
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

602

Abstract—Optical flow is a research topic of interest for many
years. It has, until recently, been largely inapplicable to real-time
applications due to its computationally expensive nature. This paper
presents a new reliable flow technique which is combined with a
motion detection algorithm, from stationary camera image streams,
to allow flow-based analyses of moving entities, such as rigidity, in
real-time. The combination of the optical flow analysis with motion
detection technique greatly reduces the expensive computation of
flow vectors as compared with standard approaches, rendering the
method to be applicable in real-time implementation. This paper
describes also the hardware implementation of a proposed pipelined
system to estimate the flow vectors from image sequences in real
time. This design can process 768 x 576 images at a very high frame
rate that reaches to 156 fps in a single low cost FPGA chip, which is
adequate for most real-time vision applications.

Keywords—Optical flow, motion detection, real-time systems,
FPGA.

I. INTRODUCTION

HIS work presents a robust method to estimate the flow
vectors for moving objects appearing in images of the

frame sequence. First, a motion detection technique is applied
to detect the moving pixels in the image sequence taken from
a static camera. Second, optical flow estimation is preformed
only w.r.t. the detected moving pixels. This method is suitable
for FPGA implementation that can be used in applications
which require real-time.

A. Motion Detection
Motion detection can be essential to allow for the optical

flow estimation to be performed in real-time. There are three
conventional approaches to motion detection: temporal
differencing [1]; optical flow analysis [2]; and background
subtraction [3-5]. Temporal differencing is suitable in
dynamic environments, but generally does a poor job of
extracting all relevant feature-pixels. Optical flow can be used
to detect independently moving objects in the presence of
camera motion; however, most flow-computation methods are
complex and inapplicable in real-time. Motion detection by
background subtraction can be divided into adaptive and non-
adaptive background methods. Non-adaptive methods need

Authors are with department of electronics, communications, and
computer, faculty of engineering, Helwan University, Cairo, Egypt.

This work was supported by Department of Electronics, Communications,
and Computer, Faculty of Engineering, Helwan University, Cairo, Egypt.

off-line initialization; errors in the background accumulate
over time.

A common method of adaptive backgrounding is to average
the frames over time [6]. This creates an approximate
background. This is effective where objects move
continuously and the background is visible for a significant
portion of time. It is not robust for scenes with slowly-moving
objects. It cannot handle a multimodal backgrounds caused by
the repetitive motion of the background. Hence, in this work a
fast motion detection algorithm based on a multi-modal
distribution, modeling each pixel as a mixture of normal
distributions, is used to detect the moving objects with a small
number of calculations, as presented in [7], to achieve a high
frame rate for real-time requirements. This method deals
robustly with slowly-moving objects as well as with repetitive
background motions of some scene-elements.

B. Optical flow Estimation
Optical flow approach is hard to apply in real-time due to its

high computational cost. Hence, it is a reasonable idea to
combine the motion detection with the optical flow estimation
in a way that flow vectors are calculated only w.r.t. moving
pixels to allow flow-based analyses of moving entities in real-
time. Applying this flow technique to moving entities provides
some straight forward primitives for analyzing the motion of
those objects such as analyzing rigidity and cyclic motion
using residual flow; and determining self-occlusion and
disambiguating multiple, mutually occluding entities using
pixel contention.

In this way the computation time can be reduced in most
practical cases, making the method feasible in the real-time. In
this work, an improved algorithm of optical flow estimation
by the region-based matching is proposed and preformed only
w.r.t. the detected moving pixels to obtain a reliable flow
vectors.

C. Hardware Implementation
High complexity algorithms to estimate the motion field

from image sequences have already been developed and
successfully implemented in software [2]. Very few of these
algorithms have been incorporated into today’s video
surveillance systems, due to computational cost and lack of
real-time capability. This makes the development of such
algorithms on the hardware timely. Known algorithms have
been restricted to small frame sizes, low frame rates, and
solely implemented in software running on general-purpose

A Reliable FPGA-based Real-time Optical-flow
Estimation

M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, and E. M. Saad

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

603

computers. Real-time needs of such systems can be improved
by a significant amount with the use of hardware.

Hence, this paper presents a hardware implementation of a
proposed method, which takes advantage of data parallelism
for a further implementation on a field programmable gate
array (FPGA), a re-configurable computing platform.
Throughput has been drastically increased while; in contrast,
the latency has been decreased, with the use of pipelining.
This implementation is used to estimate the flow vectors for
moving objects appearing in image sequence at a very high
frame rate in a single low cost FPGA chip.

 This paper is organized as follows. In section 2, the
algorithms are formulated and the suggestions are introduced.
In section 3, the hardware implementation design and
performance analysis of the proposed system are discussed.
Conclusion is given in section 4.

II. ALGORITHMS

A. Motion Detection based on Multi-modal Distribution
A fast and efficient algorithm, presented in [7], is used here

to extract the moving objects in each frame for software and
hardware implementation. In this algorithm, each pixel is
modeled as mixture of three distributions (k = 3) and each
distribution is represented by mean-value (μ) and weight-
value () maintained at time t. The mixture is sorted every
time in decreasing order of weight values. Here, each pixel is
checked against the distributions, until the match is found.
The matching condition is achieved if the variation of the
pixel Xt within R% (matching ratio) from its mean value.

For the matched distribution, the current pixel is stored as
the processed pixel value XP,t (XP,t = Xt) to be used in the next
time t+1. Also, the temporal differencing is applied where the
pixel is considered as foreground pixel if:

TXX || 1-tP,t
(1)

where T is the threshold value.
If foreground pixel is detected, the weight of the matched

distribution will be updated as in equation (2) and its mean
will be kept without any change. While if foreground pixel is
not detected, the weight and mean of the matched distribution
will be updated as in equation (3) and (4) respectively, where

 is the learning factor (= 0.005).

1-tk,tK,)1((2)

1-tk,tK,)1((3)

t1-tk,tK,)1(X (4)

If the current pixel is not matched with any distribution, this
pixel will be classified as foreground pixel. The mean of the
third distribution of that pixel will be replaced by its intensity
value and its weight will be selected as lower value than other
distributions. Also, the processed pixel will be equal to the
value of the mean of the first distribution. Real-time
performance with high resolution video streams can be

achieved by this algorithm.

B. Optical Flow Estimation by Region-based Matching
To analyze the motion of objects over the image sequence

and to estimate the 2D-velocity of a certain pixel moving
within ROI, the region-based matching is used. The fixed
regions as in [8] and the dynamic regions as in [9] have been
used for the matching process. The proposed idea is to use the
gradient-based measures of texture information for every pixel
position. These measures which represent the local gradient
activities and the intensity value for each moving pixel are
used for the matching process. Hence, the flow computation
per pixel is a two-pass process. First, both horizontal and
vertical gradient components are generated for each moving
pixel to ensure that sufficient information is available to
obtain a valid flow vector. Second, a region-matching is
performed to actually calculate the flow vectors.

To ensure a good match between regions, it is essential that
sufficient texture information around their central pixels x is
available in both horizontal and vertical directions. Thus, two
images H(x) and V(x) using standard horizontal and vertical
Sobel operators are generated for each image I(x) in the frame
sequence (I is a pixel intensity value and x=(i,j) represents a
pixel location in the image). A region W(x)I(x) as proposed in
[10] and regions W(x)V(x) and W(x)H(x) as proposed in this
work are defined by multiplying I, V, and H with a 2D
masking function W(x) respectively.

The obtained regions for the current and previous images in
the frame sequence are then convolved, as in [11]. This is to
get a three correlation surfaces (information measures);
intensity measure DI(x;d), vertical-gradient measure DV(x;d),
and horizontal-gradient measure DH(x;d).

|),(),(|1);(1-n
1 1

nI djjdiiIjiI
WiWj

dxD
Wii

i

Wjj

j

 (5)

|),(),(|1);(1-n
1 1

nV djjdiiVjiV
WiWj

dxD
Wii

i

Wjj

j

 (6)

|),(),(|1);(1-n
1 1

nH djjdiiHjiH
WiWj

dxD
Wii

i

Wjj

j

 (7)

where d=(di, dj) is a linear intra-sequence translation (search
area).

Consider a stationary video-camera observing the scene. If
the images in the frame sequence are separated in time by t,
then a particular pixel in the image will move by a distance
v(x) t , where v(x)=(vi(x), vj(x)) is the 2D image velocity of
that pixel. This can be found by matching the corresponding
regions in each two successively images in the frame sequence
which can be satisfied by minimizing a proposed overall
correlation function D(x;d).

);();();();(H3V2I1 dxDdxDdxDdxD (8)

where 1 , 2 , 3 [0 , 1] and 1 + 2 + 3 = 1 represent the
matching weights of a three correlation components DI(x;d),
DV(x;d), and DH(x;d) according to their effective in the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

604

matching. The search for the minimum of D(x;d) returns the
true pixel displacement value dmin.

txvdxDd)();(minmin (9)

If the fixed regions have been used for matching, the
obtained results by the proposed method is more accurate than
the results that obtained by the method in [10] because the
gradient-based measures with the intensity measures give
sufficient information for matching. The method in [10] can
be improved by using dynamic regions that kept growing until
there was still enough information. But this improved method
is very complex for real time and hardware implementation.
So, the proposed reliable method is more proper for real time
and hardware implementation which is the aim of this work.

C. Experimental Results
Figure 1 shows the image under study. The next step is the

motion detection by our proposed method in [7], which is
performed to extract the foreground pixels; moving pixels.
Figure 2 demonstrates the extraction of the foreground pixels.
Subsequently, the post-processing is performed to fill the
holes inside the blobs, as it is demonstrated in Fig. 3. At the
next step, the two-pass process of the optical flow estimation
is triggered. Figure 4 shows the intensity, horizontal, and
vertical evidence information proves the existence of the
sufficient local texture.

A region-matching is performed to compute the flow-
vectors using a 3x3 support window, as shown in Fig. 5. It is
evident from this figure that, there is homogeneity in the flow
vectors of the rigid object, while with non-rigid object there is
not. It is clear from this figure that, the homogeneity increases
with the rigidity and vice versa.

 Fig. 1 Single image from the sequence

Fig. 2 Pre-processing foreground image

 Fig. 3 Post-processing foreground image

Fig. 4 Masked image (top) and horizontal (middle)
and vertical (bottom) components

Fig. 5 Resulted optical flow (motion field)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

605

III. DESIGN

A. Data Flow
The data flow of the proposed algorithm is divided into

three modules as shown in Fig.6. In the Motion Detection
module, images are read from memory into the FPGA and
aligned to extract the foreground images (masks). This module
is previously implemented in [7]. Then, each image in the
frame sequence is masked by the foreground images (masks)
to generate the horizontal, vertical, and intensity components
for each masked image in the Moving Object Components
module. Finally, these components are fed into the Optical
Flow Estimation module to compute the final result according
to equations 5, 6, 7, 8, and 9 and then written back to memory.
Of importance, there is no iterative processing in this design.
Therefore, the computation process can be fully pipelined in
hardware to improve its processing throughput and thereby
enable real-time use.

In the block diagram of Fig. 6, the connections between
modules consist of only unidirectional data and a
corresponding data valid signal. Once a set of data is
generated in a module, it is registered into the downstream
module for processing. At the end of the pipeline, the results
are written back to memory for further processing, display, or
analysis.

Motion

 Field

 1
 Motion
 Detection

2
 Moving
Object

 Components

 Foreground
Images

Input
Images

3
Optical

Flow
 Estimation

Intensity Component
 Vertical Component

Horizontal Component

Fig. 6 Data flow of the design

B. Architectures
FPGAs have been used to process larger images at faster

speed because of their configuration flexibility and high data
processing speed. An algorithm proposed by Horn and
Schunck [12] was implemented in [13]. It is an iterative
algorithm where the accuracy depends largely on the number
of iterations. The classical Lucas and Kanade approach [14]
has also been implemented in [15] for its good tradeoff
between accuracy and processing efficiency. A fast and
accurate motion estimation algorithm has been modified as
proposed in [16] for efficient FPGA hardware
implementation. This design was accurate and fit for pipeline
hardware implementation. It was able to process images of
size 640 × 480 at 64 frames per second.

The main objective of this work is to create a prototype
system that can generate a reliable flow-vector at every pixel
in the moving blobs at a much higher rate as compared to
previous proposed works [13, 15, 16]. This approach can be
applied in different applications such as tracking systems,
robot navigation, and object classification in real time. Here,
FPGA-based architectures for the proposed algorithm of

optical flow estimation by dynamic region matching at every
pixel in the moving blobs are presented.

For Moving Object Components module, two identical
pixel-based architectures are used in parallel to compute the
components of each pixel in the previous and current images
in the frame sequence. Each one consists of Obj_Ext block,
Obj_Reg block, Ver_Comp block, and Hoz_Comp block, as
shown in Fig. 7. A control signal rst initializes all parameters
and registers and rd_in signal is active when mask signal
(foreground pixel) from Motion Detection module is ready in
the input. Obj_Ext block is used to generate J signal (intensity
component) which is the same value of F signal (gray value of
the processing pixel) in case of the foreground pixel (mask =
1) and zero value in case of the background pixel (mask = 0).
The masked pixel J is stored in Obj_Reg block to be used in
the next time for its neighbors within the selected window.
The previously stored masked pixels P1 to P8 (neighbors of
the processing pixel) in Obj_Reg block are used to generate V
(vertical component) and H (horizontal component) signals
using vertical and horizontal Sobel operators in Ver_Comp
and Hoz_Comp blocks respectively.

For Optical Flow Estimation module, a pixel-based
architecture is used to compute the true pixel displacement by
matching each specified region in the current masked image
with all regions in the previous masked image using J, V, and
H components. It consists of Pixel_Corr_Calc block and
Match_Loc block, as shown in Fig. 8. A control signal rst
initializes all parameters and registers while the control
signals En1, En2, En3 are used to enter the pixels of the
current and previous images through the matching operation
and output the final result at the end of the operation. Three
identical Pixel_Corr_Calc blocks are used in parallel to
compute the correlation components for each pixel in the
previous and current images in the frame sequence according
to equations 5, 6, and 7. Match_Loc block is used to compute
the overall correlation function and to search for its minimum
in each location [Cx,Cy] according to equations 8 and 9 to
return the matching location [Xm,Ym].

Fig. 7 The structure of Moving Object Components module

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

606

Fig. 8 The structure of Optical Flow Estimation module

C. Hardware Optimization
For maximum hardware performance, several hardware
optimizations were made:

Pipeline structure. A heavily pipelined hardware
structure was used to maximize throughput. Once the
pipeline is full, the hardware can produce a result on
every clock cycle.
Optimizations of Motion Detection module. Memory
bandwidth reduction is achieved by utilizing
distribution similarities in succeeding neighboring
pixels and data flow reduction is also achieved by
processing only one distribution at time through the
hardware, as presented in [17].
Fast memory access. Due to the pipelined hardware
architecture used, the major system bottleneck turned
out to be memory access. A high speed multi-port
memory controller is used to increase the data
throughput of the design.
Bit width trimming. Fixed-point numbers are used in
the design. To maintain accuracy with saving
hardware resources, the bit widths used are custom
selected at each stage of the processing pipeline.

D. Experimental Results
This system has been implemented on low cost available

Spartan-II development system with Xilinx chip 2s200fg456
which has 2352 CLB Slices. The system clock rate is 150
MHz. This clock is converted into different levels which are
required for the units within the system. Module 1 uses 418
CLB slices with 17.8% utilization [17], module 2 uses 88
CLB slices with 3.74% utilization, and module 3 uses 383
CLB slices with 16.28% utilization. The module numbers are
those from Fig. 6. This system is able to process images of
size 768x576 (442368 pixels) at 156 fps. The output results
are the same results that are obtained by the software version.
To speed up this system, the bigger area and higher

performance FPGA chip or more than one FPGA chip can be
used.

IV. CONCLUSION

In this paper, a new algorithm of optical flow estimation by
the region-based matching has been proposed and preformed
only w.r.t. the detected moving pixels to obtain a reliable
optical flow that allows flow-based analyses of moving
entities in real-time. The proposed idea is to use the gradient-
based measures of texture information for every moving pixel
position with its intensity variation in the matching process.
Real-time performance and high accuracy are achieved by this
algorithm.

 Then, a hardware implementation of the proposed method
has been presented in the form of pipeline and parallel
processing to achieve maximum speeding up. Several
hardware optimizations were also made to obtain maximum
hardware performance. At a clock rate of 150 MHz, this
design could estimate the flow vectors for moving objects
appearing in 768x576 image sequence taken from a static
camera at a very high frame rate of 156 frames per second in a
single low cost FPGA chip. The proposed system can be
considered as higher frame rate, lower cost, and smaller area
than other recent presented systems [13, 15, 16] for the flow-
vector estimation.

REFERENCES

[1] C. Anderson, P. Burt, and G. van der Wal, "Change detection and
tracking using pyramid transformation techniques", in Proceedings of
SPIE. Intelligent Robots and Computer Vision, vol. 579, pp. 72-78,
1985.

[2] J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow
techniques", International Journal of Computer Vision, vol. 12, pp. 42-
77, 1994.

[3] A. Kasinski and A. Hamdy, "Efficient Separation of mobile objects on
the scene from the sequence taken with an overhead camera". Proc. Int.
Conf. on Computer Vision and Graphics, Zakopane, vol. 1, pp. 425-430,
Sept. 2002.

[4] C. Ridder, O. Munkelt, and H. Kirchner, "Adaptive Background
Estimation and Foreground Detection Using Kalman-Filtering". Proc.
Int. l Conf. Recent Advances in Mechatronics, ICRAM .95, pp. 193-199,
1995.

[5] Y. Ivanov, A. Bobick, and J. Liu, "Fast Lighting Independent
Background Subtraction". Technical Report no. 437, MIT Media
Laboratory, 1997.

[6] G. Halevy and D. Weinshall, "Motion of disturbances: detection and
tracking of multi-body non-rigid motion", Machine Vision and
Applications, vol. 11, Issue 3, pp. 122-137, 1999.

[7] E.M. Saad, A. Hamdy, and M.M. Abutaleb, "FPGA-based
Implementation of a Low Cost and Area Real-time Motion Detection",
15th IEEE Conference in Mixed Design of Integrated Circuits and
Systems, Poznan, Poland, pp. 249-254, June 19-21, 2008.

[8] P. Anandan, "A Computational Framework and an Algorithm for the
Measurement of Visual Motion", International Journal of Computer
Vision, vol. 2, 1989.

[9] M. Okutomi and T. Kanade, "A Locally Adaptive Window for Signal
Matching", International Journal of Computer Vision, vol. 7, no. 2,
1994.

[10] A. J. Lipton, "Local Application of Optic Flow to Analyze Rigid versus
Non-Rigid Motion", ICCV Workshop on Frame-Rate Vision, 1999.

[11] K. N. Ngan, T. Meier, and D. Chai, "Advanced Video Coding: Principles
and Techniques", Elsevier, 1999.

[12] B. Horn, B. Schunck, "Determining optical flow", Artificial Intelligence,
vol. 17, pp. 185-203, 1981.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

607

[13] J. L. Martín, A. Zuloaga, C. Cuadrado, J. Lázaro, and U. Bidarte,
"Hardware implementation of optical flow constraint equation using
FPGAs", Computer Vision and Image Understanding, vol. 98, pp. 462-
490, 2005.

[14] B. D. Lucas, T. Kanade, "An iterative image registration technique with
an application to stereo vision", Proc. DARPA Image understanding
Workshop, pp. 121-130, 1984.

[15] J. Díaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, "FPGA-based
real-time optical-flow system", IEEE Trans. Circuits and Systems for
Video Technology, vol. 16, no. 2, pp. 274-279, Feb 2006.

[16] Z.Y. Wei, D.J. Lee, B.E. Nelson, and M.A. Martineau, "A fast and
accurate tensor-based optical flow algorithm implemented in FPGA",
IEEE WACV, Austin, Texas, USA, p. 18 (6 pages), Feb 21-22, 2007.

[17] M.M. Abutaleb, A. Hamdy, and E.M. Saad, "FPGA-Based Real-Time
Video-Object Segmentation with Optimization Schemes", International
Journal of Circuits, Systems, and Signal Processing, vol. 2, issue 2, pp.
78-86, 2008.

