T
T T

∞

∞

−
θ η =

−
 

and wT T Ax cons tan t∞= + = , substituting into Eqs. (1) and 
(2) give: 

( )2 2nf ' ff '' f ''' G 0
n 1

⎛ ⎞ − − − θ =⎜ ⎟+⎝ ⎠
                                               (5) 

x
2

2AgG
C (n 1)

β
=

+
 is the free convection parameter, where a prime 

denotes differentiation with respect to the independent 
similarity variable η. The boundary conditions (3) becomes :  
f 0, f ' 1= =  at 0η =                                                                 (6) 

'f 0→  as η→∞                          
For the linearly stretching boundary problem (i.e., n = 1) the 
exact solution for the velocity field f is:  
f ( ) 1 exp( )η = − −η                                                                    (7) 
and this exact solution is unique, while for the nonlinearly 
stretching boundary problem (i.e., n ≠  1) there is no exact 
solution. The shear stress at the stretched surface is defined as: 

w
w

u
y

⎛ ⎞∂
τ = μ⎜ ⎟∂⎝ ⎠

                                                                            (8) 

and we obtain equation (9) from equations (4) and (8) 
( ) 3n 1

2
W

C n 1
C x f ''(0)

2

−+
τ = μ

υ
                                                 (9) 

Where μ  is the viscosity of the fluid.  
 
 
 
 

B.  Heat Transfer Analyses 
By using usual boundary layer approximations, the equation 

of the energy for temperature T in the presence of radiation and 
viscous dissipation, is given by:  

 

22
r

2
p p p

qT T k T u 1u v
x y c c y c yy

⎛ ⎞ ∂∂ ∂ ∂ υ ∂
+ = + −⎜ ⎟∂ ∂ ρ ∂ ρ ∂∂ ⎝ ⎠

                        (10) 

where k is the thermal conductivity, ρ is the density, pc  is the 
specific heat of a fluid at constant pressure and rq  is the 
radiative heat flux. Using the Rosseland approximation for 
radiation [14], the radiative heat flux is simplified as  

* 4

r
4 Tq
3k y
σ ∂

= −
∂

                                                                      (11) 

Where *σ  and *k  are the Stefan–Boltzmann constant and the 
mean absorption coefficient, respectively. It assumes that the 
temperature differences within the flow such as that the term 

4T may be expressed as a linear function of temperature. 
Hence, expanding 4T  in a Taylor series about T∞  and 
neglecting higher-order terms we get  

4 3 4T 4T T 3T∞ ∞≅ −                                                                    (12) 
In view to Eqs. (11) and (12), Eq. (10) reduces to 

22

2
0

T T T uu v
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⎛ ⎞∂ ∂ α ∂ υ ∂
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                                        (13) 

Where k
cp

α =
ρ

 is the thermal diffusivity; R
0

R

3N
k

3N 4
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+
and 
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k k
N

4 T∞

=
σ

 is the radiation parameter. Similarity solutions of 

Eq. (13) can be found by choosing appropriate boundary 
conditions. It is of a certain interest to consider separately the 
characteristics of the following two cases of main practical 
interest. For prescribed surface temperature (PST case), the 
boundary conditions are 

( )k
WT T T Ax∞= = +  as  y=0;                                               (14) 

T T∞→   as   y→∞  
Where k is the surface temperature parameter. Defining the 

non-dimensional temperature ( )
W

T T
T T

∞

∞

−
θ η =

−
 and using Eqs. 

(4) and (14) into Eq. (13), we get 

( )22n k
0 0 0 c

2k'' k f ' k f ' k E x f ''
n 1
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                   (15) 

( )0 1,θ =   ( ) 0,θ ∞ →                                                            (16) 

Where 
2

C
p

CE ,
Ac

=  and υ
σ =

α
 is the Prandtl number. 

If k=2n, we find form (18) 

( )2
0 0 0 C

4n'' k f ' k f ' k E f ''
n 1

⎛ ⎞θ + σ θ − σ θ = −σ⎜ ⎟+⎝ ⎠
                         (17) 

It is clear from Eq. (17) that all solutions are then of the similar 
type. On the other hand, for an arbitrary value of k and 
neglecting heat dissipation, we find from Eq. (15)  
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                                             (18) 

The local surface heat flux can be expressed as: 

( )w T r w
w

Tq k q
y
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                                                       (19) 
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III. NUMERICAL TECHNIQUE  
In the present problem, the set of similar equations (5), (6), 

(15), (16) and (17) are solved by a finite difference method. 
These ordinary differential equations have discretized by a 
accurate finite difference method, and a computer program has 
been developed to solve these equations. To avoid errors in 
discretization and calculation processing and to ensure the 
convergence of numerical solutions, some conventional 
numerical procedures have been applied in order to choose a 
suitable grid size Δη =  0.01 - 0.05, a suitable η  range and a 
direct gauss elimination method with Newton's method is used 
in the computer program to obtain solutions of these difference 
equations. Hsiao et al. [15-20] and Vajravelu [21] were also 
using analytical and numerical solutions to solve the related 
problems. So, some numerical technique methods will be 
applied to the same area in the future. In this study, the program 
to compute finite difference approximations of derivatives for 
equal spaced discrete data. The code employ centered 
differences of O( 2h ) for the interior points and forward and 
backward differences of O(h) for the first and last points, 
respectively. See Chapra and Canale, Numerical Methods for 
Engineers [22]. 

IV. RESULTS AND DISCUSSION 
In this study, an analysis has been performed for free 

convection with radiation effect over a thermal forming 
nonlinearly stretching sheet. The problem for viscous fluids 
pass a thermal forming nonlinearly stretching sheet is very 
important to produce a good product. The paper provides and 
obtains the related effects of dimensionless parameters which 
including the nonlinearly number (n), the Prandtl number (Pr), 
the viscous dissipation number (Ec), the radiation parameter 
( RN ) and the free convection number (G) helping to produce a 
good quality thermal forming nonlinearly stretching sheet. The 
present study is mainly deal with the heat transfer problem for 
flow and temperature fields of the thermal forming nonlinearly 
stretching sheet.  For the purpose to solve the problem, the 
whole flow fields are analyzed by utilizing the boundary layer 
concept to obtain a set of coupled momentum equation, energy 
equation and mass equation. Because of the governing 
equations are belong to partial differential equations and very 
difficult to solve. To simplify the partial differential equations 
to ordinary differential equations, so that, a similarity variable 
has been introduced which transforms the momentum and 
energy equations into a group of nonlinear ordinary differential 
equations and similarity heat transfer numerical results were 

found. So that, a similarity transformation is then used to 
convert the nonlinear coupled partial differential equations to a 
set of nonlinear ordinary differential equations. On the other 
hand, a second-order accurate finite difference method is used 
to solve the problem and to obtain solutions of those equations. 
From the solving results, it was obtained the influences of the 
parameters n, Pr, Ec, RN and G on both velocity profiles and 
temperature profiles were examined in those analyses. 

Table I is a comparison with the values of ' (0)−θ  for 
different values of physical parameters n and Pr, and fixed 
parameters Ec=0.1 and RN =0.1with Ref. [8]. Table I points 
out that the results from the current study have a good 
agreement with the previous work (Cortell, 2005) that does not 
include the free convection effect, because of it is a novel made 
by this study. From the comparison has a good agreement result 
for present study, for convenience comparison for others 
adding the Table II and including the free convection effect. 
Table II shows that the unknown values of skin friction −f″(0) 
and Nusselt number −θ′(0) are obtained by present study for 
different values of physical parameters n, Pr, Ec and Sc. 
 

TABLE I 
COMPARISON THE VALUES OF 

' (0)−θ  FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETERS AND FIXED PARAMETERS Ec=0.1 AND RN =0.1WITH [8] 

n   Pr   ' (0)−θ    ' (0)−θ  
Ref.[8]    Present 

1.5  1   0.8234     0.8240 
3.0  1   0.9138     0.9142 
10.  1   1.0016     1.0018 
1.5  2   1.2806     1.2807 
1.5  5   2.1788     2.1788 

 
TABLE II 

THE DIFFERENT VALUES OF SKIN FRICTION −f″(0), NUSSELT NUMBER −θ′(0) 
FOR DIFFERENT VALUES OF PHYSICAL PARAMETERS n, Pr, G AND FIXED 

PARAMETER RN =1 or k0=3/7, Ec=0.1 

n     Pr   G    - ''f (0)   - ' (0)θ   
0.2  1.0  0.0  0.7668   0.5017   
0.5  3.0  0.1  0.8455   1.2973   
1.5  5.0  0.2  1.0031   2.1944   
3.0  7.0  0.2  1.1017   2.8992   
10.  10.  0.3  1.1785   3.8247   
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Fig. 1 f vs. η  for varies parameters 
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Fig. 2 θ  vs. η  for varies parameters 

 
Fig. 1 depicts dimensionless velocity profiles f vs. η  as 

Pr=2.0, G=0.1, Ec=0.1, k0=0.1 and n=0.01, 0.1, 1.0, 5.0, 10.0. 
From figure 1 reveals that the increase of nonlinearly number n 
results in the decrease of velocity distribution at a particular 
point of the flow region. This is because there would be a 
decrease of the fluid boundary layer thickness with the increase 
of values of nonlinearly number n. Fig. 2 depicts dimensionless 
temperature profiles θ  vs. η  as n=0.2, G=0.1, Ec=0.1, k0=0.1 
and Pr=0.01, 0.5, 1.0, 5.0, 10.0. The Fig. 2 reveals that the 
increase of Prandtl number Pr results in the decrease of 
temperature distribution. This is because there would be a 
decrease of the thermal boundary layer thickness with the 
increase of values of Prandtl number Pr. On the contrary, the 
Fig. 3 reveals that the increase Ec will increase of temperature 
distribution and the physical phenomena are different to the 
Fig. 2. The Fig. 3 depicts dimensionless temperature profiles θ  
vs. η  as n=0.2, G=0.1, Pr=2, k0=0.1 and Ec=0.1, 1.0, 3.0, 5.0, 
7.0. Fig. 4 depicts dimensionless temperature profiles θ  vs. η  
as n=0.2, G=0.1, Pr=2, Ec=0.1 and k0=0.01, 0.5, 1.0, 2.0, 3.0.  
The Fig. 4 reveals that the increase the radiation parameters k0 
results in the decrease of temperature distribution. This is 
because there would be a decrease of the thermal boundary 
layer thickness with the increase of value of k0.  
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Fig. 3 θ  vs. η  for varies parameters 

 

From Fig. 2 to 4 are the dimensionless temperature 
distribution for different parameters n, Ec, Pr and k0 along the 
thermal boundary layer η . These figures indicate that θ  
decrease when Pr, k0 increased. According to the equation 
(19), the value - '(0)θ increases for Pr or k0 increases. 
Therefore, the heat transfer rate is positive proposing to Pr, k0 
and negative proposing to Ec clearly. The parameter Ec will 
produce a contrary result from to Prandtl number or radiation 
parameter. 
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Fig. 4 θ  vs. η  for varies parameters 
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Fig. 5 θ  vs. η  for varies parameters 

Fig. 5 depicts dimensionless concentration profiles θ  vs. η  
as n=0.2, Ec=0.1, Pr=2.0, k0=0.1 and G = 0.01, 0.5, 1.0, 2.0, 
3.0. The effect of free convection parameter G on heat transfer 
process may be analysis from Fig. 5 for the case of prescribed 
temperature and prescribed heat transfer phenomena. Fig. 5 
shows that the increase of value of free convection parameter G 
results in the decrease of dimensionless temperature 
distribution as a result of decrease of the thermal boundary 
layer thickness with the increased values of G.  

Although that the studied problem are not easy to obtain, it 
had been solved by present theoretical and numerical solution 
methods. Finally, the flow quantities have been discussed 
through graphs and tables. The physical results are interesting, 
an excellent agreement of the present results with existing 
limiting results is shown. The main contribution of this study 
considers the radiation effect in a mixed convection for a 
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viscous fluid flow past a nonlinearly stretching sheet thermal 
forming heat transfer system. From the figures provide more 
physical insights, and use to a thermal forming engineering 
problem, as follow: 

 
1. These graphs 2, 4, 5 reveal that the increase of Pr, k0 or G 

result in the increase of dimensionless temperature 
distribution to lower. This is because there would be a 
decrease of the thermal boundary layer thickness with the 
increase of value of Pr, k0 or G. But the heat transfer 
phenomenon is good at these physical conditions.  

2. On the contrary, from the graph 3 reveal that the increase of 
Ec results in the increase of temperature gradient on the wall 
and let to higher. This is because there would be an increase 
of the thermal boundary layer thickness with the increase of 
values of Ec. The heat transfer phenomenon is not good at 
these physical conditions.  

V. CONCLUSION 
In this study, it has been analyzed boundary-layer flow and 

heat transfer in a viscous fluid over a moving flat surface which 
is nonlinearly stretched in the presence of thermal radiation and 
the Rosseland approximation for the radiative heat flux is used. 
At the same time, Boussinesq approximation is used to 
represent the buoyancy mixed convection. At last, it obtained 
some important results as following. The increase of Prandtl 
number Pr, free convection parameter G or radiation parameter 
k0 resulting in the increase of the heat transfer effects. On the 
other hand, the increase of Ec results in the decrease of the heat 
transfer effect. 
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