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Abstract—In this paper we are interested in Moufang-Klingenberg
planes M (.A) defined over a local alternative ring A of dual numbers.
We show that some collineations of M(.A) preserve cross-ratio.
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I. INTRODUCTION

The number of collineations of any projective plane is huge.
For example; the Fano plane has 168 collineations, the non-
Desarguesian projective Veblen-Wedderburn plane of order
9 (which is denoted by 7y (9)) has 311,040 collineations
[14, p. 366]. It is easy to see that the composite of any
two collineations is a collineation, as the invers of any
collineation. Function composition is always associative; thus
the collineations of any projective or affine plane form a group.
For more detailed information about these groups, the reader
is referred to the books of [11], [14].

In the Euclidean plane, Desargues established the funde-
mantal fact that cross-ratio (a concept originally introduced by
Pappus of Alexandria ¢.300 B.C) is invariant under projection
[3, p. 133]. For this reason, cross-ratio is one of the most
important concepts of projective geometry.

In this paper we deal with the class (which we will denote by
M(A)) of Moufang-Klingenberg (MK) planes coordinatized
by a local alternative ring

A:=A(e)=A+Ac

(an alternative field A, ¢ ¢ A and 2 = 0) introduced
by Blunck in [7]. We will show that some collineations of
M(A) from [8] preserve cross-ratio. For more information
about some well-known properties of cross-ratio in the case
of Moufang planes or MK-planes M(.A), respectively, it can
be seen the papers of [10], [4], [9] or [7], [1].

Section 2 includes some basic definitions and results from
the literature.

In Section 3 we will give some collineations of M(.A) from
[8] and we show that the collineations preserve cross-ratio, the
main result of the paper.

II. PRELIMINARIES

Let M = (P,L,€,~) consist of an incidence structure
(P, L, €) (points, lines, incidence) and an equivalence relation
‘~’ (neighbour relation) on P and on L, respectively. Then
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M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P,@Q are non-neighbour points, then there is a
unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique
point g N h on both ¢g and h.

(PK3) There is a projective plane M* = (P* L* €) and
an incidence structure epimorphism ¥ : M — M*, such that
the conditions

U(P)=¥(Q) = P~Q, ¥(g) =Y(h) < g~h

hold for all P,Q € P, g,h € L.

A point P € P is called near a line g € L iff there exists
a line h ~ g such that P € h.

Let h,k € L, C € P, C is not near to h,k. Then the
well-defined bijection

h—k
”::UC(’“’h):{ X - XCnk

mapping h to k is called a perspectivity from h to k with
center C. A product of a finite number of perspectivities is
called a projectivity.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M* is a
Moufang plane (for the exact definition see [2]).

An alternative ring (field) R is a not necessarily associative
ring (field) that satisfies the alternative laws

a(ab) = a®b, (ba) a = ba?,Ya,b € R.

An alternative ring R with identity element 1 is called local
if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two important
lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of
an alternative ring is associative (cf. [13, Theorem 3.1]).

Lemma 2.2: The identities

z(y(rz) = (wyx)z
(yx)z)z = y(xz2)
(zy) (z2) = z(y2)z

which are known as Moufang identities are satisfied in every
alternative ring (cf. [12, p. 160]).
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We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [2].

Let R be a local alternative ring. Then MR = (P, L, €, ~)
is the incidence structure with neighbour relation defined as
follows:

P = {(z,y,1)|z,y e R}U{(1,y,2)|ly € Rz € I}
U{(w, 1, 2)|w, z € T},
L = {[m,1,pllm,p € R}V{[1,n,p|lp € Rn €1}
U{lg,n,1]lg,n € T},
[m,1,p] = {(z,2m+p,1)]z € R}
U{(1,zp+m,z)|z €I},
(Ln,p] = {(yn+py1)lyeR}
U{(zp+n,1,2) |z € I},
lg;n,1] = {(Ly,yn+q)ly € R}
U{(w, 1, wqg+n)|w eI},
P = (v1,72,23) ~ (y1,92,¥3) = Q
sz —y €1 (1=1,2,3),VP,Q € P,
g = [v1,22,23] ~ [y1,92,93] = h

sz, —y €I (1=1,2,3)),Yg,h € L.

Now it is time to give the following theorem from [2].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ¢ ¢ A. Consider
A:=A(e)=A+ Ac
with componentwise addition and multiplication as follows:
(a1 + az¢e) (b + bee) = a1by + (a1ba + agby) e,

where a;,b; € A for i = 1,2. Then A is a local alternative
ring with ideal I = A« of non-units. The set of formal inverses
of the non-units of 4 is denoted as I~!. Calculations with the
elements of I~! are defined as follows [6]:

(ae) '+t = (ag) ' i=t+ (ae)”"
qae)™" = (aq71€)71
(ae)'q = (q71a€)71

((as)_l) o = ag,

where (ag)™' € I"',t € A, ¢ € A\ L (Other terms are not
defined.). For more information about A and its relation to
MK-planes, the reader is referred to the papers of Blunck [6],
[7]. In [7], the centre Z (A) is defined to be the (commutative,
associative) subring of .4 which is commuting and associating
with all elements of A. It is Z (A) := Z (¢) = Z + Ze, where
Z = {z € Alza = az, Ya € A} is the centre of A. If A is
not associative, then A is a Cayley division algebra over its
centre Z.

Throughout this paper we assume charA # 2 and we
restrict ourselves to the MK-planes M (.A).

Blunck [7] gives the following algebraic definition of the
cross-ratio for the points on the line g := [1,0,0] in M(.A).

(A, B;C, D) := (a, by c,d)

(
(Z,B;C,D) := (z_l,b; c,d
=< ((1 —d2)" (b— d)) (
(A,Z;,C,D) := (a, 2 L, d)

=< ((a —d)ta - dz)) ((1 ) Ma—e)
(A,B; Z,D) = (a,b;27",d)

=< (a=a) " b-a)) (0
(A,B;C,Z) := (a, b; c,zil)
=< ((1 —za)" (1 - zb)) ((b —¢) M a— c)) >,

N
\Y

—zb)7 (- za)) >

where A = (0,a,1), B = (0,b,1), C = (0,¢,1), D =
(0,d,1), Z = (0,1, z) are pairwise non-neighbour points of g
and <z >= {y~lay| ye A}

In [6, Theorem 2], it is shown that the transformations

ty(x) = z+u; ue A
ro(x) = wu; ue A\I
i(z) = a7 !
ly(z) = wx=(ir,'i)(z); ue A\I

which are defined on the line g preserve cross-ratios. In [5,
Corollary (iii)], it is also shown that the group generated
by these transformations, which is denoted by A, equals to
the group of projectivities of a line in M(A). The elements
preserving cross-ratio of the group A defined on g will act a
very important role in the proof of Theorem 3.1.

We give the following result from [1, Theorem 8]. This
result states a simple way for calculation of the cross-ratio of
the points on any line in M(A).

Theorem 2.2: Let {O,U,V,E} be the basis of M(A)
where O = (0,0,1),U = (1,0,0),V = (0,1,0),F =
(1,1,1) (see [2, Section 4]). Then, according to types of lines,
the cross-ratio of the points on the line / can be calculated as
follows:

If A,B,C,D and Z are the pairwise non-neighbour points

(a) of'thelinel = [m, 1, k], where A = (a,am + k,1), B =
(b,bm +k,1), C = (¢,em + k,1), D = (d,dm + k, 1)
are not near to the line UV = [0,0,1] and Z =
(1,m + zp, z) is near to UV,

(b) of the line | = [1,n,p], where A = (an + p,a,1), B =
(bn+p,b,1), C = (en+p,c, 1), D = (dn+p,d,1)
are not neighbour to V and Z = (n + zp,1,2) ~ V,

(c) of the line [ = [¢,n, 1], where A= (1,a,q+ an), B =
(1,b,g+0bn), C = (1,¢,q+cn), D = (1,d,q+dn)
are not neighbour to V and Z = (z,1,zqg +n) ~ V,
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then
(A,B;C,D) (a,b;c,d)
(2,B;C,D) = (2 ',bc,d)
(A,Z;C,D) = (a,z_l; c, d)
(A,B;Z,D) = (a, b; zil,d)
(A,B;C,Z) = (a, b; c,zil)

We can give an important theorem, from [1, Theorem 9],
about cross-ratio.

Theorem 2.3: In M(A), perspectivities preserve cross-
ratios.

In the next section, we deal with some collineations pre-
serving cross-ratio in M (A).

III. SOME COLLINEATIONS PRESERVING CROSS-RATIO.

In this section we would like to show that the following
collineations we will introduce from [8] preserve cross-ratios.
Now we start with giving the collineations, where w, z,q,n €
A:

For any u ¢ I, the map L, transforms points and lines as
follows:

(uz, uyu, 1)

(1, yu, (zuil)a)

((u_lw)e, 1, (u_lzu_l)a)

(z,y,1) —
(1,y,26) —

(we,1,ze) —

[m,1,k] —
[1,ne, p]

[mu, 1, uku]
[1, (u""'n)e, up)
[(qu")e, (u'nu=t)e, 1] .

|

lgg, ne, 1] —

For any u ¢ I, the map F, transforms points and lines as
follows:

(,9,1) —  (uzu,uy,1)
(1,y,ze) — (Lufly, (u™tzute)
(we,1,2e) — ((wu)e,1,(zu"")e)
[m, 1, k] [u_lm, 1, uk]

[1, (nu)e, upul
[(u'qut)e, (nu=t)e, 1] .

For any o, € Z(A), o, ¢ I, the map S, s transforms
points and lines as follows:

N
[17n57p] -
s

lge, ne, 1]

(x,9,1) — (2f,ya,1)
(1,y,ze) — (1,,3_1y047 (/3_12)5)
(we, 1,ze) — ((a‘lwﬂ)s, 1, (a_lz)e)
m,1,k] — [7'ma,1,ka]
[Lne,p] — [1,(a 'np)e, pp]

lge,ne, 1] —

[(ﬁ_lq)e, (a™tn)e, 1] .

The map I transforms points and lines as follows:

(z,y,1) — (y”%’ y 1) if y¢l
(.T7y,1) - ( x_ly) Zf yEI /\.Z'¢I
(z,y,1) — (x,1,y) if yel hnzel
(Ly,ze) — (v ' (v '2)el) if yé¢l
(1,y,2¢) — (Lyze,y) if yel

(we,1,ze) — (we,ze, 1)

[m,1,k] — [mk‘l,l,k oif kel

m, 1kl — [L,—km ' m™'] if kel Am¢l
[m,1,k] — [m,k,l} zf kel Amel
Lne,p] — [ph1,—(mp Y)e] if p¢l
[1,ne,p] — [mef] if pel

[qsa ne, 1] - [q€, 17 nE] .

Now we are ready to give the main result of the paper.

Theorem 3.1: The collineations L,,, F,, S, 3 and Iy pre-
serve cross-ratio.

Proof: Let A,B,C,D and Z be the points with the
property given in the statement of Theorem 2.2. Then, it is
obvious that

(A,B;C,D) = (a,b;c,d) (1)
(Z,B;C,D) = (z_ 7b;c,d)
(A,Z;C,D) = (a,zfl;c,d)
(A,B;Z,D) = (a,b;z"",d)
(A,B;C,Z) = (mb;c,z ),

where z € I. In this case we must find the effect of ¢ to the
points of any line where ¢ is any one of collineations L,,, F,,
Sa,-and Io.

i) Let o =L,. If [ = [m, 1, k], then

e(X) = e(@x,am+k,1) = (uz,u(zm+k)u,1)
0(Z) = @e,m+zk,z)=(1,(m+zk)u, zu_l)
and ¢ (1) = [mu, 1, uku]. From (a) of Theorem 2.2, we obtain

(p(A),9(B);¢(C),p(D) = (ua,ubjuc,ud)
=7 (a,b;c,d)

(¢(2),¢0(B);¢(C),¢(D) = (uz"" ubjuc, ud)
=7 (z ,bc, d)

where 0 =1,-1 € A.
If | = [1,n,p], then

e(X) = @(@n+pz1)=(u(zn+p),ury,l)

w(Z) = pn+zpl2)= (u_l (n+zp),1, u_lzu_l)
and ¢ (1) = [1, u”ln, up]. From (b) of Theorem 2.2, we have
(@A), (B);e(C), ¢ (D)) = (uau,ubu;ucu, udu)

=7 (a,b;c,d)
(¢(2),¢(B);¢(C),0(D) = (uz™'u, ubu;ucu, udu)
=7 (z ,bye, d)
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where 0 = [,-1 07,1 € A.
If { = [gq,n,1], then

e(X) = e,z,q+zn) = (1,xu, (q—l—mn)u*l)

0(Z) = ¢(z,1,z¢g+n)= (uflz,l,uf1 (2qg+n) ufl)
and ¢ (I) = [qu™",u"'nu™',1]. From (c) of Theorem 2.2,
we obtain

(¢(A),9(B);¢(C),p(D) = (au,bu;cu,du)
=% (a,b;c,d)
(0(2),¢(B);¢(C),¢(D) = (2 u,bu;cu,du)
7 (z Lbe, d)

where 0 = 7,1 € A.

ii) Let ¢ =F,. If = [m, 1, k], then
(X)) = oz, am+k 1) = (uzu,u(zm+k), )
0 (Z) = od,m+zk2) = (Lu" (m+2zk),u

(»(A), ¢ (B);¢(C),p(D)) =

abcd)

(
(¢(2),p(B);0(C),p (D)) = (uz u, ubu; ucu, udu)
(

—O

2z~ bcd)

where 0 = [,-1 07,1 € A.
If [ = [1,n,p], then

p(X) = ¢@n+pl)=(u(zn+p)u uzl)
v(2) = em+apl2)=(n+2p)ul,2u™)
and ¢ (1) = [1, nu, upu]. From (b) of Theorem 2.2, we obtain
(0 (A),¢(B);¢(C), (D)) = (ua,ub;uc,ud)
=% (a,b;c,d)
(0(2),¢(B);¢(C), ¢ (D)) = (uz"" ubsuc,ud)
=7 (z bic, d)

where 0 =1[,-1 € A.
If | = [g,n, 1], then

e (X)
v (Z)

(Lu 'z, u™" (q+an)
(zu, 1,(zq +n) u_l)

o(l,z,q+2an) =
¢ (2,1,2¢+n) =

and ¢ (I) = [u~'qu™', nu!,1]. From (c) of Theorem 2.2,

we have

(p(4),

¢(B);e ) (D))
(u_la
¥

“oyute,umtd) =
(B);» (C ) ¢ (D))
Luthu™eu 1d)

= (a,b;e,d)
(v (2),

= (u!

where 0 = [, € A.

( 71,b;C,d),

iii) Let ¢ =S, 5. If 1 = [m, 1, k] ,, then

p(X) = (x6, (xm + k) o, 1)
¢ (Z) (LB~ (m+2k)a, B~

o (z,zm+k,1) =
@ (1,m+ zk,z) =

Zu 1)
and ¢ (1) = [u~"m, 1,uk]. From (a) of Theorem 2.2, we have

(uau, ubu; ucu, udu)

ufl)

12)

and ¢ (I) =
obtain

(p(A),0(B);9(C),p (D)) = (ap,bB;cB,dB)
=7 (a,b;c,d)

(0(2),0(B);¢(C),o(D) = (27'8,08;c8,dp)
=7 (zil,b;c,d),

[/B*Ima, 1, ka]. From (a) of Theorem 2.2, we

where 0 = rg-1 € A.
If I =[1,n,p], then
p(X) =
p(Z) =

and ¢ () = [La‘lnﬁ,pﬂ] From (b) of Theorem 2.2, we
have

wn+zpl,z)= (a‘l (n+ 2p) B, 1,04_12)

(p(A),¢(B);p(C),0(D)) = (aq,ba;ca,da)
=7 (a,b;c,d)
(0(2),¢(B);¢(C),¢(D) = (¢ a,basca,da)
7 (z_l b;c, d)
where 0 = r,-1 € A.
If I = [gq,n,1], then
p(X) = ¢(La,g+an)= (L4 za,f7" (¢ +2n))
¢(Z2) = ¢(zLzqg+n)=(a 26,1, " (¢ +n))
and ¢ (I) = [87'¢q,a ' n,1]. From (c) of Theorem 2.2, we
obtain
(p(A4),¢(B);¢(C), ¢ (D))
(ﬁ ac, B ba; B~ coz,ﬁ_lda) =7 (a,b;c,d)
(@(Z),0(B);¢(C), ¢ (D))

= ( ! _1()[ ﬂ 1b0‘75 Ca7ﬂ_1d06) =7 (Z_l’b; C7d)7

where o0 =lgor,-1 € A.
iv) Let ¢ =Io. If I = [m, 1, k], then

p(X) = e(z,am+Ek,1)
= ((xm—&—k)*l x, (xm—i—k)*l,l),

where xm+k ¢ 1

ez, am+k,1)

= (La7Ya ' (am+k),

where zm+k €l and z ¢ 1

o (xz,am +k, 1)

= (z,L,zm+k),

e (l,m+ zk,z)

= ((m+zk)_1,(m+zk:)_1z,1),

where m + zk ¢ 1

= ¢o(1,m+ zk,z2)

= (1,z,m+ zk),

where xm+k €l and z €1

where m + zk €1
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and
o) = [-mk™" 1,k7"], where k ¢1
o) = [1,—=km™',m™'], where k€ Tand m ¢ 1
() = [myk,1], where k €I and m €I

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of [—mk™!,1,k!] is as follows:

¢(4).9(B)5(C). o (D)
((am+k‘) (bm+k) b;
em+k) e, (dm+ k) d)
7 (a,b;c,d)

—

H’“H

¢ (2),¢(B);¢(C),p (D))
((m+zk)*1,(bm+k)*1b;
em—+k) e, (dm+ k)" d)
a (z_l,b;qd),

where 0 = tory-10t_,, 01 € A. From (b) of Theorem 2.2, the
cross-ratio of the points of [1, —km ™!, m™!] is as follows:

(p(A), ¢ (B );sO(C)»SO(D))
:((am+/<:) (bm—Hc) '
(em+k) "', (dm+k)™h
=7 (a,b;c,d)

¢ (Z),¢(B);¢(C), ¢ (D))
((m + zk)_l z,(bm + k)~
em+k)7 (dm+ k)Y
7 (z_l,b;qd)7
where 0 = 1,1 ot_j 04 € A. From (c) of Theorem 2.2, the
cross-ratio of the points of [m, k, 1] is as follows:
(e (A),¢(B);¢(C),¢ (D)) (a™t 07t a™h)
= 7(a,b;c,d)
(z,bil;cfl,dfl)
7 (zfl,b; c,d),

=

(@ (2),¢(B);¢(C),¢ (D))

where 0 =i € A.
If | = [1,n,p], then

p(X) = ¢an+pwl)

= (27" (an+p),2",1), where z ¢1
p(X) = ¢@ntprl)

= <17 (zn —&-p)71 , (zn +p)’1 1) ,

where x €L and an+p ¢ 1

p(X) = ¢n+puwl)

= (zn+p,1,z), wherez €l and zn+pel
p(Z) = ¢n+zpl,2)=(n+2pz21)
and

o) = [p'1,-np '], wherep ¢l

o) = [1,p,n], wherepel.

In this case, from (a) of Theorem 2.2, the cross-ratio of the

points of [p~!,1, —np~'] is as follows:

(0(4),0(B);9(C),9 (D)) = (a ' (an+p),b~" (bn+p);
¢ (en+p),d~" (dn+p))
=7 (a,b;c,d)

(¢ (2),0(B);¢(C),p (D)) = (n+2p,b~" (bn+p);
¢l (en+p),d ! (dn +p))
=7 (2_1717; c, d) ,

where 0 =ior,-10t_, € A. From (b) of Theorem 2.2, the
cross-ratio of the points of [1,p,n] is as follows:

(¢ (4), 9 (B);9(C),p (D)) = (a0 Yetd™)
(a,b;c,d)
(@ (2),9(B);9(C), (D) = (zb 5etd™h)
=7 (Z_l,b;07d)7

o

where 0 =i € A.
If l = [g,n,1], then

e(X) = ¢,z,q+an)
= (x_l,a:_l (q—l—xn),l), where x ¢ 1
p(X) = ¢(1,z,9+2n)
= (1,q+2n,z), where z €1
¢(Z) = ¢(z1,2¢+n)=(2,2¢+n,1)
and ¢ (I) = [g,1,n]. In this case, from (a) of Theorem 2.2,

the cross-ratio of the points of [g, 1, n] is as follows:
(p(A),9(B);@(C),0(D)) = (a b et d™h)
(a,b;c,d)
(0(2),¢(B);0(C), (D)) = (z,b 5chd™h)
=7 (z b; c, d)7

—0

where 0 =17 € A.
Consequently, by considering other all cases we get

(0 (A4), 0 (B);¢(C),p(D)) (a,b;c,d)
(0 (2),0(B);¢(C),p(D)) (_l b'c d)
(0(4),0(2);0(C),9 (D) = (a,27cd)
(0 (4),0(B)s¢(Z),0(D)) = (absz -, ,d)
(0(4),¢(B):p(C),¢(2)) = (abic,z7")
for every collineation . Combining the last result and the
result of (1), the proof is completed. ]

Remark 3.2: In the present paper we show that the
collineations L., F,, S, g,and Iy, given in [8], preserve cross-
ratio. A paper related to the result that the other collineations
of [8] (Ty,v, I1, F and G,,) preserve cross-ratio, is under review.
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