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Abstract—Optical flow is a research topic of interest for many 
years. It has, until recently, been largely inapplicable to real-time 
applications due to its computationally expensive nature. This paper 
presents a new reliable flow technique which is combined with a 
motion detection algorithm, from stationary camera image streams, 
to allow flow-based analyses of moving entities, such as rigidity, in 
real-time. The combination of the optical flow analysis with motion 
detection technique greatly reduces the expensive computation of 
flow vectors as compared with standard approaches, rendering the 
method to be applicable in real-time implementation. This paper 
describes also the hardware implementation of a proposed pipelined 
system to estimate the flow vectors from image sequences in real 
time. This design can process 768 x 576 images at a very high frame 
rate that reaches to 156 fps in a single low cost FPGA chip, which is 
adequate for most real-time vision applications. 

Keywords—Optical flow, motion detection, real-time systems, 
FPGA. 

I. INTRODUCTION

HIS work presents a robust method to estimate the flow 
vectors for moving objects appearing in images of the 

frame sequence. First, a motion detection technique is applied 
to detect the moving pixels in the image sequence taken from 
a static camera. Second, optical flow estimation is preformed 
only w.r.t. the detected moving pixels. This method is suitable 
for FPGA implementation that can be used in applications 
which require real-time.  

A. Motion Detection 
Motion detection can be essential to allow for the optical 

flow estimation to be performed in real-time. There are three 
conventional approaches to motion detection: temporal 
differencing [1]; optical flow analysis [2]; and background 
subtraction [3-5]. Temporal differencing is suitable in 
dynamic environments, but generally does a poor job of 
extracting all relevant feature-pixels. Optical flow can be used 
to detect independently moving objects in the presence of 
camera motion; however, most flow-computation methods are 
complex and inapplicable in real-time. Motion detection by 
background subtraction can be divided into adaptive and non-
adaptive background methods. Non-adaptive methods need 
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off-line initialization; errors in the background accumulate 
over time.  

A common method of adaptive backgrounding is to average 
the frames over time [6]. This creates an approximate 
background. This is effective where objects move 
continuously and the background is visible for a significant 
portion of time. It is not robust for scenes with slowly-moving 
objects. It cannot handle a multimodal backgrounds caused by 
the repetitive motion of the background. Hence, in this work a 
fast motion detection algorithm based on a multi-modal 
distribution, modeling each pixel as a mixture of normal 
distributions, is used to detect the moving objects with a small 
number of calculations, as presented in [7], to achieve a high 
frame rate for real-time requirements. This method deals 
robustly with slowly-moving objects as well as with repetitive 
background motions of some scene-elements.  

B. Optical flow Estimation 
Optical flow approach is hard to apply in real-time due to its 

high computational cost. Hence, it is a reasonable idea to 
combine the motion detection with the optical flow estimation 
in a way that flow vectors are calculated only w.r.t. moving 
pixels to allow flow-based analyses of moving entities in real-
time. Applying this flow technique to moving entities provides 
some straight forward primitives for analyzing the motion of 
those objects such as analyzing rigidity and cyclic motion 
using residual flow; and determining self-occlusion and 
disambiguating multiple, mutually occluding entities using 
pixel contention. 

In this way the computation time can be reduced in most 
practical cases, making the method feasible in the real-time. In 
this work, an improved algorithm of optical flow estimation 
by the region-based matching is proposed and preformed only 
w.r.t. the detected moving pixels to obtain a reliable flow 
vectors.

C. Hardware Implementation 
High complexity algorithms to estimate the motion field 

from image sequences have already been developed and 
successfully implemented in software [2]. Very few of these 
algorithms have been incorporated into today’s video 
surveillance systems, due to computational cost and lack of 
real-time capability. This makes the development of such 
algorithms on the hardware timely. Known algorithms have 
been restricted to small frame sizes, low frame rates, and 
solely implemented in software running on general-purpose 

A Reliable FPGA-based Real-time Optical-flow 
Estimation

M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, and E. M. Saad 

T



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

603

computers. Real-time needs of such systems can be improved 
by a significant amount with the use of hardware.   

Hence, this paper presents a hardware implementation of a 
proposed method, which takes advantage of data parallelism 
for a further implementation on a field programmable gate 
array (FPGA), a re-configurable computing platform. 
Throughput has been drastically increased while; in contrast, 
the latency has been decreased, with the use of pipelining. 
This implementation is used to estimate the flow vectors for 
moving objects appearing in image sequence at a very high 
frame rate in a single low cost FPGA chip.  

   This paper is organized as follows. In section 2, the 
algorithms are formulated and the suggestions are introduced. 
In section 3, the hardware implementation design and 
performance analysis of the proposed system are discussed. 
Conclusion is given in section 4.  

II. ALGORITHMS

A. Motion Detection based on Multi-modal Distribution 
A fast and efficient algorithm, presented in [7], is used here 

to extract the moving objects in each frame for software and 
hardware implementation. In this algorithm, each pixel is 
modeled as mixture of three distributions (k = 3) and each 
distribution is represented by mean-value (μ) and weight-
value ( ) maintained at time t. The mixture is sorted every 
time in decreasing order of weight values. Here, each pixel is 
checked against the distributions, until the match is found. 
The matching condition is achieved if the variation of the 
pixel Xt within R% (matching ratio) from its mean value.   

For the matched distribution, the current pixel is stored as 
the processed pixel value XP,t (XP,t = Xt) to be used in the next 
time t+1. Also, the temporal differencing is applied where the 
pixel is considered as foreground pixel if: 

TXX || 1-tP,t
(1)

where T is the threshold value.  
If foreground pixel is detected, the weight of the matched 

distribution will be updated as in equation (2) and its mean 
will be kept without any change. While if foreground pixel is 
not detected, the weight and mean of the matched distribution 
will be updated as in equation (3) and (4) respectively, where 

 is the learning factor (  = 0.005).

1-tk,tK, )1(                                                                (2) 

1-tk,tK, )1(                                                          (3) 

t1-tk,tK, )1( X                                                      (4) 

If the current pixel is not matched with any distribution, this 
pixel will be classified as foreground pixel. The mean of the 
third distribution of that pixel will be replaced by its intensity 
value and its weight will be selected as lower value than other 
distributions. Also, the processed pixel will be equal to the 
value of the mean of the first distribution. Real-time 
performance with high resolution video streams can be 

achieved by this algorithm.  

B. Optical Flow Estimation by Region-based Matching 
To analyze the motion of objects over the image sequence 

and to estimate the 2D-velocity of a certain pixel moving 
within ROI, the region-based matching is used. The fixed 
regions as in [8] and the dynamic regions as in [9] have been 
used for the matching process. The proposed idea is to use the 
gradient-based measures of texture information for every pixel 
position. These measures which represent the local gradient 
activities and the intensity value for each moving pixel are 
used for the matching process. Hence, the flow computation 
per pixel is a two-pass process. First, both horizontal and 
vertical gradient components are generated for each moving 
pixel to ensure that sufficient information is available to 
obtain a valid flow vector. Second, a region-matching is 
performed to actually calculate the flow vectors.

To ensure a good match between regions, it is essential that 
sufficient texture information around their central pixels x is 
available in both horizontal and vertical directions. Thus, two 
images H(x) and V(x) using standard horizontal and vertical 
Sobel operators are generated for each image I(x) in the frame 
sequence ( I is a pixel intensity value and x=(i,j) represents a 
pixel location in the image). A region W(x)I(x) as proposed in 
[10] and regions W(x)V(x) and W(x)H(x) as proposed in this 
work are defined by multiplying I, V, and H with a 2D 
masking function W(x) respectively.

The obtained regions for the current and previous images in 
the frame sequence are then convolved, as in [11]. This is to 
get a three correlation surfaces (information measures); 
intensity measure DI(x;d), vertical-gradient measure DV(x;d),
and horizontal-gradient measure DH(x;d).
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where d=(di, dj) is a linear intra-sequence translation (search 
area).

Consider a stationary video-camera observing the scene. If 
the images in the frame sequence are separated in time by t,
then a particular pixel in the image will move by a distance 
v(x) t , where v(x)=( vi(x), vj(x) ) is the 2D image velocity of 
that pixel. This can be found by matching the corresponding 
regions in each two successively images in the frame sequence 
which can be satisfied by minimizing a proposed overall 
correlation function D(x;d).

);();();();( H3V2I1 dxDdxDdxDdxD (8)

where 1 , 2 , 3  [0 , 1] and 1 + 2 + 3 = 1 represent the 
matching weights of a three correlation components DI(x;d),
DV(x;d), and DH(x;d) according to their effective in the 
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matching. The search for the minimum of D(x;d) returns the 
true pixel displacement value dmin.

txvdxDd )();(minmin (9)

If the fixed regions have been used for matching, the 
obtained results by the proposed method is more accurate than 
the results that obtained by the method in [10] because the 
gradient-based measures with the intensity measures give 
sufficient information for matching. The method in [10] can 
be improved by using dynamic regions that kept growing until 
there was still enough information. But this improved method 
is very complex for real time and hardware implementation. 
So, the proposed reliable method is more proper for real time 
and hardware implementation which is the aim of this work.  

C. Experimental Results 
Figure 1 shows the image under study. The next step is the 

motion detection by our proposed method in [7], which is 
performed to extract the foreground pixels; moving pixels. 
Figure 2 demonstrates the extraction of the foreground pixels. 
Subsequently, the post-processing is performed to fill the 
holes inside the blobs, as it is demonstrated in Fig. 3. At the 
next step, the two-pass process of the optical flow estimation 
is triggered. Figure 4 shows the intensity, horizontal, and 
vertical evidence information proves the existence of the 
sufficient local texture.

A region-matching is performed to compute the flow-
vectors using a 3x3 support window, as shown in Fig. 5. It is 
evident from this figure that, there is homogeneity in the flow 
vectors of the rigid object, while with non-rigid object there is 
not. It is clear from this figure that, the homogeneity increases 
with the rigidity and vice versa. 

      Fig. 1 Single image from the sequence 

Fig. 2 Pre-processing foreground image

       Fig. 3 Post-processing foreground image 

Fig. 4 Masked image (top) and horizontal (middle) 
and vertical (bottom) components

Fig. 5 Resulted optical flow (motion field)
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III. DESIGN

A. Data Flow 
The data flow of the proposed algorithm is divided into 

three modules as shown in Fig.6. In the Motion Detection 
module, images are read from memory into the FPGA and 
aligned to extract the foreground images (masks). This module 
is previously implemented in [7]. Then, each image in the 
frame sequence is masked by the foreground images (masks) 
to generate the horizontal, vertical, and intensity components 
for each masked image in the Moving Object Components 
module. Finally, these components are fed into the Optical 
Flow Estimation module to compute the final result according 
to equations 5, 6, 7, 8, and 9 and then written back to memory. 
Of importance, there is no iterative processing in this design. 
Therefore, the computation process can be fully pipelined in 
hardware to improve its processing throughput and thereby 
enable real-time use.  

In the block diagram of Fig. 6, the connections between 
modules consist of only unidirectional data and a 
corresponding data valid signal. Once a set of data is 
generated in a module, it is registered into the downstream 
module for processing. At the end of the pipeline, the results 
are written back to memory for further processing, display, or 
analysis.

     
Motion

  Field

      1      
   Motion 
 Detection 

2
 Moving 
Object 

 Components 

  Foreground 
Images

Input 
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3
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Flow 
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Intensity Component 
    Vertical Component 
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Fig. 6 Data flow of the design 

B. Architectures
FPGAs have been used to process larger images at faster 

speed because of their configuration flexibility and high data 
processing speed. An algorithm proposed by Horn and 
Schunck [12] was implemented in [13]. It is an iterative 
algorithm where the accuracy depends largely on the number 
of iterations. The classical Lucas and Kanade approach [14] 
has also been implemented in [15] for its good tradeoff 
between accuracy and processing efficiency. A fast and 
accurate motion estimation algorithm has been modified as 
proposed in [16] for efficient FPGA hardware 
implementation. This design was accurate and fit for pipeline 
hardware implementation. It was able to process images of 
size 640 × 480 at 64 frames per second.  

The main objective of this work is to create a prototype 
system that can generate a reliable flow-vector at every pixel 
in the moving blobs at a much higher rate as compared to 
previous proposed works [13, 15, 16]. This approach can be 
applied in different applications such as tracking systems, 
robot navigation, and object classification in real time. Here, 
FPGA-based architectures for the proposed algorithm of 

optical flow estimation by dynamic region matching at every 
pixel in the moving blobs are presented. 

For Moving Object Components module, two identical 
pixel-based architectures are used in parallel to compute the 
components of each pixel in the previous and current images 
in the frame sequence. Each one consists of Obj_Ext block, 
Obj_Reg block, Ver_Comp block, and Hoz_Comp block, as 
shown in Fig. 7. A control signal rst initializes all parameters 
and registers and rd_in signal is active when mask signal 
(foreground pixel) from Motion Detection module is ready in 
the input. Obj_Ext block is used to generate J signal (intensity 
component) which is the same value of F signal (gray value of 
the processing pixel) in case of the foreground pixel (mask = 
1) and zero value in case of the background pixel (mask = 0). 
The masked pixel J is stored in Obj_Reg block to be used in 
the next time for its neighbors within the selected window. 
The previously stored masked pixels P1 to P8 (neighbors of 
the processing pixel) in Obj_Reg block are used to generate V
(vertical component) and H (horizontal component) signals 
using vertical and horizontal Sobel operators in Ver_Comp
and Hoz_Comp blocks respectively.  

For Optical Flow Estimation module, a pixel-based 
architecture is used to compute the true pixel displacement by 
matching each specified region in the current masked image 
with all regions in the previous masked image using J, V, and 
H components. It consists of Pixel_Corr_Calc block and 
Match_Loc block, as shown in Fig. 8. A control signal rst
initializes all parameters and registers while the control 
signals En1, En2, En3 are used to enter the pixels of the 
current and previous images through the matching operation 
and output the final result at the end of the operation. Three 
identical Pixel_Corr_Calc blocks are used in parallel to 
compute the correlation components for each pixel in the 
previous and current images in the frame sequence according 
to equations 5, 6, and 7. Match_Loc block is used to compute 
the overall correlation function and to search for its minimum 
in each location [Cx,Cy] according to equations 8 and 9 to 
return the matching location [Xm,Ym]. 

Fig. 7 The structure of Moving Object Components module 
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Fig. 8 The structure of Optical Flow Estimation module 

C. Hardware Optimization 
For maximum hardware performance, several hardware 
optimizations were made: 

Pipeline structure. A heavily pipelined hardware 
structure was used to maximize throughput. Once the 
pipeline is full, the hardware can produce a result on 
every clock cycle.
Optimizations of Motion Detection module. Memory 
bandwidth reduction is achieved by utilizing 
distribution similarities in succeeding neighboring 
pixels and data flow reduction is also achieved by 
processing only one distribution at time through the 
hardware, as presented in [17]. 
Fast memory access. Due to the pipelined hardware 
architecture used, the major system bottleneck turned 
out to be memory access.  A high speed multi-port 
memory controller is used to increase the data 
throughput of the design. 
Bit width trimming. Fixed-point numbers are used in 
the design. To maintain accuracy with saving 
hardware resources, the bit widths used are custom 
selected at each stage of the processing pipeline.

D. Experimental Results 
This system has been implemented on low cost available 

Spartan-II development system with Xilinx chip 2s200fg456 
which has 2352 CLB Slices. The system clock rate is 150 
MHz. This clock is converted into different levels which are 
required for the units within the system.  Module 1 uses 418 
CLB slices with 17.8% utilization [17], module 2 uses 88 
CLB slices with 3.74% utilization, and module 3 uses 383 
CLB slices with 16.28% utilization. The module numbers are 
those from Fig. 6. This system is able to process images of 
size 768x576 (442368 pixels) at 156 fps. The output results 
are the same results that are obtained by the software version. 
To speed up this system, the bigger area and higher 

performance FPGA chip or more than one FPGA chip can be 
used.

IV. CONCLUSION

In this paper, a new algorithm of optical flow estimation by 
the region-based matching has been proposed and preformed 
only w.r.t. the detected moving pixels to obtain a reliable 
optical flow that allows flow-based analyses of moving 
entities in real-time. The proposed idea is to use the gradient-
based measures of texture information for every moving pixel 
position with its intensity variation in the matching process. 
Real-time performance and high accuracy are achieved by this 
algorithm. 

 Then, a hardware implementation of the proposed method 
has been presented in the form of pipeline and parallel 
processing to achieve maximum speeding up. Several 
hardware optimizations were also made to obtain maximum 
hardware performance. At a clock rate of 150 MHz, this 
design could estimate the flow vectors for moving objects 
appearing in 768x576 image sequence taken from a static 
camera at a very high frame rate of 156 frames per second in a 
single low cost FPGA chip. The proposed system can be 
considered as higher frame rate, lower cost, and smaller area 
than other recent presented systems [13, 15, 16] for the flow-
vector estimation. 

REFERENCES

[1] C. Anderson, P. Burt, and G. van der Wal, "Change detection and 
tracking using pyramid transformation techniques", in Proceedings of 
SPIE. Intelligent Robots and Computer Vision, vol. 579, pp. 72-78, 
1985. 

[2] J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow 
techniques", International Journal of Computer Vision, vol. 12, pp. 42-
77, 1994. 

[3] A. Kasinski and A. Hamdy, "Efficient Separation of mobile objects on 
the scene from the sequence taken with an overhead camera". Proc. Int. 
Conf. on Computer Vision and Graphics, Zakopane, vol. 1, pp. 425-430, 
Sept. 2002. 

[4] C. Ridder, O. Munkelt, and H. Kirchner, "Adaptive Background 
Estimation and Foreground Detection Using Kalman-Filtering". Proc. 
Int. l Conf. Recent Advances in Mechatronics, ICRAM .95, pp. 193-199, 
1995. 

[5] Y. Ivanov, A. Bobick, and J. Liu, "Fast Lighting Independent 
Background Subtraction". Technical Report no. 437, MIT Media 
Laboratory, 1997. 

[6] G. Halevy and D. Weinshall, "Motion of disturbances: detection and 
tracking of multi-body non-rigid motion", Machine Vision and 
Applications, vol. 11, Issue 3, pp. 122-137, 1999. 

[7] E.M. Saad, A. Hamdy, and M.M. Abutaleb, "FPGA-based 
Implementation of a Low Cost and Area Real-time Motion Detection", 
15th IEEE Conference in Mixed Design of Integrated Circuits and 
Systems, Poznan, Poland, pp. 249-254, June 19-21, 2008. 

[8] P. Anandan, "A Computational Framework and an Algorithm for the 
Measurement of Visual Motion", International Journal of Computer 
Vision, vol. 2, 1989.  

[9] M. Okutomi and T. Kanade, "A Locally Adaptive Window for Signal 
Matching", International Journal of Computer Vision, vol. 7, no. 2, 
1994. 

[10] A. J. Lipton, "Local Application of Optic Flow to Analyze Rigid versus 
Non-Rigid Motion", ICCV Workshop on Frame-Rate Vision, 1999.  

[11] K. N. Ngan, T. Meier, and D. Chai, "Advanced Video Coding: Principles 
and Techniques", Elsevier, 1999.  

[12] B. Horn, B. Schunck, "Determining optical flow", Artificial Intelligence, 
vol. 17, pp. 185-203, 1981.  



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

607

[13] J. L. Martín, A. Zuloaga, C. Cuadrado, J. Lázaro, and U. Bidarte, 
"Hardware implementation of optical flow constraint equation using 
FPGAs", Computer Vision and Image Understanding, vol. 98, pp. 462-
490, 2005. 

[14] B. D. Lucas, T. Kanade, "An iterative image registration technique with 
an application to stereo vision", Proc. DARPA Image understanding 
Workshop, pp. 121-130, 1984. 

[15] J. Díaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, "FPGA-based 
real-time optical-flow system", IEEE Trans. Circuits and Systems for 
Video Technology, vol. 16, no. 2, pp. 274-279, Feb 2006. 

[16] Z.Y. Wei, D.J. Lee, B.E. Nelson, and M.A. Martineau, "A fast and 
accurate tensor-based optical flow algorithm implemented in FPGA", 
IEEE WACV, Austin, Texas, USA, p. 18 (6 pages), Feb 21-22, 2007.

[17] M.M. Abutaleb, A. Hamdy, and E.M. Saad, "FPGA-Based Real-Time 
Video-Object Segmentation with Optimization Schemes", International 
Journal of Circuits, Systems, and Signal Processing, vol. 2, issue 2, pp. 
78-86, 2008.


