
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

541

Abstract—Selecting the routes and the assignment of link flow

in a computer communication networks are extremely complex
combinatorial optimization problems. Metaheuristics, such as genetic
or simulated annealing algorithms, are widely applicable heuristic
optimization strategies that have shown encouraging results for a
large number of difficult combinatorial optimization problems. This
paper considers the route selection and hence the flow assignment
problem. A genetic algorithm and simulated annealing algorithm are
used to solve this problem. A new hybrid algorithm combining the
genetic with the simulated annealing algorithm is introduced. A
modification of the genetic algorithm is also introduced.
Computational experiments with sample networks are reported. The
results show that the proposed modified genetic algorithm is efficient
in finding good solutions of the flow assignment problem compared
with other techniques.

Keywords—Genetic Algorithms, Flow Assignment, Routing,
Computer network, Simulated Annealing.

I. INTRODUCTION
ETWORK design is a fundamental problem with a large
scope of applications that have given rise to many

different models and solution approaches [6], [10]. The
general network design problem involves the minimization of
a cost objective function over a lot of design variables, such
as link capacities, flow assignment, network topology, and
node locations. This problem belongs to the class of
combinatorial problems. Efficient solutions to this problem
are much sought after because such solutions could lead to
better utilization of the networks. The traditional Lagrange
relaxation and sub-gradient optimization methods can be used
for tackling this problem. The results generated by these
methods are locally optimal instead of globally optimal [7].
The flow assignment (FA) problem focuses on assigning the
traffic requirements on the best routes used by nodes in the
network in order to ensure an acceptable performance level at
a minimum cost.

For solving the FA problem, we consider different
approaches. The first one uses the genetic algorithm (GA).
The second approach uses the simulated annealing algorithm
(SA).

Tarek M. Mahmoud is with the Computer Science Dept., Faculty of
Science, Minia University, El-Minia, Egypt (e-mail: tarek_2ms@yahoo.com).

The third approach combines GA with simulated annealing
(SA) to improve the performance of the GA. In the fourth
approach, a new modification of the GA is introduced.

GAs have gained considerable attention in recent years for
solving various combinatorial optimization problems. It is an
evolutionary technique that simulates the process of natural
evolution and applies genetic search operators like
recombination, mutation, and selection to a sequence of
alleles. The sequence of alleles is the equivalent of a
chromosome in nature. GA can be used to solve variety of
different problems using a survival of the fittest idea [4], [8].
SA is a metaheuristic algorithm derived from thermodynamic
principles. It has recently turned out to be one of the most
powerful tools for solving hard combinatorial problems [5],
[9].

The remainder of the paper is organized as follows. In
section 2, the FA problem is formulated. Section 3 gives a
review of both the GA and SA. The implementation of the
GA and SA for solving the FA problem is given in section 4
and 5. The hybrid genetic-simulated annealing algorithm to
solve the FA problem is given in section 6. In section 7, a
modification of the GA is introduced. The results of
computational experiments are presented in section 8. Section
9 concludes and summarizes the main results obtained in this
paper.

II. PROBLEM DESCRIPTION AND FORMULATION
A computer network can be modeled as an undirected

graph G = (N, L), in which the sets of nodes N and links L
represent computer sites and communication cables,
respectively. There are communication demands between n
different nodes. The demands are specified by an n x n
demand matrix M = (mij), where mij is the amount of traffic
required between ni and nj. The arrival rate on each link (i, j)
is denoted by ijλ and is expressed in the same units as

capacity Cij.
The flow assignment problem (FA) can be described as

follows: given the network topology, the traffic requirement
(OD matrix), and the link capacities, minimize the average
time delay of messages by selecting the route such that traffic
requirements are satisfied. Once the route is decided, the
flows are sent along this route from origin node (O) to

A Genetic and Simulated Annealing Based
Algorithms for Solving the Flow Assignment

Problem in Computer Networks
Tarek M. Mahmoud

N

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

542

destination node (D). In this paper, as in most previous work
in the literature [7], [10], and [11] we make several
simplifying assumptions. We assume that nodes have
practically unlimited buffers to store messages and the arrival
process of messages to the network follows a Poisson
distribution. The computer network can be modeled as a
network of independent M/M/1 queue in which links are
treated as servers with service rates proportional to the link
capacities [1]. The queuing and transmission delay in link ij is
given by:

ijij

ij C
1T

λμ −
= (1)

where ijC is the capacity of link ij in bits per second, ijλ is

the arrival rate of messages to link ij, and 1−μ is the expected
message length. Using the above notation, the expected
network delay is given by:

 ∑ ∑
∑

∈
∈

∈

−
=

Lij
Rr

r
r
ijijij

Rr
r

r
ijij

xC

x
1T

δλμ

δλ

λ
 (2)

where
λ is the total arrival rate of messages in the network,
L is the index set of links in the network,
R is the index set of candidate routes,

r
ijδ is an indicator function, which is 1 if link ij is used in

route r and is 0 otherwise,

rx is a decision variable which is 1 if route r is selected for
message routing and 0 otherwise.

The FA problem is then to assign the traffic demand on a
route r from R for each nodes pair, which can satisfy the
following condition:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
== ∑ ∑

∑
∈

∈

∈

Lij
Rr

r
r
ijijij

Rr
r

r
ijij

xC

x
1Tmin D

δλμ

δλ

λ
 (3)

subject to:

 Lij ,x1C
Rr

r
r
ijijij ∈∀≥ ∑

∈

δλ
μ

 (4)

 ∏∈∀=∑
∈

P ,1x r
PSr

 (5)

 =rx {0,1}, Rr∈∀ (6)

where pS is the index set of candidate routes for commodity

p, and ∏ is the index set of communicating
source/destination pairs in the network. The first constraint
ensures that the flow on each link does not exceed its
capacity, while selection of exactly one route per commodity
is ensured by the second and third constraints.

III. REVIEW OF GENETIC AND SIMULATED ANNEALING
ALGORITHMS

In recent years, genetic algorithms (GAs), which based on
the idea of natural selection and survival of the fittest, have
been applied with a high degree of success to a variety of
problems [3], [7]. GAs are search techniques for global
optimization in a complex search space. Search space in GA
is composed of possible solutions to the problem. A solution
in the search space can be represented by a sequence of 0s
and 1s, integers, or any other type from which a specific
solution can be deduced. This solution string is referred to as
the chromosome in the search space. Each chromosome has
an associated objective value called the fitness value. The
fitness of a chromosome corresponds to its ability to survive
and reproduce offspring. A good chromosome (that has good
chance to survive) is the one that has a high/low fitness value
depending upon the problem (maximization/ minimization). A
set of chromosomes and associated fitness values are called
the population. This population at a given stage of the GA is
referred to as generation. The general GA has the following
elements:

• A solution encoding (representation).
• A mechanism to generate initial solutions

(population) from where the iterative search will
proceed.

• An evaluation function (fitness function) to rate
solutions from a current population.

• Perturbation operators to create new solutions from a
current population.

• Assignment to the parameters of the algorithm, and
• Stopping criteria.

Creating new population from a given current population
can be achieved by shuffling two randomly selected
chromosomes. This process is called crossover. Sometimes
one or more bits of a chromosome are complemented to
generate a new offspring. This process of complementation is
called mutation. The GA can be summarized as follows:

Step 1: Initialize population
Step 2: Evaluate population
Step 3: Repeat Steps 4, 5, and 6 while termination criterion

not reached
Step 4: Select parent chromosomes for next population
Step 5: Perform crossover and mutation
Step 6: Evaluate population

Simulated annealing algorithm (SA) is a general-purpose
optimization technique and has been applied to many
combinatorial optimization problems [5], [9]. The main idea
behind SA is an analogy with the way in which liquids freeze
and crystallize. When liquids are at a high temperature their
molecules can move freely in relation to each other. As the
liquid's temperature is lowered, this freedom of movement is
lost and the liquid begins to solidify. If the liquid is cooled
slowly enough, the molecules may become arranged in a
crystallize structure. The molecules making up the crystallize

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

543

structure will be in a minimum energy state. If the liquid is
cooled very rapidly it does not form such a crystallize
structure, but instead forms a solid whose molecules will not
be in a minimum energy state. The fundamental idea of SA is
therefore that the moves made by an iterative improvement
algorithm are like the re-arrangement of the molecules in a
liquid that occur as it is cooled and that the energy of those
molecules corresponds to the cost function which is being
optimized by the iterative improvement algorithm. Thus, the
SA aims to achieve a global optimum by slowly convergence
to a final solution, making downwards moves with occasional
upwards moves and thus hopefully ending up in a global
optimum. SA can be described formally as follows: start from
a random solution. Given a solution Sc, select a neighboring
solution Sn and compute the difference in the objective
function values, .)) - f(Sf(Sf cn=Δ If the objective

function is improved (0 <Δf), then replace the current
solution by the new one. If 0 ≥Δf , then accept a move with
probability)/exp(-)p(Tff Δ=Δ , where T is the control
parameter or temperature. This probabilistic acceptance is
achieved by generating a random number in [0, 1] and
comparing it against the threshold)./exp(- TfΔ If

)/exp(- TfΔ is greater than the generated random number
then replace the current solution by the new one. The
procedure is repeated until a stopping condition is satisfied.
The SA can be summarized as follows:

Step 1: Initialize temperature T at random, and set a cooling
rate.

Step 2: Initialize initial solution Sc at random.
Step 3: Evaluate f(Sc).
Step 4: Repeat steps 5, 6, 7, and 8 while termination condition

not satisfied.
Step 5: Select a solution Sn in the neighborhood of Sc at

random.
Step 6: Set)()(cn SfSff −=Δ {Compare the change in

objective function}
Step 7: If fΔ ≤ 0 then
 Sc ←Sn {Sn replaces Sc}
 Else
 If exp(-(fΔ)/T) > random (0, 1) then
 Sc ← Sn
Step 8: Update (T) using the relation T = α * T, where α is the

cooling rate {Cooling step}

IV. IMPLEMENTING THE GA FOR SOLVING THE FLOW
ASSIGNMENT PROBLEM

 This section presents an implementation of the GA for
identifying the link flows of the computer network that
satisfies the traffic requirements while satisfying the problem
constraints. Firstly, we describe how the main components of
the GA are implemented to solve the FA problem. Then we
give the overall algorithm used to solve this problem.

A. Genetic Representation

 In route selection, and hence flow assignment, each
chromosome represents a routing table which includes a path
list P1, P2, …, PN(N-1)/2 that represents the entire network. Each
path Pk is a particular route between two nodes i, j. A path
(route) is encoded as list of integers by listing the nodes from
its source to its destination based on the network topology [4].
If a path cannot be realized on the network, it cannot be
encoded into a chromosome, which means that each step in a
path must pass through a physical link in the network. The
first gene on the chromosome represents the source node; the
last gene represents the destination node, while other genes
represent intermediate nodes along that path from the source
to the destination.

B. Population Initialization

The initial process is used to compose the routing tables for
all chromosomes in the current generation. Each chromosome
includes a random routing table for a given topology.

C. Evaluation

To evaluate the solution quality of the flow assignment
problem, equation (3) is used as the objective function to
determine the ability of a chromosome to survive and produce
offspring. In our implementation, a route with less average
time delay is frequently employed in sending packets.

D. Selection

The selection (reproduction) operator is intended to
improve the average quality of the population by giving the
high fitness chromosomes (less average time delay) a better
chance to get multiple copies into the next generation,
whereas chromosomes with low fitness (high average time
delay) have fewer copies or even none at all. Many types of
selection scheme can be used [3]. One of the selection
methods is based on spinning the roulette wheel pop_size
times; each time a single chromosome is selected as a new
offspring, where pop_size denotes the population size. The
steps of this selection method are as follows [8]:
Step 1: Calculate the fitness value f(vi) for each chromosome
vi (i=1, …, pop_size).
Step 2: Find the total fitness of the population

 ∑
=

=
pop_size

1i
i)(vF f

Step 3: Calculate the probability of the selection pi for each
chromosome vi where

 F/)(vp ii f= , i = 1, 2, …, pop_size
 Step 4: Calculate a cumulative probability qi for each
chromosome vi where

 ∑
=

=
i

1j
ji pq , i = 1, 2, …, pop_size

Step 5: Generate a random number r from the range (0, 1).
Step 6: If r<q1 then select the first chromosome (v1);

otherwise select the i-th chromosome vi(2 ≤ i ≤
pop_size) such that qi-1 < r ≤ qi.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

544

E. Crossover Operator

A crossover operator recombines the gene-codes of two
parents, which are randomly selected, and produces offsprings
such that the children inherit a set of building blocks from
each parent. The application of crossover is governed by a
crossover probability, denoted by Pc.

In each generation of the GA, the crossover operator is
tried pop-size times (pop-size is the population size) and thus,
the expected number of applications of crossover is Pc* pop-
size.

In this paper, the crossover operator exchanges subroutes
between two chromosomes. First, select the chromosomes
according the probability of the crossover operator. Second,
apply crossover to the selected chromosomes using the path
crossover operator by selecting randomly two paths that
should have the same source and destination nodes. Crossing
sites for the path crossover operator are limited to nodes
contained in both paths. A node is randomly selected as a
crossing site from the potential crossing sites and exchanges
subroutes. When applying the crossover operator to a pair of
paths P1 and P2, the operation proceeds according to the
following algorithm [4]:
Step 1: List up a set of nodes Nc included in both P1 and P2

(excluding source and destination nodes) as potential
crossing sites.

Step 2: Select a node i as a crossing site from the Nc.
Step 3: Crossover the paths by exchanging all nodes after the

crossing site i.

Fig. 1 shows an overview of the crossover operator
applying for a pair of paths P1 and P2 from node 1 to node 4.
Their potential crossing sites is node 3. When we select node
3 as a crossing site, the new offspring are generated by
exchanging the subroutes as shown in the figure below.

Path P1 1 5 3 4

Path P2 1 3 2 4

Child P1 1 5 3 2 4

Child P2 1 3 4

Fig. 1 Example of crossover

F. Mutation Operator

The path mutation is another genetic operator, which is
applied to a randomly selected single solution (chromosome)
from the population with a certain probability. It makes small
random changes in the solution. These random changes will
gradually add some characteristics to the population, which
could not be supplied by the crossover operator. Similar to the
crossover operator, the application of the mutation operator is
governed by a mutation probability Pm. In each generation,
the mutation operator is also tried pop-size times and thus, the
expected number of mutated chromosomes is Pm* pop-size.

 To perform a mutation in the FA problem, a node is
randomly selected from the path, which is called a mutation
node. Then another node is randomly selected from the nodes
directly connected to the mutation node. If any duplication of
nodes exists in the offspring path, then this path can be
discarded. The path mutation operator can be described as
follows [4]:
Step 1: Select mutation node i randomly from all nodes in
parent V.
Step 2: Select a node j from the neighbors of the mutation
node i.
Step 3: Generate a random path from the source to node j, and
another random path from node j to the destination node.
Step 4: If any duplication of nodes exists in the offspring
path, discard the routes and do not perform mutation.
Otherwise the routes are connected to make up a mutated
path.

G. Overall Algorithm

The GA algorithm used to solve the flow assignment
problem can be described as follows:
Step 1: Input all kinds of data of the problem (network

topology, OD matrix, and link capacities) and the
controlling parameters of the algorithm (crossover
and mutation probability, population size, and
generation number).

Step 2: Randomly generate initial population, where each
chromosome in the population represents a routing
table for the given network.

Step 3: For each OD pair, assign the flow between the origin
O and the destination D on the route connecting
them, then compute the fitness of every chromosome
in the current population using equation (3). Save the
best chromosome.

Step 4: Select the best chromosomes (routing tables) using
the roulette wheel method.

Step 5: Perform the crossover and mutation operations to get
a new population.

Step 6: Repeat steps 3 – 5 until the termination condition is
met.

Note that, the termination condition is met either after a
specified number of generations or no improvement occurs on
the best solution for successive generations. In our
implementation, a specified number of generations are used as
a termination condition.

V. IMPLEMENTING THE SA FOR SOLVING THE FLOW
ASSIGNMENT PROBLEM

Using SA for solving the FA problem requires the
determination of an initial feasible solution. In our
implementation, we used the population initialization step of
the GA, discussed in section III, to get an initial feasible
solution. Thus, the initial solution includes a random routing
table for each source-destination pair of a given network. The
selecting of a solution in the neighborhood of the initial
solution can be obtained by changing randomly one or more
links of the route from the source to the destination. As in the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

545

implementation of GA for solving the FA problem, equation 3
is used to compute the value of each candidate solution for the
problem.

VI. HYBRID GENETIC-SIMULATED ANNEALING ALGORITHM
APPROACH (HGSA)

The HGSA algorithm combines both the GA and SA
algorithms to solve the FA problem. This combination occurs
in the selection process of the GA algorithm. A SA-selection
[2] is used to choose a single candidate solution between the
best of the two parents, offspring, and best solution of the
generations. The selection function SA-selection(offspring[i],
parent[i], best solution, T[i]) is defined, which applies the
traditional SA function SA(a, b, T) multiple times to identify
the single surviving candidate, where i in the SA-selection
function indicates the index of the new individual. The
function SA(a, b, T) calculates the acceptance probability

f(b))/T),-(f(a) exp(-P = where f(x) is the cost function of a
candidate x. As mentioned in section 3, if f(a) ≤ f(b), then
candidate a will be selected. If f(a)>f(b) and P > random
number in [0, 1), then candidate a will be selected too. Except
these cases, candidate b will be selected. All possible cases of
this selection process are represented in Table 1. In this SA-
selection function, offspring[i] and parent[i] are compared
with each other, then with best solution. To illustrate the
selection cases given in Table I, consider case 1, where
offspring[i] is accepted over both parent[i] and best solution,
but parent[i] is accepted over best solution. Hence,
offspring[i] is accepted and returned.

The HGSA algorithm for solving the FA problem has the
following steps:

Step 1: Input all kinds of data of the problem (network
topology, OD matrix, and link capacities) and the controlling
parameters of the algorithm (crossover and mutation
probability, population size, and generation number, and
cooling rate).
Step 2: Randomly generate initial population, where each
chromosome in the population represents a routing table for
the given network.
Step 3: For each individual i randomly generate an initial
temperature T[i].
Step 4: For each OD pair, assign the flow between the origin
O and the destination D on the route connecting them, then
compute the fitness of every chromosome in the current
population.
Step 5: Save the current population as the parent population.
Step 6: Perform the crossover and mutation operations to get
the offsprings.
Step 7: Find the best routing table among the parents,
offsprings, and current best solution, and then update the best
solution.
Step 8: For each individual of the population do
 Find the i-th chromosome between parent, offspring,
 and best solution according to the processes given in
 Table I.
 i-th chromosome = SA-selection(offspring[i],
parent[i], best solution, T[i])

 Update the fitness function of the i-th chromosome.
 Set T[i] = T[i] x cooling rate
 End for
Step 9: Repeat steps 4 – 8 until termination condition met.

VII. A MODIFIED GENETIC ALGORITHM APPROACH (MGAA)
As mentioned earlier, the selection operator is intended to

improve the average quality of the population and many types
of selection scheme can be used. Calling the selection process
for each generation increases the algorithm complexity. We
can ignore this process and perform the reproduction process
directly on the current population. In the MGAA, we generate
the initial population randomly. In each generation, the new
population consists of offsprings produced from mating
individuals from the current population and possibly some
individuals from the current population. The parents are
selected for crossover and mutation according to the
crossover and mutation probability. If the fitness value of the
offspring has a better value than one or both of its parents
then this offspring is accepted in the new population.
Otherwise, mate the best of the two parents with another
parent. In the later case, we can change the crossover point
instead of replacing one of the parents. This step guarantees
that the new population contains always the best
chromosomes. Applying the traditional crossover process to
generate new offspring is not always guaranteed to produce
good chromosomes.

The MGAA can be summarized as follows:

Step 1: Initialize population
Step 2: Evaluate population and save the best chromosome.
Step 3: Repeat Steps 4 and 5 while termination criterion not

reached
Step 4: Perform crossover and mutation
Step 5: Evaluate population and update the best chromosome.
It is clear that; the selection step in the genetic algorithm
given in section 4 is eliminated. This modification speeds up
the GA and guarantees that the reproduction step always
produces good offsprings.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present a comparison between the

performance of the four approaches GA, SA, HGSA, and
MGAA. These algorithms were implemented in C++. The
results presented in this section are obtained from simulations
on 2 sample networks. The topologies of these networks are
as shown in Fig. 2 and 3.

Fig. 2 A network example with 10 nodes and 36 links

1

2

3

4

5

6

7

8

9 10

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

546

Fig. 3 A network example with 15 nodes and 38 links

In the network topology given in Fig. 2, node 10 is a
geosynchronous satellite. All links are full duplex. The
capacity of each terrestrial link is 38.4 kb/s and that of each
satellite link is 50 kb/s. Each of the six satellite links is
assumed to introduce a propagation delay of 125 ms. All link
capacities in the second network topology are 50 kb/s. To
handle the situation of overflow, the terms of the objective
function given in equation 3 are replaced with the following
terms [12]:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′′−+

′−+

≤≤

=

otherwise)99.0(T.)99.0(
2
1

)99.0(T).99.0()99.0(T
99.0 0 if)(T

T

ijij
2

ijij

ijijijijijij

ijijijij

ij

λλλ

λλλλ

λλλ

where ijij T and T ′′′ are the first and second derivatives of the

objective function respectively.
The traffic matrix for the nodes of the first network

example with 10 nodes and the second network example with
15 nodes is given in Table II and III.

The SA algorithm was applied using the following
parameters:
• The initial temperature of the process selected

randomly in the range (0..1)
• The cooling coefficient was 0.99

 The genetic parameters are chosen as follows:
• The population size is 10.
• The crossover probability is 0.35.
• The mutation probability is 0.01.

The computer simulation results generated by the GA, SA,

HGSA, and MGAA for the two network topologies given in
Figs. 2, 3 are shown in Figs. 4, 5. The figures show the
relation between the number of generations and the fitness
(average time delay) values for the FA problem. As can be
seen from Fig. 4 and 5, MGAA is better than GA, HGSA, and
SA algorithms.

According to the simulation results, the hybridization
between SA and GA improves the performance of the GA in
solving the FA problem. It is clear also that SA is better than
GA in solving the FA problem. As mentioned above, the
MGAA has another advantage than the traditional GA. The
time used in the selection process either using the roulette
wheel discussed in section IV.D or any other selection

method is saved. Our implementation of the MGAA applies in
the reproduction step one-cut point crossover.

0,001

0,021
0,041

0,061
0,081

0,101

100 200 300 400 500 600 700 800 900 1000
Generation number

Fi
tn

es
s

GA

HGSA

SA

MGAA

Fig. 4 Comparison chart for fitness values using GA, SA, HGSA and
MGAA for the first network example

0

0,04

0,08

0,12

0,16

0,2

100 200 300 400 500 600 700 800 900 1000

Generation number
Fi

tn
es

s GA

HGSA

SA

MGAA

Fig. 5 Comparison chart for fitness values using GA, SA, HGSA and
MGAA for the second network example

IX. CONCLUSION
In this paper, we studied the route selection and flow

assignment in computer networks, and the use of a genetic
algorithm and simulated annealing algorithm for solving the
problem. To improve the performance of the genetic
algorithm, hybridization between the genetic and the
simulated annealing algorithm is introduced. A modification
of the genetic algorithm is also introduced.

We have compared the performance of the four algorithms
in solving the route selection and flow assignment problem.
Our experimental results showed that the proposed modified
genetic algorithm provided better solutions than the
traditional genetic, simulated annealing, and hybrid genetic-
simulated annealing algorithms.

For the same problem, the simulated annealing and its
hybridization with the genetic algorithm have better results
than the traditional genetic algorithm. The modified genetic
algorithm can be used in any problems to which the genetic
algorithm approach is applicable. Further modifications of the
initial population step can improve the performance of the
genetic algorithm. Instead of generating the initial population
randomly, we can use any method to generate only better
chromosomes.

REFERENCES
[1] D. Berttsekas, and R. Gallager. “Data Networks”, Second Edition,

Prentice Hall, Englwood Cliffs, New Jersey (1992).
[2] H. Chang, and P. Jung, "SA-selection-based Genetic Algorithm for the

Design of Fuzzy Controller", International Journal of Control,
Automation, and Systems, Vol. 3, no. 2, pp. 236-243, June (2005).

[3] W. Chang and R. S. Ramakrishna, "A genetic algorithm for shortest path
routing problem and the sizing of populations", IEEE Transaction on
Evolutionary Computation, Vol.6, No. 6, December (2002).

[4] M. Gen and R. Cheng, "Genetic algorithms and engineering
optimization", John Wiley&Sons, Inc., (2000).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

547

[5] Y.,Habib, M. Sait and H. Adiche, "Evolutionary algorithms, simulated
annealing and tabu search: a comparative study", Engineering
Applications of Artificial Intelligence 14, pp. 167-181, (2001).

[6] K. Ko, K. Tang, C. Chan, K. Man and S. Kwong, "Using genetic
algorithms to design mesh networks", IEEE Computer, pp 56-61,
(1997).

[7] X. Lin, Y. Kwok and V. Lau, “A genetic algorithm based approach to
route selection and capacity flow assignment”, Computer
Communications 26, pp 961-974, (2003).

[8] Z. Michalewicz, "Genetic algorithms + data structure = evolution
programs", 3rd edition, Springer Verlag, New York, USA, (1996).

[9] P. Mills, E. Tsang, Q. Zhang and J. Ford, "A survey of AI-based meta-
heuristics for dealing with local optima in local search", Technical
Report Series, Report No. CSM-416, September (2004).

[10] J. Shen, F. Xu and P. Zheng,"A tabu search algorithm for routing and
capacity assignment problem in computer networks", Computers &
Operations Research 32, pp 2785– 2800, (2005).

[11] K. Walkowiak, "Ant algorithm for flow assignment in connection-
oriented networks", International Journal of Applied Mathematics and
Computer Science, 15, pp 205-220, (2005).

[12] Z. Wang, D. Browning, "An Optimal Distributed Routing Algorithm",
IEEE Transaction on Communication, vol.39, no. 9, (1991).

TABLE II
 TRAFFIC REQUIREMENT OF THE FIRST NETWORK EXAMPLE WITH 10 NODES
 1 2 3 4 5 6 7 8 9 10

1 0 5 5 0 0 5 0 10 0 0
2 5 0 10 5 5 3 0 10 0 0
3 5 10 0 5 0 3 5 5 20 0
4 0 5 5 0 5 0 5 5 5 0
5 0 5 0 5 0 5 0 0 5 0
6 5 3 3 0 5 0 0 0 5 0
7 0 0 5 5 0 0 0 5 0 0
8 10 10 5 5 0 0 5 0 5 0
9 0 0 20 5 5 5 0 5 0 0

10 0 0 0 0 0 0 0 0 0 0

TABLE III
TRAFFIC REQUIREMENT OF THE SECOND NETWORK EXAMPLE WITH 15 NODES

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1
0 3 0 0 5 0 8 0 3 0 6 0 4 0

2 1
0 0 8 5 0 4 10 0 0 5 0 7 0 0 9

3 3 8 0 0 6 8 0 2 0 5 0 8 0 5 0
4 0 5 0 0 10 9 0 3 0 6 0 4 0 0 2
5 0 0 6 10 0 0 5 6 0 3 0 6 8 10 0
6 5 4 8 9 0 0 5 0 7 7 4 3 0 0 5

7 0 1
0 0 0 5 5 0 5 2 4 0 7 0 8 0

8 8 0 2 3 6 0 5 0 11 12 0 5 0 8 0
9 0 0 0 0 0 7 2 11 0 10 0 10 0 4 0
10 3 5 5 6 3 7 4 12 10 0 5 0 5 5 0
11 0 0 0 0 0 4 0 0 0 0 0 4 0 7 0
12 6 7 8 4 6 3 7 5 10 0 2 0 5 2 5
13 0 0 0 0 8 0 0 0 0 5 0 5 0 5 5
14 4 0 5 0 10 0 8 8 4 5 7 2 5 0 8
15 0 9 0 2 0 5 0 0 0 0 0 5 5 8 0

TABLE I
SA-SELECTION FUNCTION FOR CHOOSING THE SURVIVING SOLUTION AMONG

OFFSPRING, BEST SOLUTION, AND PARENT
 SA-selection(offspring[i], parent[i], best solution, T[i])

Case

SA(offspring[i],
parent[i], T[i])

SA(offspring[i],
best solution, T[i])

SA(parent[i],
best solution, T[i])

return

1 offspring[i] offspring[i] parent[i] offspring[i]
2 offspring[i] offspring[i] best solution offspring[i]
3 offspring[i] best solution parent[i] offspring[i]
4 offspring[i] best solution best solution best solution
5 parent[i] offspring[i] parent[i] parent[i]
6 parent[i] offspring[i] best solution offspring[i]
7 parent[i] best solution parent[i] parent[i]
8 parent[i] best solution best solution best solution

