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A new direct updating method for undamped
structural systems

Yongxin Yuan, Jiashang Jiang

Abstract—A new numerical method for simultaneously updating
mass and stiffness matrices based on incomplete modal measured data
is presented. By using the Kronecker product, all the variables that
are to be modified can be found out and then can be updated directly.
The optimal approximation mass matrix and stiffness matrix which
satisfy the required eigenvalue equation and orthogonality condition
are found under the Frobenius norm sense. The physical configuration
of the analytical model is preserved and the updated model will
exactly reproduce the modal measured data. The numerical example
seems to indicate that the method is quite accurate and efficient.

Keywords—finite element model, model updating, modal data,
optimal approximation.

I. INTRODUCTION

THROUGHOUT this paper, we denote the real m × n
matrix space by Rm×n, the set of all symmetric matrices

in Rn×n by SRn×n. AT and A+ stand for the transpose and
the Moore-Penrose generalized inverse of a real matrix A.
For A,B ∈ Rm×n, an inner product in Rm×n is defined
by (A,B) = trace(BTA), then Rm×n is a Hilbert space.
The matrix norm ‖ · ‖ induced by the inner product is the
Frobenius norm. Given two matrices A = [aij ] ∈ Rm×n and
B = [bij ] ∈ Rp×q , the Kronecker product of A and B is
defined by A ⊗ B = [aijB] ∈ Rmp×nq and the stretching
function Vec(A) is defined by vec(A) = [aT1 , a

T
2 , · · · , aTn ]T ∈

Rmn, where ai, i = 1, · · · , n, is the i-th column vector of
A. Furthermore, for a matrix A ∈ Rm×n, let EA and FA

stand for the two orthogonal projectors EA = Im −AA+ and
FA = In −A+A.

Using finite element techniques, the undamped free vibra-
tion of a structural dynamic system can be described by the
second order differential equation as

Maẍ(t) +Kax(t) = 0, (1)

where Ma, Ka are analytical mass and stiffness matrices.
Assume that the displacement response of (1) is harmonic,

x(t) = x(ω)eiωt,
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then the structural eigenproblem can be written in the form,

Kaφj = μjMaφj , j = 1, 2, · · · , n, (2)

where μj = ω2
j is the jth eigenvalue and φj is the jth eigen-

vector. It is well known that the eigenvalue and eigenvector
can be interpreted physically as the square of the natural
frequency of vibration and the mode shape respectively. A
most important property of the undamped vibration modes is
their orthogonality with respect to mass. By premultiplying
equation (2) by φTk we find

φTkKaφj = μjφ
T
kMaφj . (3)

By interchanging the subscripts j and k, and transposing, we
have

φTkKaφj = μkφ
T
kMaφj . (4)

If the eigenvalues are distinct (μj �= μk) then by subtracting
equation (4) from equation (3) we obtain

φTkMaφj = 0, j �= k

and
φTj Maφj = mj ,

where mj is known as the jth generalized mass. The result
that the product of an eigenvector with a scalar multiple is also
an eigenvector leads to the important question of scaling or
normalization of eigenvectors. A common and useful approach
is to arrange that the eigenvectors are normalized such that

φTkMaφj = 0, j �= k, φTj Maφj = 1, j = 1, 2, · · · , n. (5)

Accurate dynamic models are required to establish the
dynamic response of complex structures. Unfortunately, due
to the inappropriate theoretical assumptions, inaccuracies in
estimated material properties, insufficient or incorrect mod-
elling detail, and improper application of solution algorithms,
precise mathematical models are rarely available in practice.
In other words, natural frequencies and mode shapes of an
analytical model described by (2) do not match very well
with experimentally measured frequencies and mode shapes
obtained from a real-life vibrating structure. Thus, a vibration
engineer needs to update the theoretical analytical model of
the structure such that the updated model predicts the observed
dynamic behavior. The improved model may be considered to
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be a better dynamic representation of the structure. This model
can be used with greater confidence for the analysis of the
structure under different boundary conditions or with physical
structural changes.

Let X ∈ Rn×p be the measured modal matrix, Λ ∈ Rp×p

the measured eigenvalues matrix, where p < n, and Λ is
diagonal. The most common approach in finite element model
updating is to modify the analytical mass and stiffness matrices
to satisfy the basic orthogonality requirement and eigenvalue
equation, as shown in Eq. (6).

XTMX = Ip, MXΛ = KX, (6)

where M, K ∈ Rn×n are symmetric matrices and represent
the corrected mass and stiffness matrices, respectively.

There have been a number of publications of methods which
use vibration test data to improve an analytical model of a
structure. Friswell and Mottershead [1] provided a comprehen-
sive overview that illustrates many of the different techniques
and issues involved in updating a finite element model. For
example, Baruch [2], Baruch and Bar-Itzhack [3] proposed
a method that the stiffness matrix was corrected based on
measured mode shapes from vibration tests by minimizing a
norm to use the symmetric positive definite mass matrix as
the weighting matrix. Berman [4] described the changes in the
mass matrix required to satisfy the orthogonality relationship
using a minimum-weighted Euclidean norm and the method
of Lagrange multipliers. Berman and Nagy [5] proposed a
direct method to identify a set of minimum changes in the
analytical matrices which force the eigensolutions to agree
with test measurements. Caesar and Pete [6] discussed two
methods for the direct updating of mathematical models based
on modal test data. Wei [7] proposed a new approach to show
the uniqueness of the corrected stiffness matrix in a different
way. Wei [8, 9] introduced an approach that can update the
mass and stiffness matrices simultaneously using the measured
eigenvector matrix as the reference. The constraints imposed
are mass orthogonality, the equation of motion and symmetry
of the updated matrices. These constraints will force the
updated stiffness matrix to satisfy the stiffness orthogonality
condition and the effects due to mass and stiffness interaction
are clearly determined from the final equations. Recently,
Carvalho et al. [10] proposed a direct method which needs
the knowledge of only a small number of eigenvalues and
eigenvectors of the associated analytical quadratic matrix
pencil, which are required to be reassigned to the measured
data; while the remaining large number of eigenvalues and
eigenvectors which cannot be computed even using the state-
of-the-art algorithms and softwares, are guaranteed to remain
invariant by means of a proven mathematical result. Generally
speaking, only part elements of coefficient matrices have
errors. Yuan [11] provided a new local updating method to
adjust partial elements of the analytical mass and stiffness

matrices Ma and Ka using measured response data. Yang and
Chen [12] proposed a direct method for updating the mass
and stiffness matrices of a structural model such that it can
reproduce the frequencies measured for the structure. Firstly,
only the first eigen mode measured for the structure was
considered. The updated matrices were derived by utilizing
the orthogonality conditions for the eigenvectors, and by
replacing the modal vector of concern by the modal matrix,
to resolve the problem of lack of available equations. Such
a procedure is then generalized to deal with the case where
the first few eigen modes are measured for the structure.
Taking advantage of the special structure of the constraint
sets, Moreno et al. [13] shown that the matrix model updating
problem can be formulated as an optimization problem over
the intersection of some special subspaces and linear varieties
on the space of matrices. Using this formulation, an alternating
projection method (APM) is then proposed and analyzed. The
projections onto the involved subspaces and linear varieties
are characterized. Based on the orthogonality constraints, Yang
et al. [14] introduced a direct method for updating the mass
and stiffness matrices of the structure first using a single set
of modal data. This method hinges on replacement of the
modal vector of concern by the modal matrix in computing the
correction matrices to solve the problem of insufficient known
conditions. Such a method is then extended and applied in a
consecutive manner to update the structural model for each of
the first few modes that are experimentally made available.
All these existing methods can reproduce the given set of
measured data while updated matrices may be symmetric, but
the analytical mass and stiffness matrices can be dramatically
altered. Particularly troublesome is the modification of mass
and stiffness coefficients from values of zero to large magni-
tude nonzero values. Clearly, the introduction of load paths
that do not exist in the actual hardware is undesirable.

The purpose of the work presented in this paper is to develop
a new method for finite element model updating problems
which preserves the connectivity of the original model. That
is, only non-zero elements of analytical mass and stiffness
matrices are to be modified and zero elements are guaranteed
to remain invariant by the proposed method. On the other
hand, the analytical matrices are sparse and only contain non-
zero elements in a band along the leading diagonal. Therefore,
to preserve the structural connectivity means to preserve the
bandwidth of the updated matrices. Now, assume that Ma

and Ka are real-valued symmetric (2r+1)-diagonal matrices,
where r represents the half-bandwidth of stiffness and mass
matrices. Thus, the problem of updating mass and stiffness
matrices simultaneously can be mathematically formulated as
follows.
Problem IP. Given X ∈ Rn×p and a diagonal matrix
Λ ∈ Rp×p, find real-valued symmetric (2r + 1)-diagonal
matrices M and K that satisfy the equation of (6).
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Problem II. Let SMK be the solution set of IP. Find (M̂, K̂) ∈
SMK such that

‖M̂ −Ma‖2 + ‖K̂ −Ka‖2
= min(M,K)∈SMK

(‖M −Ma‖2 + ‖K −Ka‖2). (7)

The paper is organized as follows. In Section 2, using the
Kronecker product and stretching function vec(·) of matrices,
we give a necessary and sufficient condition for the solution
set SMK to be nonempty and construct SMK explicitly when
it is nonempty. In Section 3, we show that there exists a
unique solution in Problem II and present the expression of
the unique solution (M̂, K̂) of Problem II. Finally, in Section
4, a numerical algorithm to acquire the optimal approximation
solution under the Frobenius norm sense is described and a
numerical example is provided.

II. THE SOLUTION OF PROBLEM IP

To begin with, we present two already established lemmas.
Lemma 1: [15] If L ∈ Rm×q, b ∈ Rm, then Ly = b has

a solution y ∈ Rq if and only if LL+b = b. In this case,
the general solution of the equation can be described as y =
L+b+ (Iq − L+L)z, where z ∈ Rq is an arbitrary vector.

Lemma 2: [16] Let D ∈ Rm×n, H ∈ Rn×l, J ∈ Rl×s.
Then

vec(DHJ) = (JT ⊗D)vec(H).

Let S0 be the set of all n×n real-valued symmetric (2r+1)-
diagonal matrices, then S0 is a linear subspace of SRn×n, and
the dimension of S0 is N = 1

2 (2n− r)(r + 1).
Define Yij as

Yij =

⎧⎨
⎩

√
2
2 (eie

T
j + eje

T
i ),

i = 1, · · · , n− 1; j = i+ 1, · · · , ti,
eie

T
i , i = j = 1, · · · , n,

(8)

where ti = min{i + r, n} and ei, i = 1, · · · , n, is the ith
column vector of the identity matrix In. It is easy to verify
that {Yij} forms an orthonormal basis of the subspace S0, that
is,

(Yij , Ykl) =

{
0, i �= k or j �= l,
1, i = k and j = l.

(9)

Now, if M,K ∈ SRn×n are (2r+1)-diagonal matrices, then
M,K can be expressed as

M =
∑
i,j

αijYij , K =
∑
i,j

βijYij , (10)

where the real numbers αij , βij , i = 1, · · · , n; j =
i, · · · , ti, ti = min{i + r, n}, are yet to be determined.
Substituting (10) into (6), we have∑

i,j

αijX
TYijX = Ip,

∑
i,j

αijYijXΛ−
∑
i,j

βijYijX = 0.

(11)

Let

α = [α11, · · · , α1,r+1, · · · , αn−r,n−r,

· · · , αn−r,n, · · · , αn−1,n−1, αn−1,n, αn,n]
T ,

β = [β11, · · · , β1,r+1, · · · , βn−r,n−r,

· · · , βn−r,n, · · · , βn−1,n−1, βn−1,n, βn,n]
T ,

G = [vec(Y11), · · · , vec(Y1,r+1), · · · ,
vec(Yn−r,n−r), · · · , vec(Yn−r,n), · · · ,
vec(Yn−1,n−1), vec(Yn−1,n), vec(Yn,n)] ∈ Rn2×N

(12)

and
A = (XT ⊗XT )G,
B = (ΛXT ⊗ In)G,
C = (XT ⊗ In)G,
h = vec(Ip).

(13)

Using Lemma 2, we see that the equations of (11) are
equivalent to

Aα = h, (14)
Bα− Cβ = 0. (15)

It follows from Lemma 1 that the equation of (14) with
unknown vector α has a solution if and only if

AA+h = h. (16)

In which case, the general solution of the equation (14) is

α = A+h+ FAz, (17)

where z ∈ RN is an arbitrary vector. Substituting (17) into
(15), we obtain

Cβ = BA+h+BFAz. (18)

Using Lemma 1 again, we know that the equation of (18) with
respect to β has a solution if and only if

Wz = −ECBA
+h, (19)

where W = ECBFA. It follows from Lemma 1 that the
equation of (19) with unknown vector z has a solution if and
only if

WW+ECBA
+h = ECBA

+h. (20)

In this case, the general solution of the equation (19) is

z = −W+ECBA
+h+ FWu, (21)

where u ∈ RN is an arbitrary vector. Substituting (21) into
(17) and (18) and applying Lemma 1, we obtain

α = A+h− FAW
+ECBA

+h+ FAFWu, (22)

β = C+BA+h
−C+BFAW

+ECBA
+h+ C+BFAFWu+ FCv,

(23)
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where v ∈ RN is an arbitrary vector.
As a summary of the above discussion, we have proved the

following result.
Theorem 1: Suppose that X ∈ Rn×p,Λ ∈ Rp×p, and Λ is

a diagonal matrix. Let {Yij}, G and A,B,C, h be given by
(8), (12) and (13), respectively. Write N = 1

2 (2n − r)(r +
1), W = ECBFA. Then Problem IP is solvable if and only
if the conditions (16) and (20) hold, in this case, the solution
set SMK of Problem IP can be expressed as

SMK =
{
(M,K) ∈ SRn×n × SRn×n|

M = S(α⊗ In), K = S(β ⊗ In)} , (24)

where

S = [Y11, · · · , Y1,r+1, · · · , Yn−r,n−r, · · · ,
Yn−r,n, · · · , Yn−1,n−1, Yn−1,n, Yn,n] ∈ Rn×nN ,

(25)

α, β are, respectively, given by (22) and (23) with u, v ∈ RN

being arbitrary vectors.

III. THE SOLUTION OF PROBLEM II

In order to solve Problem II, we need the following lemma.
Lemma 3: Let FA = IN−A+A,FW = IN−W+W, where

W = ECBFA. Then

FAFW = FWFA.

Proof. It follows from WFA =W that

FWFA = (IN −W+W )FA = FA −W+W.

Therefore,

FAFW = (FWFA)
T = (FA −W+W )T

= (FA)
T − (W+W )T = FA −W+W,

which implies the conclusion.
It follows from Theorem 1 that the set SMK is nonempty if

the conditions (16) and (20) are satisfied. It is easy to verify
that SMK is a closed convex subset of SRn×n × SRn×n.
From the best approximation theorem [17], we know there
exists a unique solution (M̂, K̂) in SMK such that (7) holds.

We now focus our attention on seeking the unique solution
(M̂, K̂) in SMK . For the real-valued symmetric (2r + 1)-
diagonal matrices Ma and Ka, it is easily seen that Ma, Ka

can be expressed as the linear combinations of the orthonormal
basis {Yij}, that is,

Ma =
∑
i,j

γijYij , Ka =
∑
i,j

δijYij , (26)

where γij , δij , i = 1, · · · , n; j = i, · · · , ti, ti = min{i+r, n},
are uniquely determined by the elements of Ma and Ka. Let

γ = [γ11, · · · , γ1,r+1, · · · , γn−r,n−r, · · · ,
γn−r,n, · · · , γn−1,n−1, γn−1,n, γn,n]

T ,
(27)

δ = [δ11, · · · , δ1,r+1, · · · , δn−r,n−r, · · · ,
δn−r,n, · · · , δn−1,n−1, δn−1,n, δn,n]

T .
(28)

Then, for any pair of matrices (M,K) ∈ SMK in (24), by the
relations of (9) and (26) we see that

f = ‖M −Ma‖2 + ‖K −Ka‖2
= ‖

∑
i,j

(αij − γij)Yij‖2 + ‖
∑
i,j

(βij − δij)Yij‖2

= (
∑
i,j

(αij − γij)Yij ,
∑
i,j

(αij − γij)Yij)

+ (
∑
i,j

(βij − δij)Yij ,
∑
i,j

(βij − δij)Yij)

=
∑
i,j

(αij − γij)(Yij ,
∑
i,j

(αij − γij)Yij)

+
∑
i,j

(βij − δij)(Yij ,
∑
i,j

(βij − δij)Yij)

=
∑
i,j

(αij − γij)
2 +

∑
i,j

(βij − δij)
2

= ‖α− γ‖2 + ‖β − δ‖2.
Substituting (22) and (23) into the relation of f , we have

f = ‖α0 + FAFWu‖2 + ‖β0 + C+BFAFWu+ FCv‖2
= αT

0 α0 + 2αT
0 FAFWu+ uTFWFAFWu+ βT

0 β0

+ 2βT
0 C

+BFAFWu+ 2βT
0 FCv

+ uTFWFAB
T (CCT )+BFAFWu+ vTFCv,

where

α0 = A+h− FAW
+ECBA

+h− γ,
β0 = C+BA+h− C+BFAW

+ECBA
+h− δ.

(29)

Therefore,

∂f

∂u
= 2FWFAα0 + 2FWFAFWu+ 2FWFAB

T (C+)Tβ0

+2FWFAB
T (CCT )+BFAFWu,

∂f

∂v
= 2FCβ0 + 2FCv.

Since f is a quadratic function with respect to variables u and
v. It is easy to verify that the function f = ‖M −Ma‖2 +
‖K −Ka‖2 = min attains the smallest value at

∂f

∂u
= 0,

∂f

∂v
= 0. (30)

Applying Lemma 3, we get from the equation of (30) that

FAFWu = −(IN + FWFAB
T (CCT )+BFAFW )−1

FWFA(α0 +BT (C+)Tβ0),
(31)

FCv = −FCβ0. (32)
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Upon substituting (31) and (32) into (22) and (23), we obtain

α̂ = α0 + γ − FAFW (IN + FWFAB
T (CCT )+BFAFW )−1

FWFA(α0 +BT (C+)Tβ0),
(33)

β̂ = β0 + δ
−C+BFAFW (IN + FWFAB

T (CCT )+BFAFW )−1

FWFA(α0 +BT (C+)Tβ0)− FCβ0.
(34)

By now, we have proved the following result.
Theorem 2: Let the real-valued symmetric (2r+1)-diagonal

matrices Ma and Ka be given. Then Problem II has a
unique solution and the unique solution of Problem II can
be expressed as

M̂ = S(α̂⊗ In), (35)

K̂ = S(β̂ ⊗ In), (36)

where α̂, β̂ are given by (33) and (34), respectively.

IV. A NUMERICAL EXAMPLE

Based on Theorem 1 and Theorem 2 we can describe an
algorithm for solving Problem IP and Problem II as follows.

Algorithm 1.

1) Input Ma, Ka, Λ, X.
2) Form the orthonormal basis {Yij} by (8).
3) Compute G and A, B, C, h according to (12) and (13),

respectively.
4) Compute EC = Inp − CC+, FA = IN − A+A and

W = ECBFA.
5) If the conditions (16) and (20) are satisfied, go to 6);

otherwise, Problem IP has no solution, and stop.
6) Form vectors γ, δ by (26), (27) and (28).
7) Compute α0, β0 by (29).
8) Compute S, α̂, β̂ by (25), (33) and (34), respectively.
9) Compute the unique solution (M̂, K̂) of Problem II by

(35) and (36).

Example 1. Consider a five-DOF system modelled analyt-
ically with mass and stiffness matrices given by

Ma =

⎡
⎢⎢⎢⎢⎣

2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

⎤
⎥⎥⎥⎥⎦ ,

Ka =

⎡
⎢⎢⎢⎢⎣

100 −20 0 0 0
−20 120 −35 0 0
0 −35 80 −12 0
0 0 −12 95 −40
0 0 0 −40 124

⎤
⎥⎥⎥⎥⎦ .

That is, Ma, Ka are symmetric 3-diagonal matrices. The first
two measured modal data are given by

Λ = diag {λ1, λ2} = diag {9.9883, 16.5605} ,

X = [x1, x2] =

⎡
⎢⎢⎢⎢⎣

−0.0643 0.1068
−0.1783 0.2079
−0.2898 0.1642
−0.2091 −0.2739
−0.1190 −0.2447

⎤
⎥⎥⎥⎥⎦ .

It is easy to verify that ‖AA+h − h‖ = 7.0436e − 016 and
‖WW+ECBA

+h−ECBA
+h‖ = 4.7914e− 014. It follows

from Theorem 1 that SMK is nonempty. Using Algorithm 1,
we obtain the unique solution of Problem II as follows.

M̂ =

⎡
⎢⎢⎢⎢⎣

1.6248 1.1273 0 0 0
1.1273 3.5604 1.3468 0 0

0 1.3468 3.7157 1.0068 0
0 0 1.0068 3.6448 1.4721
0 0 0 1.4721 3.4253

⎤
⎥⎥⎥⎥⎦ ,

K̂ =

⎡
⎢⎢⎢⎢⎣

100.4389 −19.1142
−19.1142 122.0577

0 −33.0111
0 0
0 0

0 0 0
−33.0111 0 0
82.2541 −12.9018 0

−12.9018 98.0100 −37.6073
0 −37.6073 126.1021

⎤
⎥⎥⎥⎥⎦ ,

We can figure out

‖M̂XΛ− K̂X‖ = 2.5418e− 014,

‖XT M̂X − Ip‖ = 5.4177e− 016.

Therefore, the updated mass and stiffness matrices satisfy the
required eigenvalue equation and orthogonality condition and
the matrices M̂, K̂ are also symmetric 3-diagonal matrices,
which implies that the structural connectivity information of
the analytical model is preserved.
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