
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

541

 

 

 
Abstract—Selecting the routes and the assignment of link flow 

in a computer communication networks are extremely complex 
combinatorial optimization problems. Metaheuristics, such as genetic 
or simulated annealing algorithms, are widely applicable heuristic 
optimization strategies that have shown encouraging results for a 
large number of difficult combinatorial optimization problems. This 
paper considers the route selection and hence the flow assignment 
problem. A genetic algorithm and simulated annealing algorithm are 
used to solve this problem. A new hybrid algorithm combining the 
genetic with the simulated annealing algorithm is introduced. A 
modification of the genetic algorithm is also introduced. 
Computational experiments with sample networks are reported. The 
results show that the proposed modified genetic algorithm is efficient 
in finding good solutions of the flow assignment problem compared 
with other techniques. 
 

Keywords—Genetic Algorithms, Flow Assignment, Routing, 
Computer network, Simulated Annealing. 
 

I. INTRODUCTION 
ETWORK design is a fundamental problem with a large 
scope of applications that have given rise to many 

different models and solution approaches [6], [10]. The 
general network design problem involves the minimization of 
a cost objective function over a lot of design variables, such 
as link capacities, flow assignment, network topology, and 
node locations. This problem belongs to the class of 
combinatorial problems. Efficient solutions to this problem 
are much sought after because such solutions could lead to 
better utilization of the networks. The traditional Lagrange 
relaxation and sub-gradient optimization methods can be used 
for tackling this problem. The results generated by these 
methods are locally optimal instead of globally optimal [7]. 
The flow assignment (FA) problem focuses on assigning the 
traffic requirements on the best routes used by nodes in the 
network in order to ensure an acceptable performance level at 
a minimum cost.  

 

For solving the FA problem, we consider different 
approaches. The first one uses the genetic algorithm (GA). 
The second approach uses the simulated annealing algorithm 
(SA).  
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The third approach combines GA with simulated annealing 
(SA) to improve the performance of the GA. In the fourth 
approach, a new modification of the GA is introduced. 

 

GAs have gained considerable attention in recent years for 
solving various combinatorial optimization problems. It is an 
evolutionary technique that simulates the process of natural 
evolution and applies genetic search operators like 
recombination, mutation, and selection to a sequence of 
alleles. The sequence of alleles is the equivalent of a 
chromosome in nature. GA can be used to solve variety of 
different problems using a survival of the fittest idea [4], [8]. 
SA is a metaheuristic algorithm derived from thermodynamic 
principles. It has recently turned out to be one of the most 
powerful tools for solving hard combinatorial problems [5], 
[9]. 

 

The remainder of the paper is organized as follows. In 
section 2, the FA problem is formulated. Section 3 gives a 
review of both the GA and SA. The implementation of the 
GA and SA for solving the FA problem is given in section 4 
and 5. The hybrid genetic-simulated annealing algorithm to 
solve the FA problem is given in section 6. In section 7, a 
modification of the GA is introduced. The results of 
computational experiments are presented in section 8. Section 
9 concludes and summarizes the main results obtained in this 
paper. 

II. PROBLEM DESCRIPTION AND FORMULATION 
A computer network can be modeled as an undirected 

graph G = (N, L), in which the sets of nodes N and links L 
represent computer sites and communication cables, 
respectively. There are communication demands between n 
different nodes. The demands are specified by an n x n 
demand matrix M = (mij), where mij is the amount of traffic 
required between ni and nj. The arrival rate on each link (i, j) 
is denoted by ijλ  and is expressed in the same units as 

capacity Cij. 
The flow assignment problem (FA) can be described as 

follows: given the network topology, the traffic requirement 
(OD matrix), and the link capacities, minimize the average 
time delay of messages by selecting the route such that traffic 
requirements are satisfied. Once the route is decided, the 
flows are sent along this route from origin node (O) to 
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destination node (D). In this paper, as in most previous work 
in the literature [7], [10], and [11] we make several 
simplifying assumptions. We assume that nodes have 
practically unlimited buffers to store messages and the arrival 
process of messages to the network follows a Poisson 
distribution. The computer network can be modeled as a 
network of independent M/M/1 queue in which links are 
treated as servers with service rates proportional to the link 
capacities [1]. The queuing and transmission delay in link ij is 
given by: 

              
ijij

ij C
1T

λμ −
=               (1)  

where ijC  is the capacity of link ij in bits per second, ijλ  is 

the arrival rate of messages to link ij, and 1−μ  is the expected 
message length. Using the above notation, the expected 
network delay is given by: 
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where  
λ  is the total arrival rate of messages in the network, 
L is the index set of links in the network, 
R is the index set of candidate routes, 

r
ijδ  is an indicator function, which is 1 if link ij is used in 

route r and is 0 otherwise, 

rx  is a decision variable which is 1 if route r is selected for 
message routing and 0 otherwise. 
 
The FA problem is then to assign the traffic demand on a 
route r from R for each nodes pair, which can satisfy the 
following condition: 
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where pS is the index set of candidate routes for commodity 

p, and ∏ is the index set of communicating 
source/destination pairs in the network. The first constraint 
ensures that the flow on each link does not exceed its 
capacity, while selection of exactly one route per commodity 
is ensured by the second and third constraints. 

 
 

III. REVIEW OF GENETIC AND SIMULATED ANNEALING 
ALGORITHMS 

In recent years, genetic algorithms (GAs), which based on 
the idea of natural selection and survival of the fittest, have 
been applied with a high degree of success to a variety of 
problems [3], [7]. GAs are search techniques for global 
optimization in a complex search space. Search space in GA 
is composed of possible solutions to the problem. A solution 
in the search space can be represented by a sequence of 0s 
and 1s, integers, or any other type from which a specific 
solution can be deduced. This solution string is referred to as 
the chromosome in the search space. Each chromosome has 
an associated objective value called the fitness value. The 
fitness of a chromosome corresponds to its ability to survive 
and reproduce offspring. A good chromosome (that has good 
chance to survive) is the one that has a high/low fitness value 
depending upon the problem (maximization/ minimization). A 
set of chromosomes and associated fitness values are called 
the population. This population at a given stage of the GA is 
referred to as generation. The general GA has the following 
elements: 
 

• A solution encoding (representation). 
• A mechanism to generate initial solutions 

(population) from where the iterative search will 
proceed. 

• An evaluation function (fitness function) to rate 
solutions from a current population. 

• Perturbation operators to create new solutions from a 
current population. 

• Assignment to the parameters of the algorithm, and 
• Stopping criteria. 
 

Creating new population from a given current population 
can be achieved by shuffling two randomly selected 
chromosomes. This process is called crossover. Sometimes 
one or more bits of a chromosome are complemented to 
generate a new offspring. This process of complementation is 
called mutation. The GA can be summarized as follows: 
 
Step 1: Initialize population 
Step 2: Evaluate population 
Step 3: Repeat Steps 4, 5, and 6 while termination criterion 

not reached 
Step 4: Select parent chromosomes for next population  
Step 5: Perform crossover and mutation 
Step 6: Evaluate population 
     

Simulated annealing algorithm (SA) is a general-purpose 
optimization technique and has been applied to many 
combinatorial optimization problems [5], [9]. The main idea 
behind SA is an analogy with the way in which liquids freeze 
and crystallize. When liquids are at a high temperature their 
molecules can move freely in relation to each other. As the 
liquid's temperature is lowered, this freedom of movement is 
lost and the liquid begins to solidify. If the liquid is cooled 
slowly enough, the molecules may become arranged in a 
crystallize structure. The molecules making up the crystallize 
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structure will be in a minimum energy state. If the liquid is 
cooled very rapidly it does not form such a crystallize 
structure, but instead forms a solid whose molecules will not 
be in a minimum energy state. The fundamental idea of SA is 
therefore that the moves made by an iterative improvement 
algorithm are like the re-arrangement of the molecules in a 
liquid that occur as it is cooled and that the energy of those 
molecules corresponds to the cost function which is being 
optimized by the iterative improvement algorithm. Thus, the 
SA aims to achieve a global optimum by slowly convergence 
to a final solution, making downwards moves with occasional 
upwards moves and thus hopefully ending up in a global 
optimum. SA can be described formally as follows: start from 
a random solution. Given a solution Sc, select a neighboring 
solution Sn and compute the difference in the objective 
function values, .  )) - f(Sf(Sf cn=Δ  If the objective 

function is improved ( 0 <Δf ), then replace the current 
solution by the new one. If 0 ≥Δf , then accept a move with 
probability )/exp(-  )p( Tff Δ=Δ ,  where T is the control 
parameter or temperature. This probabilistic acceptance is 
achieved by generating a random number in [0, 1] and 
comparing it against the threshold )./exp(- TfΔ If 

)/exp(- TfΔ is greater than the generated random number 
then replace the current solution by the new one. The 
procedure is repeated until a stopping condition is satisfied. 
The SA can be summarized as follows: 
 

Step 1: Initialize temperature T at random, and set a cooling 
rate. 

Step 2: Initialize initial solution Sc at random. 
Step 3: Evaluate f(Sc). 
Step 4: Repeat steps 5, 6, 7, and 8 while termination condition 

not satisfied. 
Step 5: Select a solution Sn in the neighborhood of Sc at 

random. 
Step 6: Set )()( cn SfSff −=Δ    {Compare the change in 

objective function} 
Step 7: If fΔ ≤ 0 then  
                Sc ←Sn {Sn replaces Sc} 
            Else 
               If exp(-( fΔ )/T) >  random (0, 1) then 
                  Sc ← Sn 
Step 8: Update (T) using the relation T = α * T, where α is the 

cooling rate {Cooling step} 
 

IV. IMPLEMENTING THE GA FOR SOLVING THE FLOW 
ASSIGNMENT PROBLEM 

     This section presents an implementation of the GA for 
identifying the link flows of the computer network that 
satisfies the traffic requirements while satisfying the problem 
constraints. Firstly, we describe how the main components of 
the GA are implemented to solve the FA problem. Then we 
give the overall algorithm used to solve this problem.  

 

A.  Genetic Representation 

     In route selection, and hence flow assignment, each 
chromosome represents a routing table which includes a path 
list P1, P2, …, PN(N-1)/2 that represents the entire network. Each 
path Pk is a particular route between two nodes i, j. A path 
(route) is encoded as list of integers by listing the nodes from 
its source to its destination based on the network topology [4]. 
If a path cannot be realized on the network, it cannot be 
encoded into a chromosome, which means that each step in a 
path must pass through a physical link in the network. The 
first gene on the chromosome represents the source node; the 
last gene represents the destination node, while other genes 
represent intermediate nodes along that path from the source 
to the destination. 
 

B.  Population Initialization 

The initial process is used to compose the routing tables for 
all chromosomes in the current generation. Each chromosome 
includes a random routing table for a given topology. 

 

C.  Evaluation 

To evaluate the solution quality of the flow assignment 
problem, equation (3) is used as the objective function to 
determine the ability of a chromosome to survive and produce 
offspring. In our implementation, a route with less average 
time delay is frequently employed in sending packets. 

 
D.  Selection   

The selection (reproduction) operator is intended to 
improve the average quality of the population by giving the 
high fitness chromosomes (less average time delay) a better 
chance to get multiple copies into the next generation, 
whereas chromosomes with low fitness (high average time 
delay) have fewer copies or even none at all.  Many types of 
selection scheme can be used [3]. One of the selection 
methods is based on spinning the roulette wheel pop_size 
times; each time a single chromosome is selected as a new 
offspring, where pop_size denotes the population size. The 
steps of this selection method are as follows [8]: 
Step 1: Calculate the fitness value f(vi) for each chromosome 
vi (i=1, …, pop_size). 
Step 2: Find the total fitness of the population      

                                 ∑
=

=
pop_size

1i
i )(vF f  

Step 3: Calculate the probability of the selection pi for each 
chromosome vi where       

                          F/)(vp ii f= , i = 1, 2, …, pop_size 
 Step 4: Calculate a cumulative probability qi for each 
chromosome vi where 

                         ∑
=

=
i

1j
ji pq , i = 1, 2, …, pop_size 

Step 5: Generate a random number r from the range (0, 1). 
Step 6: If r<q1 then select the first chromosome (v1); 

otherwise select the i-th chromosome vi(2 ≤ i ≤ 
pop_size) such that  qi-1 < r ≤  qi. 
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E.  Crossover Operator 

A crossover operator recombines the gene-codes of two 
parents, which are randomly selected, and produces offsprings 
such that the children inherit a set of building blocks from 
each parent. The application of crossover is governed by a 
crossover probability, denoted by Pc.  

In each generation of the GA, the crossover operator is 
tried pop-size times (pop-size is the population size) and thus, 
the expected number of applications of crossover is Pc* pop-
size.  

In this paper, the crossover operator exchanges subroutes 
between two chromosomes. First, select the chromosomes 
according the probability of the crossover operator. Second, 
apply crossover to the selected chromosomes using the path 
crossover operator by selecting randomly two paths that 
should have the same source and destination nodes. Crossing 
sites for the path crossover operator are limited to nodes 
contained in both paths. A node is randomly selected as a 
crossing site from the potential crossing sites and exchanges 
subroutes. When applying the crossover operator to a pair of 
paths P1 and P2, the operation proceeds according to the 
following algorithm [4]:   
Step 1: List up a set of nodes Nc included in both P1 and P2 

(excluding source and destination nodes) as potential 
crossing sites. 

Step 2: Select a node i as a crossing site from the Nc. 
Step 3: Crossover the paths by exchanging all nodes after the 

crossing site i. 

Fig. 1 shows an overview of the crossover operator 
applying for a pair of paths P1 and P2 from node 1 to node 4. 
Their potential crossing sites is node 3. When we select node 
3 as a crossing site, the new offspring are generated by 
exchanging the subroutes as shown in the figure below. 

 
Path P1 1 5 3 4 

Path P2 1 3 2 4 

 
 

Child P1 1 5 3 2 4 

Child P2 1 3 4   

Fig. 1 Example of crossover 
 

 
F.  Mutation Operator 

The path mutation is another genetic operator, which is 
applied to a randomly selected single solution (chromosome) 
from the population with a certain probability. It makes small 
random changes in the solution. These random changes will 
gradually add some characteristics to the population, which 
could not be supplied by the crossover operator. Similar to the 
crossover operator, the application of the mutation operator is 
governed by a mutation probability Pm. In each generation, 
the mutation operator is also tried pop-size times and thus, the 
expected number of mutated chromosomes is Pm* pop-size. 
  

   To perform a mutation in the FA problem, a node is 
randomly selected from the path, which is called a mutation 
node. Then another node is randomly selected from the nodes 
directly connected to the mutation node. If any duplication of 
nodes exists in the offspring path, then this path can be 
discarded. The path mutation operator can be described as 
follows [4]: 
Step 1: Select mutation node i randomly from all nodes in 
parent V. 
Step 2: Select a node j from the neighbors of the mutation 
node i. 
Step 3: Generate a random path from the source to node j, and 
another random path from node j to the destination node. 
Step 4: If any duplication of nodes exists in the offspring 
path, discard the routes and do not perform mutation. 
Otherwise the routes are connected to make up a mutated 
path. 

 
G.  Overall Algorithm 

The GA algorithm used to solve the flow assignment 
problem can be described as follows: 
Step 1: Input all kinds of data of the problem (network 

topology, OD matrix, and link capacities) and the 
controlling parameters of the algorithm (crossover 
and mutation probability, population size, and 
generation number). 

Step 2: Randomly generate initial population, where each 
chromosome in the population represents a routing 
table for the given network. 

Step 3:   For each OD pair, assign the flow between the origin 
O and the destination D on the route connecting 
them, then compute the fitness of every chromosome 
in the current population using equation (3). Save the 
best chromosome. 

Step 4:   Select the best chromosomes (routing tables) using 
the roulette wheel method. 

Step 5:  Perform the crossover and mutation operations to get 
a new population. 

Step 6: Repeat steps 3 – 5 until the termination condition is 
met. 

 
Note that, the termination condition is met either after a 
specified number of generations or no improvement occurs on 
the best solution for successive generations. In our 
implementation, a specified number of generations are used as 
a termination condition.  

V. IMPLEMENTING THE SA FOR SOLVING THE FLOW 
ASSIGNMENT PROBLEM 

Using SA for solving the FA problem requires the 
determination of an initial feasible solution. In our 
implementation, we used the population initialization step of 
the GA, discussed in section III, to get an initial feasible 
solution. Thus, the initial solution includes a random routing 
table for each source-destination pair of a given network. The 
selecting of a solution in the neighborhood of the initial 
solution can be obtained by changing randomly one or more 
links of the route from the source to the destination. As in the 
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implementation of GA for solving the FA problem, equation 3 
is used to compute the value of each candidate solution for the 
problem.  

VI. HYBRID GENETIC-SIMULATED ANNEALING ALGORITHM 
APPROACH (HGSA) 

The HGSA algorithm combines both the GA and SA 
algorithms to solve the FA problem. This combination occurs 
in the selection process of the GA algorithm. A SA-selection 
[2] is used to choose a single candidate solution between the 
best of the two parents, offspring, and best solution of the 
generations. The selection function SA-selection(offspring[i], 
parent[i], best solution, T[i]) is defined, which applies the 
traditional SA function SA(a, b, T) multiple times to identify 
the single surviving candidate, where i in the SA-selection 
function indicates the index of the new individual. The 
function SA(a, b, T) calculates the acceptance probability 

f(b))/T),-(f(a) exp(-P =  where f(x) is the cost function of a 
candidate x. As mentioned in section 3, if f(a) ≤ f(b), then 
candidate a will be selected. If f(a)>f(b) and P > random 
number in [0, 1), then candidate a will be selected too. Except 
these cases, candidate b will be selected. All possible cases of 
this selection process are represented in Table 1. In this SA-
selection function, offspring[i] and parent[i] are compared 
with each other, then with best solution. To illustrate the 
selection cases given in Table I, consider case 1, where 
offspring[i] is accepted over both parent[i] and best solution, 
but parent[i] is accepted over best solution. Hence, 
offspring[i] is accepted and returned. 

The HGSA algorithm for solving the FA problem has the 
following steps: 

Step 1: Input all kinds of data of the problem (network 
topology, OD matrix, and link capacities) and the controlling 
parameters of the algorithm (crossover and mutation 
probability, population size, and generation number, and 
cooling rate). 
Step 2: Randomly generate initial population, where each 
chromosome in the population represents a routing table for 
the given network. 
Step 3: For each individual i randomly generate an initial 
temperature T[i]. 
Step 4: For each OD pair, assign the flow between the origin 
O and the destination D on the route connecting them, then 
compute the fitness of every chromosome in the current 
population. 
Step 5:  Save the current population as the parent population. 
Step 6:  Perform the crossover and mutation operations to get 
the offsprings. 
Step 7: Find the best routing table among the parents, 
offsprings, and current best solution, and then update the best 
solution. 
Step 8: For each individual of the population do 
             Find the i-th chromosome between parent, offspring, 
            and best solution according to the processes given in 
             Table I. 
             i-th chromosome = SA-selection(offspring[i], 
parent[i],  best solution, T[i])  

             Update the fitness function of the i-th chromosome. 
             Set T[i] = T[i] x cooling rate 
            End for  
Step 9: Repeat steps 4 – 8 until termination condition met. 

VII. A MODIFIED GENETIC ALGORITHM APPROACH (MGAA) 
As mentioned earlier, the selection operator is intended to 

improve the average quality of the population and many types 
of selection scheme can be used. Calling the selection process 
for each generation increases the algorithm complexity. We 
can ignore this process and perform the reproduction process 
directly on the current population. In the MGAA, we generate 
the initial population randomly. In each generation, the new 
population consists of offsprings produced from mating 
individuals from the current population and possibly some 
individuals from the current population. The parents are 
selected for crossover and mutation according to the 
crossover and mutation probability. If the fitness value of the 
offspring has a better value than one or both of its parents 
then this offspring is accepted in the new population. 
Otherwise, mate the best of the two parents with another 
parent. In the later case, we can change the crossover point 
instead of replacing one of the parents. This step guarantees 
that the new population contains always the best 
chromosomes. Applying the traditional crossover process to 
generate new offspring is not always guaranteed to produce 
good chromosomes.  
 
The MGAA can be summarized as follows: 
 
Step 1: Initialize population 
Step 2: Evaluate population and save the best chromosome. 
Step 3: Repeat Steps 4 and 5 while termination criterion not 

reached 
Step 4: Perform crossover and mutation 
Step 5: Evaluate population and update the best chromosome. 
It is clear that; the selection step in the genetic algorithm 
given in section 4 is eliminated. This modification speeds up 
the GA and guarantees that the reproduction step always 
produces good offsprings. 

VIII. EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, we present a comparison between the 

performance of the four approaches GA, SA, HGSA, and 
MGAA. These algorithms were implemented in C++. The 
results presented in this section are obtained from simulations 
on 2 sample networks. The topologies of these networks are 
as shown in Fig. 2 and 3. 
 
 
 
 
 
 
 
 

 
Fig. 2 A network example with 10 nodes and 36 links 
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Fig. 3 A network example with 15 nodes and 38 links 
 

In the network topology given in Fig. 2, node 10 is a 
geosynchronous satellite. All links are full duplex. The 
capacity of each terrestrial link is 38.4 kb/s and that of each 
satellite link is 50 kb/s. Each of the six satellite links is 
assumed to introduce a propagation delay of 125 ms. All link 
capacities in the second network topology are 50 kb/s. To 
handle the situation of overflow, the terms of the objective 
function given in equation 3 are replaced with the following 
terms [12]: 
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where ijij T and T ′′′ are the first and second derivatives of the 

objective function respectively.  
The traffic matrix for the nodes of the first network 

example with 10 nodes and the second network example with 
15 nodes is given in Table II and III. 

The SA algorithm was applied using the following 
parameters: 
• The initial temperature of the process selected 

randomly in the range (0..1) 
• The cooling coefficient was 0.99 

 
   The genetic parameters are chosen as follows: 
• The population size is 10. 
• The crossover probability is 0.35. 
• The mutation probability is 0.01. 

 
The computer simulation results generated by the GA, SA, 

HGSA, and MGAA for the two network topologies given in 
Figs. 2, 3 are shown in Figs. 4, 5. The figures show the 
relation between the number of generations and the fitness 
(average time delay) values for the FA problem. As can be 
seen from Fig. 4 and 5, MGAA is better than GA, HGSA, and 
SA algorithms.  

According to the simulation results, the hybridization 
between SA and GA improves the performance of the GA in 
solving the FA problem. It is clear also that SA is better than 
GA in solving the FA problem. As mentioned above, the 
MGAA has another advantage than the traditional GA. The 
time used in the selection process either using the roulette 
wheel discussed in section IV.D or any other selection 

method is saved. Our implementation of the MGAA applies in 
the reproduction step one-cut point crossover.  
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Fig. 4 Comparison chart for fitness values using GA, SA, HGSA and 
MGAA for the first network example 
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Fig. 5 Comparison chart for fitness values using GA, SA, HGSA and 
MGAA for the second network example 

IX. CONCLUSION 
In this paper, we studied the route selection and flow 

assignment in computer networks, and the use of a genetic 
algorithm and simulated annealing algorithm for solving the 
problem. To improve the performance of the genetic 
algorithm, hybridization between the genetic and the 
simulated annealing algorithm is introduced. A modification 
of the genetic algorithm is also introduced.  

We have compared the performance of the four algorithms 
in solving the route selection and flow assignment problem. 
Our experimental results showed that the proposed modified 
genetic algorithm provided better solutions than the 
traditional genetic, simulated annealing, and hybrid genetic-
simulated annealing algorithms.  

For the same problem, the simulated annealing and its 
hybridization with the genetic algorithm have better results 
than the traditional genetic algorithm. The modified genetic 
algorithm can be used in any problems to which the genetic 
algorithm approach is applicable. Further modifications of the 
initial population step can improve the performance of the 
genetic algorithm. Instead of generating the initial population 
randomly, we can use any method to generate only better 
chromosomes. 
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TABLE II 
 TRAFFIC REQUIREMENT OF THE FIRST NETWORK EXAMPLE WITH 10 NODES 
 1 2 3 4 5 6 7 8 9 10 

1 0 5 5 0 0 5 0 10 0 0 
2 5 0 10 5 5 3 0 10 0 0 
3 5 10 0 5 0 3 5 5 20 0 
4 0 5 5 0 5 0 5 5 5 0 
5 0 5 0 5 0 5 0 0 5 0 
6 5 3 3 0 5 0 0 0 5 0 
7 0 0 5 5 0 0 0 5 0 0 
8 10 10 5 5 0 0 5 0 5 0 
9 0 0 20 5 5 5 0 5 0 0 

10 0 0 0 0 0 0 0 0 0 0 

 

TABLE III 
TRAFFIC REQUIREMENT OF THE SECOND NETWORK EXAMPLE WITH 15 NODES 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1
0 3 0 0 5 0 8 0 3 0 6 0 4 0 

2 1
0 0  8 5 0 4 10 0 0 5 0 7 0 0 9 

3 3 8 0 0 6 8 0 2 0 5 0 8 0 5 0 
4 0 5 0 0 10 9 0 3 0 6 0 4 0 0 2 
5 0 0 6 10 0 0 5 6 0 3 0 6 8 10 0 
6 5 4 8 9 0 0 5 0 7 7 4 3 0 0 5 

7 0 1
0 0 0 5 5 0 5 2 4 0 7 0 8 0 

8 8 0 2 3 6 0 5 0 11 12 0 5 0 8 0 
9 0 0 0 0 0 7 2 11 0 10 0 10 0 4 0 
10 3 5 5 6 3 7 4 12 10 0 5 0 5 5 0 
11 0 0 0 0 0 4 0 0 0 0 0 4 0 7 0 
12 6 7 8 4 6 3 7 5 10 0 2 0 5 2 5 
13 0 0 0 0 8 0 0 0 0 5 0 5 0 5 5 
14 4 0 5 0 10 0 8 8 4 5 7 2 5 0 8 
15 0 9 0 2 0 5 0 0 0 0 0 5 5 8 0 

TABLE I 
SA-SELECTION FUNCTION FOR CHOOSING THE SURVIVING SOLUTION AMONG 

OFFSPRING, BEST SOLUTION, AND PARENT 
 SA-selection(offspring[i], parent[i], best solution, T[i]) 
 

Case 
 

SA(offspring[i], 
parent[i], T[i]) 

SA(offspring[i], 
best solution, T[i]) 

SA(parent[i], 
best solution, T[i]) 

 
return 

1   offspring[i]   offspring[i]   parent[i]  offspring[i] 
2   offspring[i]   offspring[i]   best solution  offspring[i] 
3   offspring[i]   best solution   parent[i]  offspring[i] 
4   offspring[i]   best solution   best solution  best solution 
5   parent[i]   offspring[i]   parent[i]  parent[i] 
6   parent[i]   offspring[i]   best solution  offspring[i] 
7   parent[i]   best solution   parent[i]  parent[i] 
8   parent[i]   best solution   best solution  best solution 


