
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

153

Abstract—A key aspect of the design of any software system is

its architecture. An architecture description provides a formal model
of the architecture in terms of components and connectors and how
they are composed together. COSA (Component-Object based
Software Structures), is based on object-oriented modeling and
component-based modeling. The model improves the reusability by
increasing extensibility, evolvability, and compositionality of the
software systems. This paper presents the COSA modelling tool
which help architects the possibility to verify the structural coherence
of a given system and to validate its semantics with COSA approach.

Keywords—Software Architecture, Architecture Description
Languages, UML, Components, Connectors.

I. INTRODUCTION
HERE are at least two different techniques of describing
the architecture of a software system, either by using

object-oriented notations (e.g UML) [1], [4], [5] or by using
special notations for software architecture (e.g. Architecture
Description Languages ADL) [2], [8]. The two techniques are
successively called Object-Based Software Architecture
(OBSA) and Component-Based Software Architecture
(CBSA).

Actually, UML becomes a standard language for specifying,
visualizing, constructing and documenting architectural
description concepts. However, with the introduction of UML
2.0 [3] new notations have been constructed and existing ones
have been modified to answer software architecture
description demands. UML 2.0 provides a suitable base to
define UML profiles for software architecture.

In this article, we are interested with building a COSA
modelling tool; which is an approach for software architecture
based on object oriented modeling and component based
modeling [3]. Recently, concepts of COSA are mapped into
UML 2.0 [6]. Using the capacities of UML profiles and
models technological space (MTS), also known as MDA
technological space [10], we define a plug-In called
COSAStudio for software architectures modelling. The main
objective of this plug-In is to show the ability for modelling

Adel Smeda is with University of Al-Jabel Al-Gharbi, P.O. Box 64200,

Gharian, Libya (e-mail: Adel.Smeda@univ-nantes.fr).
Adel Alti is with Computer Science Department, Engineering Faculty,

Ferhat ABBAS University of Sétif, 19000 Sétif, Algeria.
Mourad Oussalah is with LINA, University of Nantes, 2, Rue de la

Houssinière, BP 92208, 44322 Nantes, France.
Abdallah Boukerram is with Department of Computer Science, University

F. Abbas, 19000 Sétif, Algérie.

complex applications. The plug-In offers to the architects the
possibility to verify the structural coherence of a given system
and to validate its semantics with COSA approach.

II. COSA: COMPONENT-OBJECT BASED SOFTWARE
ARCHITECTURE

Like it is approved in several previous works on software
architecture description, it is possible to represent software
architectures using specific architecture description languages
(ADLs) which are component-based languages (Acme [11],
Rapide [12], etc.) or using object-based languages (UML [3]).

COSA (Component-Object based Software Architecture) is
hybrid model, based on both object and component modeling
to describe software systems [1]. The basic principal of this
model is to base on architectural description languages
formalism extended with object-oriented concepts and
mechanisms to specify software architectures. A major
advantage of COSA is that, it defines and manipulates
connectors as first class entities by explicitly define them. In
COSA, components, connectors and configurations are
defined as classes which can be instantiated to define different
architectures.

In addition to instantiation mechanism, basic elements of
COSA can be beneficiated also of others object concepts and
mechanisms, such as encapsulation, composition, reuse and
specialisation. COSA architectures description approach is not
based on any particular notation or language, but it is
considered as a metamodel which describe a concept set of
vocabulary and modelling elements used to express a software
architecture description. This allows more simplicity,
extensibility, and genericity in software architecture
description.

Basic concepts of the architecture COSA are components,
connectors, configurations, interfaces, constraints and
functional (and non-functional) properties as shown in Fig. 1
[3].

Cosastudio: A Software Architecture Modeling
Tool

Adel Smeda, Adel Alti, Mourad Oussalah, and Abdallah Boukerram

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

154

Fig. 1 Meta-model of the COSA approach

The key role of configurations in COSA is to abstract the

details of different components and connectors. A
configuration has a name and defined by interfaces (ports and
services), A configuration has a name and defined by an
interface (ports and services), which are the visible parts of
the configuration and support the interactions among
configurations and between a configuration and its
components.

Components represent the computational elements and data
stores of a system. Each component may have an interface
with multiple ports and multiple services. The interface
consists of a set of points of interactions between the
component and the external world that allow the invocation of
the services. A component may have several implementations.
A component can be primitive or composite [3].

Connectors represent interactions among components; they
provide the link for architectural designs. A COSA connector
is mainly represented by an interface and a glue specification
[3] [13]. In principle, the interface shows the necessary
information about the connector, including the roles, service
type that a connector provides (communication, conversion,
coordination, facilitations). Connectors can be composite or
primitive.

Interfaces in COSA are first-class entities. They
provide connection points among architecture elements.
Likewise, they define how the communication between these
elements can take place. A component/configuration
interface’s connection point is called port and a connector
interface’s connection point is called role. In addition to ports
and roles interfaces have services that express the semantics of
the element with which they are associated.

Properties represent additional information (beyond
structure) about the parts of an architectural description.
Typically they are used to represent anticipated or required
extra functional aspects of an architectural design. There are
two types of properties: functional properties and non-
functional properties. Functions that relate to the semantics of
a system and represent the requirements are called functional
properties. Meanwhile non-functional properties represent
additional requirements, such as safety, security, performance,
and portability.

Constraints are specific properties, they define certain rules
and regulations that should be met in order to ensure
adherence to intended component and connector uses.

III. COSASTUDIO: A SOFTWARE ARCHITECTURE MODELING
TOOL

This section presents the development of the model COSA
in Rational Software Modeler (RSM) for Eclipse [14]. For
this, we chose to use the mechanisms of creating profiles of
RSM. Next we focus on what tooling is needed to verify the
structural coherence of a given system and to validate its
semantics with COSA approach. After that we present an
example from the tool and we end up with a comparison of the
tool with other existing tools.

A. Mapping Cosa Model into UML 2.0
Mapping architectural elements: The architectural element

is a basic concept that defines all COSA architectural
concepts. This concept is not defined explicitly in UML. The
UML profile must include a «COSAArchitecturalElement»
stereotyped class to represent COSA architectural element.
This class may have properties and constraints and can be
implemented by another class.

Mapping components, connectors and configurations:
Components and connectors are treated differently in COSA.
Components are abstractions that include mechanisms of
computation and connectors are abstractions that include
mechanisms of communication. Meanwhile configurations are
graphs of components’ and connectors’ types. Our choice is
based on using UML components to represent COSA
components and configurations and each one is associated
with a stereotype. COSA connectors are represented by a
stereotype corresponds to UML class.

A UML 2.0 component is as expressive as a UML class and
provides services through ports, these services must belong to
an interface. COSA component types correspond to UML 2.0
component types, and COSA component instances correspond
to UML component instances. The UML Class defines and
specifies connectors in COSA. A class can contain ports as
points of interaction. COSA Connector must have at least a
port stereotyped by «ConnectorInterface» and contains single

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

155

Glue. A COSA connector defines the behavior of each of the
interacted parties. How these behaviors are combined to form
a communication is described by the glue. In UML the
AssociationClass concept is relative to the COSA glue
concept. A UML port, which has at least two interfaces
(provided and required), matches COSA connector roles. An
important aspect of COSA architecture is to offer a graph of
components and connectors types called configurations. Since
a UML component can contain subcomponents and subclasses,
the configurations of COSA are mapped into UML
components.

Mapping ports and roles: The class Port of UML represents
COSA components’ interface and COSA connectors’ interface
in the UML metamodel 2.0, but they remain well
distinguished by stereotypes assigned to each one of them.

Mapping specific connectors: A UML delegation connector
corresponds to the COSA concept Binding, which is used to
bind an external interface into an internal interface. A UML
assembly connector corresponds to the COSA concept
Attachment. Attachments define the link between a provided
port (or a required port) and a required role (or a provided
role).

B. Implementing the Modeling Tool
Once we have the COSA Meta-model mapped into an UML

model, we can take advantage of the tools developed around
Rational Software Modeler. The UML 2.0 metamodel for
COSA is implemented in IBM Rational Software Modeler for
Eclipse 3.1 [14]. This visual modeling tool supports creating
and managing UML 2.0 models for software applications,
independent of their programming language, and provides a
common language for describing formal semantics with OCL
language and have been used successfully to define profiles
and to valid models of complex systems.

The Plug-In is developed with three levels of abstraction. In
the high level, the meta-model of COSA with all tagged
values and its OCL 2.0 constraints is defined by the UML 2.0
profile. This diagram plays an important role in the second
level when it is used by to model of software architecture.
Once we ensure that the given model complies to the semantic
constraints defined by the profile, a set of instances for the
types are defined and evaluated in this level.

The main objective of this plug-In is to show the ability to
apply the profile for complex applications. The plug-In offers
to the architects the possibility to verify the structural
coherence of a given system and to validate its semantics with
COSA approach. First we create a components diagram in
UML 2.0 for the described system and then we add the needed
OCL constraints. After that, the model is evaluated by the
profile.

COSA is defined in UML 2.0 by using the mechanisms of
creating profiles of RSM. Fig. 2 shows the profile with its
stereotypes, all tagged values and OCL 2.0 constraints
expressed in the meta-model UML 2.0 -EMF (Eclipse
Modeling Framework).

Fig. 2. The COSA-UML profile in RSM for Eclipse 3.1

C. Final Evolution Results
For well known client server architecture, we elaborated the

system by a components diagram and OCL constraints. Once,
COSA profile is applied from the Select Profile dialog, shown
in Fig. 3, all its stereotypes will be available, applied, and
contributed by the tagged-values. The model then checks to
remove any constraints violation.

Fig. 3 Selecting the COSA Profile for the Client-Server system

The model is tested and validated with the semantic

constraints defined by the profile, a set of instances (ex: arch-
1) for the types are defined and also evaluated for the final
mapped system as shown in Fig. 9.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

156

Fig. 4 Validating Client-Server system in UML 2.0 with RSM

D. Comparison and Remarks
Many, if not most of, architectural design and analysis tools

require a representation for describing, storing, and
manipulating architectural designs. Unfortunately, developing
good architectural representations is difficult, time consuming,
and costly. COSA can mitigate the cost and difficulty of
building architectural tools by providing a standard UML
language and toolkit to use as a foundation for building tools.
COSA provides a solid, extensible foundation and
infrastructure that allows tool builders to avoid needlessly
rebuilding standard tooling infrastructure. Further, COSA's
origin as a generic language allows tools developed using
COSA as their native architectural representation to be
compatible with a broad variety of existing architecture
description languages and toolsets with little or no additional
developer effort. Finally, COSAStudio provides an easy way
to describe complex software architectures.

IV. CONCLUSION AND PERSPECTIVES
In this article we have presented a COSA software

architecture which describes software architectures in an
abstract manner. Components and connectors in COSA have
the same level of abstraction and defined explicitly. We think
the presented approach seems very interesting particularly
when considering the increasing use of UML and model
driven development. We have also shown how this model can
be implemented as a plug-in for Rational Software Modeler
[14]. For this, we have created an UML 2.0 meta-model. This
meta-model allows us to model any architecture that conforms
to COSA language specification. It opens the door to other
tools that can take advantage of architectural models in order
to conduct architectural analysis, transformations, etc. Another
useful feature is the extensibility of the COSA meta-model to
include new connectors’ types [15] (Attachment Connector,
Expansion-Compression Connector, Composition-
Decomposition Connector, Service-Connector).

REFERENCES
[1] G. Booch, J. Rumbaugh., I. Jacobson, The Unified Modeling Language

User Guide. Addison-Wesley Professional, Reading, Massachusetts,
(1998).

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, , R.
Nord, J. Stafford, Documenting Software Architectures: Views and
Beyond. Boston, MA, Addison-Wesley, (2002)

[3] M. Oussalah, A. Smeda, T. Khammaci, An explicit definition of
connectors for component based software architecture. In: Proceedings
of the 11th IEEE Conference Engineering of Computer Based Systems,
Czech Republic (May 2004)

[4] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Professional. (1992).

[5] OMG, Unified Modeling Language Specification V.1.4.
http://www.omg.org/docs/formal/01-09-67.pdf , Sept 2001.

[6] Alti A., Khammaci T., Smeda A., Representing and Formally Modeling
COSA software architecture with UML 2.0 profile. IRECOS Review,
2007, 2(1): 30-37.

[7] Garlan D., Monroe R.T., and While D., Acme: Architectural Description
of Component-Based Systems. G.T. Leavens and M. Sitaraman, Eds,
Cambridge University, 2000.

[8] Medvidovic, N., Taylor, R.N.: A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, Vol. 26. N°. 1. 2–57, 2000.

[9] Amirat A., Oussalah M., “Enhanced Connectors to Support Hierarchical
Dependencies in Software Architecture”, 5th NOTERE’08 International
Conference on New Technologies in Distributed Systems, Lyon, France,
Voluome.1, pp. 252-261, June 23-27, 2008.

[10] Moore B., Eclipse Development using the Graphical Editing Framework
and the Eclipse Modeling Framework, I. Redbooks, 2004.

[11] Garlan D., Monroe R.T., and While D., Acme: Architectural Description
of Component-Based Systems. G.T. Leavens and M. Sitaraman, Eds,
Cambridge University, 2000.

[12] Luckham D.C., Augustin L.M., “Specification and Analysis of System
architecture using Rapide,” IEEE Transactions on Software Engineering,
1995, 21(1): pp. 336 – 355.

[13] Smeda A., Oussalah M., and Khammaci T., “A Multi-Paradigm
Approach to Describe Complex Software System”, WSEAS
Transactions on Computers, Issue 4, Vol., 3, pp. 936-941, October 2004.

[14] Rational Software Modeler, http://www-
128.ibm.com/developerworks/downloads/r/rswm

[15] Amirat A., Oussalah M., “Enhanced Connectors to Support Hierarchical
Dependencies in Software Architecture”, 5th NOTERE’08 International
Conference on New Technologies in Distributed Systems, Lyon, France,
Voluome.1, pp. 252-261, June 23-27, 2008.

