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Abstract—In this paper, a novel corner detection method is 

presented to stably extract geometrically important corners. 
Intensity-based corner detectors such as the Harris corner can detect 
corners in noisy environments but has inaccurate corner position and 
misses the corners of obtuse angles. Edge-based corner detectors such 
as Curvature Scale Space can detect structural corners but show 
unstable corner detection due to incomplete edge detection in noisy 
environments. The proposed image-based direct curvature estimation 
can overcome limitations in both inaccurate structural corner detection 
of the Harris corner detector (intensity-based) and the unstable corner 
detection of Curvature Scale Space caused by incomplete edge 
detection. Various experimental results validate the robustness of the 
proposed method. 
 

Keywords—Feature, intensity, contour, hybrid.  

I. INTRODUCTION 

N interest point is one that has a location in space but no 
spatial extent. The presence of interest points can 

drastically reduce the required computation time; as such, these 
points are frequently used to compensate for many vision 
problems such as camera calibration, 3D reconstruction, stereo 
matching, image registration, structure from motion, image 
mosaicing, motion tracking, mobile robot navigation, and object 
recognition to find correspondences [1]. Many different interest 
point detectors have been proposed with a wide range of 
definitions. Some detectors find points of high local symmetry 
[2], [3], whereas others locate corner points. Corner points are 
more frequently used to solve correspondence problems, as they 
are formed from two or more edges that define the boundary 
between different objects or parts of the same object.  

Corner detector should have to satisfy several criteria. First, 
all true corners should be detected. Second, no false corners 
should be detected. Third, the corner points should be well 
localized. Fourth, the most important property of a corner 
detector should be its high repeatability rate. Fifth, the corner 
detector should be robust with respect to noise and should be 
computationally efficient [1]. 
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To achieve these kinds of criteria, a number of corner 

detectors were proposed, such as the intensity-based approach, 
contour-based approach, biologically motivated approach, 
color-based approach, model- or parameter-based approach, 
segmentation-based approach, viewpoint invariant approach, 
and machine learning-based approach [4], [1]. In this paper, we 
focus on the first two approaches (the intensity-based and the 
contour-based approaches) since they are basic methods used 
for corner detection problems. The Harris corner detector, one 
of the most successful algorithms in the intensity-based 
approach [5], is based on a matrix related to the autocorrelation 
function. Corner points are detected if the autocorrelation 
matrix has two significant eigenvalues.  Recently, Schmid et al. 
improved the original Harris corner detector using a Gaussian 
derivative kernel instead of simple derivative kernel [4]. In this 
paper, we call it impHarris. The impHarris shows the highest 
repeatability among the conventional Harris, Foerstner, Cottier, 
heitger, and Horaud corner detectors. 

Likewise, contour-based methods have existed for a long 
time. These were originally applied to line drawings and 
machine parts rather than natural scenes. Another popular 
contour-based corner method is the Curvature Scale Space 
(CSS)-based algorithm [6]. Corner points are curvature maxima 
of contours at a coarse level and are tracked locally up to the 
finest level. The two sets are compared and close interest points 
are merged. Recently, He and Yung improved the original CSS 
corner detector by introducing the adaptive curvature threshold 
and a dynamic region of support. We call this method impCSS. 

In this paper, we propose a novel corner detector by 
combining the advantages of both approaches by directly 
estimating curvature on the intensity image using spatial 
filtering methods. An orientation field is obtained and a 
curvature field is then generated by application of an 
approximated curvature estimation filter to the orientation field. 
Local maxima and thresholding can detect structurally 
important corners for both structural and textured images. 

This paper is organized as follows. Section 2 explains the key 
idea of the proposed method including the overall corner 
detection framework. Section 3 presents details of the spatial 
filtering and detection method for good corner detection. 
Section 4 shows various performance evaluations and results. 
And finally, Section 5 concludes this paper.  

 
II. MOTIVATION AND PROPOSED METHOD 

In this section, we briefly introduce corner detector basics 
and explain our key idea to improve corner detection 
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performance. We then present the framework of the proposed 
corner detection method. 

A. Related works 

This paper is motivated from well-known corner detectors 
such as the intensity-based impHarris [4] and contour-based 
impCSS [7]. In this section, we briefly introduce the basics of 
these methods. The impHarris method is an improved version of 
the original Harris corner detector [5]. As shown in Fig. 1(a), 
the impHarris computes image derivatives (x yI I, ) using 
Gaussian derivatives ( 1σ = ) which is the improvement point. 
An autocorrelation matrix A  is then calculated using a 
Gaussian convolution ( 2σ = ) to weight the derivatives 
summed over the window. Instead of direct eigenvalue 
extraction of A , the corner strength of an interest point is 
calculated using 2( ) ( )det α− ⋅A trace A . The second term is 
used to remove edge points with one strong eigenvalue. α  is 
normally set to 0 06. . After non-maximum suppression using 
3 3×  window, final impHarris corners are detected with a 
threshold. 

 

 
Fig. 1 Corner detection flows of previous works: (a) Intensitybased 

method (impHarris), and (b) contour-based method (impCSS) 
 
The contour-based impCSS corner detector improved the 

conventional CSS method [6] by carefully designing the 
selection mechanism as shown in Fig. 1(b). The philosophy of 
the impCSS method is to use global and local curvature 
properties. The first step is to obtain a binary edge map using a 
Canny edge detector. Then, edge contours are extracted by edge 
linking as the original CSS method. After the contours are 
extracted, the curvature is calculated. The adaptive threshold is 
then estimated using support regions. Finally, the end points of 
the open contours also considered corner points.  

There are also image-based curvature estimation methods. 
Donias et al. proposed implicit curvature calculation using 
differential geometry as (1) where x yI I,  denote the 1st 
derivatives along row-direction and column direction, 
respectively. The theoretic derivations are useful, but 
application results are quite disappointing as shown in Fig. 2(b) 
testing of the input image of Fig. 2(a). This produces strong 
curvature responses around slanted edges.  

The intensity-based Gaussian curvature calculation method 
such as 2 2 2 2( ) /(1 )xx yy xy x yI I I I I− + +  [8] also produces strong 
double curvature responses along the slanted edges as shown in 
Fig. 2(c).  

Ginkel et al. also proposed an image-based curvature 
estimation method using geometric analysis and showed good 
performance on low signal to noise ratio but weak to strong 
curvature [9].  
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Fig. 2 Image-based curvature estimation results: (a) Input test image; 
(b) implicit curvature method [10]; and (c) Gaussian curvature. 

 
Both impHarris and impCSS corner detectors have their own 

advantages and limitations. In general, the impHarris corner 
detector is robust to textured images due to image filtering but 
offers poor detection of obtuse corners and shows shifted corner 
positions (Fig. 3). The shifted corner detection as shown in Fig. 
3(a) is originated from the Gaussian derivatives and the 
additional smoothing in the computation of autocorrelation 
matrix. The impHarris detects only strong corners such as those 
with an "L" shape or "T" junction, which have two significant 
eigenvalues. An obtuse angular structure generates only one 
significant eigenvalue, which leads to the corner missing 
problem shown in Fig. 3(b). Conversely, use of the CSS corner 
detector is powerful for structured objects or line drawings due 
to its edge-based curvature estimation but is poor in textured 
images with inaccurate edge extraction (Fig. 4).  

 

 
Fig. 3 Limitations of the impHarris corner detector: (a) Inaccurate 

corner locations; and (b) missing obtuse angular corners ( 0 06α = . ) 
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Fig. 4 Limitations of the impCSS corner detector: (a) Canny edge 
detector used in the impCSS; and (b) false corner detection due to 

unstable edge detection. 

B. Proposed feature detection system 

As discussed above, the intensity-based corner detection is 
robust when used in textured images due to its image filtering 
scheme but weak when used to detect structurally meaningful 
corners such as obtuse angles and has low positional accuracy. 
In contrast, the contour-based corner detector is powerful when 
used to detect structured objects due to its curvature estimation 
strategy but is weak when used to detect textured images due to 
its fragile Canny edge detector. The motivation of our research 
starts at this point: how can we use the advantages of both 
approaches to detect corners stably in general scenes? Since 
evidence exists that the human visual system pays strong spatial 
attention to contour curvatures [11], we use the curvature-based 
approach as a basic corner detector. The next question is how to 
stably extract curvature information from textured or noisy 
images. Our approach is to adopt the underlying scheme of the 
intensity-based approach to alleviate the edge extraction 
process problem. The intensity-based method is usually based 
on a spatial filter. In the case of impHarris corner detector, it 
uses image-based filters such as the derivative filter or the 
autocorrelation filter. As such, we estimate the curvature 
information directly in the image space by eliminating the edge 
detection process. Fig. 5 summarizes the key idea and the 
proposed corner detection system. All tables and figures you 
insert in your document are only to help you gauge the size of 
your paper, for the convenience of the referees, and to make it 
easy for you to distribute preprints.  

 

 
Fig. 5 Motivation of the proposed method and the related block 

diagram 
 

The proposed corner detection system consists of spatial 
filtering part and detection part. The filtering part conducts 
direct curvature estimation by applying the curvature filter after 
the orientation filter. The corner detection part performs local 
maxima on the curvature field and the final corners are extracted 
by the application of a threshold. The key contribution of this 
paper is conducting a multi-scale curvature estimation on the 
intensity image space instead of the edge-based contour space to 
detect the structurally accurate corners for both textureless and 
textured objects. The orientation filter produces orientation 
flow image, called the orientation field (OF), from an input 
image. Pixel-wise approximate curvature filtering on the OF 
generates the curvature intensity image, called the curvature 
field (CF). The global thresholding method detects the final 
corner points after the local maxima. The spatial filter and 
corner detection process is repeated for the next pyramid image 
to detect larger structural corners. We call the proposed corner 
detector CF corner in the following sections. Since the CF 
corner detector combines the advantages of both approaches, 
we can expect both robust detection of structurally meaningful 
corners and accurate localization of the corner position, even in 
textured or noisy environments. This method will be validated 
in the experimental section. 

III.  ESTIMATION OF OF AND CF 

A. OF 

The proposed spatial filter consists of two steps. The OF 
( ( )OF i j, ) is obtained in advance and then CF (( )CF i j, ) is 
estimated. Since we do not use the edge extraction process, the 
orientation calculation is critical to the consecutive processes. 
As such, an initial input of ( )I i j,  is pre-processed using using 
Gaussian smoothing with 1 4σ = . . The orientation of each 
pixel can be calculated simply using (2).  

 

1( )
2

y
simple

x

I
OF i j mod tan

I

ππ−   , = , +  
   

        (2) 

where x yI I,  denote the row and column directional gradient, 

respectively, with a kernel coefficient [ 101]− . We use the 

orientation range of [0 ]π,  instead of [ ]π π− ,  to consider shape 

direction only and not polarity.  
A simpler orientation estimation method proposed by Kass 

and Witkin [12] can directly calculate orientation flow without 
the use of a modulus operator. They derived image flow 
orientation in terms of power spectrum analysis as shown in (3). 
This can be easily derived by vector analysis. Assume a gradient 
vector x yG I I i= +  whose power is 2 2( )x yG I I i= + =  

2 2 2x y x yI I I I i− + . As a result, the angle of gradient power is 

defined as shown in (3). Fig. 6 shows OF examples calculated 
using the simpleOF  and flowOF  methods. Note that both methods 

produces the same results. In this paper, we use (3) since it 
needs not the modulus computation.  
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Fig. 6 Orientation field estimation results: (a) simpleOF  method; and 

(b) flowOF  method. The arrows indicate calculated orientations 

B. CF 

The next step is to estimate a CF (( )CF i j, ). Curvature is 
originally defined as the rate of change of orientation over 
spatial variation as shown in Fig. 7(a) [13]. Given an extracted 
contour, the ideal curvature is defined as (4), where S∆  
denotes infinitesimal contour length and θ∆  denotes 
orientation variation on the contour position. 

 

 
Fig. 7 Curvature field estimation procedures: (a) ideal curvature 

estimation given a contour; (b) calculated orientation field (over which 
the ideal contour is overlaid.); and (c) approximate curvature 

estimation diagram 
 
Since we do not use edge or contour extraction process, we 

have to use approximate curvature estimation method in image 
domain. As shown in Fig. 7(b), tthe ideal contour is quantized 
into pixels and the OF has implicit contour information. As 
such, if we carefully design a certain filter to be applied on in the 
OF, we can then obtain approximated curvature information. As 
shown in Fig. 7(b), we do not have any information about 
contour pixels in advance, so all pixels in the OF are considered 
candidate contours. Curvature approximation in the OF can be 
achieved as shown in Fig. 7(c). Assume that the current pixel of 
an OF is ( )i j, . We can then make a local contour pixel segment 
using the orientation information, ( )OF i j, . Extending along 
that direction, contour segment pixels are selected in a 3 3×  
window. If we use the direction information of neighboring 
pixels ( ( ) ( )fwd bwdOF i j OF i j, , , ), the approximate curvature 
( selk ) can be estimated using (5), where S∆  can be considered 
as 2 (pixel distance) and θ∆  can be approximated as the 
neighboring orientation difference (fwd bwdθ θ− ). selk  denotes 
curvature estimation by neighboring pixel selection. 
Neighboring pixel pairs are selected by quantizing the direction 
of the center pixel into four angles such as 0 45 90 135, , ,o o o o .  

( ) ( )
( )

2

fwd bwd

sel

OF i j OF i j
k i j

S

θ , − ,∆, = =
∆

             (5) 

 

We can also consider another curvature estimation as shown 
(6), in which orientation differences between neighboring pixels 
and a center pixel are calculated and summed. W  denotes a 
local window around ( )i j, . In this approach, we need not find 
the contour segments. sumk  denotes the curvature estimation by 
summing the orientation differences of the neighboring pixels. 
A performance comparison of the curvature estimation methods 
will be presented in the experimental results section. 

 
1

( )
8

( ) ( )sum
k l W k i l j

k i j OF k l OF i j
, ∈ , ≠ , ≠

, = , − ,∑   (6) 

 

 
Fig. 8 Curvature estimation results using (b) selk , (c) cosinek , (d) 

proposed, and (e) additional smoothing, for a given test image (a) 
 
However, we cannot use this curvature information because it 

produces many false responses around the homogeneous area 
including the edges as shown in Fig. 8(b) for a given test image 
(Fig. 8(a)). If we use cosine angle distance [14] as shown in (7) 
instead of the angle difference, we can enhance the curvature 
response while maintaining strong curvature around the 
homogeneous region and edges as shown in Fig. 8(c). As such, 
we modify (7) by adaptive weighting using gradient magnitude 
( fwd bwdM M, ) as defined in (8). Fig. 8(d) shows the obtained CF 
estimation using (8). Note that there are strong responses around 
the true corners. Some noisy curvature responses can be reduced 
further by a simple smoothing as shown in Fig. 8(e).  

 

( ) (1 ( ( )))cosine selk i j cos k i j, = − ,                 (7) 
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 ( ) ( )cosine fwd bwdCF i j k i j M M, = , ⋅ ⋅              (8) 

 
Fig. 9 shows the overall corner detection procedures using 

the proposed orientation and curvature filters for the OF and CF 
calculations. An input image consists of three regions with 
different shades in the rectangle. In Step 1, the modified 
orientation estimation filter produces the OF. In Step 2, the 
proposed curvature estimation filter produces the final CF. Note 
the curvature responses around the interior regions. We can 
obtain final corner detection results through a local maxima 
( 3 3×  window) and threshold as shown in the block diagram of 
Fig. 5.  

 

 
Fig. 9 Example of corner detection process using the proposed direct 

curvature estimation method 

IV.  EXPERIMENTAL RESULTS 

The first evaluation is the corner localization accuracy, which 
can be important to camera calibration, 3D reconstruction, and 
so on. We use the "synthetic" test image since we can know the 
exact corner location. The ground truth location is prepared by 
human vision to evaluate the location error. In addition, 
thresholds are tuned to produce almost the same number of 
corners for the CF, impHarrs, and impCSS corners. Fig. 10 
represents the evaluation results. The squares denote the 
detected corners while the crosses indicate the ground truth 
corner locations. The average localization error of the CF 
corner is 1.17 pixel, that of impHarris corner is 1.74 pixel, and 
that of impCSS corner is 1.44 pixel. As a result, the proposed 
CF corner has the lowest localization error, followed by the 
impCSS corner, and then the impHarris corner.  

Fig. 10 Comparison of corner localization error using (a) proposed CF 
corner, (b) impHarris corner, and (c) impCSS corner, where the 

squares represent the detected corners and the crosses (+) represent the 
ground truth locations 

The second evaluation is of noise sensitivity of the corner 
detectors. Gaussian noise is added by changing the standard 
deviation from 0  to 20. In this case, we use the "blocks" image 
and check the recall vs. (1-precision) as a comparison measure. 
The threshold of each method is tuned to produce the same 
number (around 58) of corners at noise level 0 . Fig. 11 shows 
the comparison results.  

 

At a glance, impHarris seems to be robust to noise, CF corner 
reacts normally, and impCSS performs the worst. However, if 
we inspect the corner detection images as shown in Fig. 12, 
impHarris generates a lot of corner detection, which leads to a 
high recall rate. The impCSS corner detector also produces 
many false corners in noisy homogeneous regions. The 
proposed CF corner detector shows more stable detection 
around corners compared with other methods.  

 

 
Fig. 11 Comparison of the image noise sensitivity in terms of recall vs. 

(1-precision) curve 
 

 
Fig. 12 Corner detection examples at a noise level 20  using: (a) CF 

corner; (b) impHarris corner; and (c) impCSS corner 
 
The fourth evaluation is the consistency of corner detection in 

image transformations. We use the repeatability measure to 
quantify the consistency. Repeatability is important to detect 
corners in sequences where correspondence should be achieved 
among image transformations. The test images include 
"blocks," "house," and "lab" data. The repeatability tests are 
conducted in terms of image rotation and scale change. As a 
result, we compute the repeatability by counting matched 
corners between a reference image and transformed images. 
Since the transformation value is available, we can predict the 
ground truth of the corner positions. Fig. 13 summarizes the 
repeatability comparisons in terms of image rotation and scale 
for the standard test images. We use rotation range of [0 90 ],o o  
with an interval 0 5. o  and scale range of [1 2],  with an interval 
of 0 1. . The proposed CF corner detector shows upgraded 
repeatability performance compared with the impHarris and 
impCSS methods.  
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Fig. 13 Repeatability evaluation results for image rotation and scale 
using standard test images (blocks, house, lab). The row represents 

image type, the first column represents image rotation, and the second 
column represents image scale 

V. CONCLUSION 

This paper proposed a new simple but powerful corner 
detection method for detecting structurally important corners 
using direct curvature estimation filters. As validated by a set of 
experiments, use of the OF estimation filter followed by 
approximated curvature estimation filter can effectively find 
true corners, including obtuse corners with stable corner 
positions and image variations, such as image rotation and scale 
changes. Due to the simplicity of the algorithm, the proposed 
corner detection method can be used in various vision 
applications.  
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