
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

383

Abstract—Nowadays, computer worms, viruses and Trojan horse

become popular, and they are collectively called malware. Those
malware just spoiled computers by deleting or rewriting important
files a decade ago. However, recent malware seems to be born to earn
money. Some of malware work for collecting personal information so
that malicious people can find secret information such as password for
online banking, evidence for a scandal or contact address which relates
with the target. Moreover, relation between money and malware
becomes more complex. Many kinds of malware bear bots to get
springboards. Meanwhile, for ordinary internet users,
countermeasures against malware come up against a blank wall.
Pattern matching becomes too much waste of computer resources,
since matching tools have to deal with a lot of patterns derived from
subspecies. Virus making tools can automatically bear subspecies of
malware. Moreover, metamorphic and polymorphic malware are no
longer special. Recently there appears malware checking sites that
check contents in place of users' PC. However, there appears a new
type of malicious sites that avoids check by malware checking sites. In
this paper, existing protocols and methods related with the web are
reconsidered in terms of protection from current attacks, and new
protocol and method are indicated for the purpose of security of the
web.

Keywords—Information Security, Malware, Network Security,
World Wide Web

I. INTRODUCTION
OWADAYS, computer worms, viruses and Trojan horse
become popular, and they are collectively called malware.

Malware has been popular in the world of computer networks.
However, recent malware steals more money than that of a
decade ago. Services on the web have so much increased that
malicious people take aim at the money related with the
services. Of course, software which protects PC against
malware, that is called anti-virus software, becomes popular.
However, for ordinary internet users, countermeasures against
malware come up against a blank wall. Methods for personal
anti-virus software are roughly classified into three as follows.

A. Pattern matching method
This method is standard and simple to find malware.

Characteristic pattern in a binary of malware is called signature.
Anti-virus software has stored signatures of malware and
compares a target with each signature. There are some
problems in this method. When many patterns of malware are
made at the same time, signatures that have to be compared

Ryuya Uda is with Tokyo University of Technology, 1404-1

Katakuramachi, Hachioji City, Tokyo 192-0982, JAPAN (corresponding
author to provide phone: +81-42-637-2111; fax: +81-42-637-2112; e-mail:
uda@cs.teu.ac.jp).

with a target increase. Moreover, if vulnerabilities of software
are not fixed for a long time, many patterns of malware can be
made. Nowadays, malware making tool also becomes popular
among malicious people. Making malware becomes easy for
malicious people, even if they are not specialists of attacking
vulnerability of target software. Metamorphic and polymorphic
malware are worse than normal malware. In metamorphic
malware, arrangement of operation codes is changed from that
of original codes, or dead codes that are independent from
operation of the malware are inserted. Usual pattern matching
method is not appropriate to metamorphic malware, since its
signature has been changed. Some types of metamorphic
malware change themselves every time when they infect
another computer with themselves. In polymorphic malware,
operation codes are encrypted into other codes. Usual pattern
matching method is neither appropriate to dealing with
polymorphic malware, since its signature has been changed as
well as signature of metamorphic one has.

B. Generic method
This method is applied for processes that are operated in a

computer. Operation rules are written in a definition file, and
anti-virus software compares the next operation of a target with
the rules. If the next operation is out of the rules, the operation
is canceled. For example, if there is an e-mail that is to be sent
via different SMTP server from a server defined in the rules,
anti-virus software judges the process of sending the e-mail
may be malicious. This method is superior to the pattern
matching one, since it can find subspecies of a malware.
Subspecies of a malware behave as same as original one, even
if they are metamorphic or polymorphic malware.

C. Heuristic method
This method is applied for programs in a computer before the

programs are operated. With this method, programs are
analyzed by anti-virus software. If a suspicious operation is
found in the analysis, anti-virus software judges the programs
may be malicious. The important thing in this method is that
target programs are once operated somewhere. When the target
program is operated in a virtual machine, the method is called
dynamic heuristic method. Besides, there is also a kind of
heuristic methods with which the target program is operated in
a stand alone computer.

Among those above methods, pattern matching method
seems to consume less computer resources than other methods,
if all patches for vulnerability of installed software are
appropriately applied. Anti-virus software has to compare a
target with only signatures that relate with malware which

Ryuya Uda

Protocol and Method for Preventing Attacks
from the Web

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

384

targets unsolved vulnerabilities on the installed software or on
the OS of the computer. Release of patch of vulnerability
sometimes delays although the vulnerability has been reported.
In that case, signatures with which anti-virus software have to
compare increase. Moreover, prompt attack called zero-day
becomes major. In most of the cases, patch for vulnerability is
released at the same time as the vulnerability is reported, since a
researcher who discovers a vulnerability of software reports the
fact first to the vender of the software and the researcher stands
mute till the patch of the vulnerability is released. However, all
the people all of the world cannot apply patch to their software
within zero second after the patch is released. Some hackers
make malware as promptly as possible when they know a new
vulnerability and release the malware within the same day as
the patch for the vulnerability is released. Some victims catch
the malware before they apply the released patch. Still worse,
patch is sometimes huge, although not all computers have
hi-performance CPU and hi-speed communication network.
For example, an attendee of an academic international
workshop with a laptop computer might not have
hi-performance CPU and hi-speed communication network.

Generic method is usually heavier than pattern matching
method. With the method, almost all processes are watched by
anti-virus software, even if the processes are generated by
non-malicious famous software, since virus can be attached
with existing software installed in a computer.

Heuristic method is heaviest among the methods above.
Almost all the people do not have such environment as virtual
machine or stand alone computer for special use.

Generic method and heuristic method are required for casual
internet users, since a kind of malware, e.g. spyware or adware,
is independent from vulnerability of software. Such malware is
not computer virus in a narrow sense but application software
that works stand alone. For example, a snake game which sends
personal information to the net was found as application
software on iPhone in 2010.

In this paper, problems of existing services that prevent
various attacks from malware are described, and the way how
to make the services secure especially in terms of HTTP
protocols is indicated. Related works are described in section 2.
Problems and solution is explained in section 3. The best way
for security on the web is considered in section 4. The research
is concluded in section 5.

II. RELATED WORKS
Scanning malware on casual user's PC consumes many

resources as is mentioned in section 1. Nowadays, malware
scanning service that scans malware in place of users becomes
spread. Some web sites provide a service in which the service
site scans a target web site before a user goes to the target site.
LinkScanner Online [1], Dr. Web Online [2], Unmask Parasites
(beta) [3] and vURL Online [4] represent such service, and for
Japanese users, aguse [5] and gred [6] are provide such service
in Japanese. Users input URL that they want to go in the
scanning service site then they can get a report whether the

target site is safe or not. In that service, addresses of malicious
sites are on the blacklist.

Among those sites, aguse provides an advanced service that
users can access any target site via aguse's site. On that service,
the target site is changed into a picture file on aguse's site and
users see the picture on aguse site, so that users need not
execute malicious codes on their computer.

Moreover, in the paper of malware analysis, Yoshioka et al.
[7] and Kasama et al. [8] report malware sandbox analysis as an
online service. There are some researches analyzing malware
dynamically in sandbox of a computer [9][10][11][12][13]. In
those researches, malware is moved into special environment
for analysis called sandbox then it is executed to see what it
does. The analysis is effective for metamorphic or polymorphic
malware, as is described in section 1. Besides, there is a service
that analyzes malware online in place of users, such as Norman
Sandbox [14] and Anubis [15], since the analysis is difficult for
ordinary internet users. However, Yoshioka and Kasama give a
caution to internet users in their papers, since it is reported that
there is a kind of malware that avoids the analysis.

Therefore, in this paper, the way how to make the services
secure is shown especially in terms of HTTP protocols.

III. PROBLEMS AND SOLUTIONS
In this section, problems of HTTP protocol are argued in

section 3.A. As for solving to the problems, effective malware
checking method is suggested in section 3.B.

A. Problems of HTTP Protocol
Communication protocols are deployed on a layer according

to OSI (Open Systems Interconnection) Reference Model as
shown in Fig. 1.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network process to application

Data representation,encryption and decryption,convert
machine dependent data to machine independent data

Interhost communication

End-to-end connections and reliability,flow control

Path determination and logical addressing

Physical addressing

Media, signal and binary transmission

Layer Function

Fig. 1 OSI reference model

OSI reference model defines seven layers in communication
protocols [16]. HTTP is a protocol on the application layer. OSI
defines that the function of each layer is independent from
other layers. Therefore, HTTP has been working well on
TCP/IP whether other layers change their implementation. For
example, HTTP works whether SSL or TLS is applied on the
presentation layer or not. In fact, IP (Internet Protocol) address
is not required in HTTP request header and HTTP response
header in HTTP protocol, since IP is on the network layer.

However, HTTPD (HTTPD daemon) can change its
behavior by IP address of web clients. For example, a web

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

385

server can respond to anti-social messages while the server
responds to social messages when a client is in the region of IP
addresses that the government organizations have. The most of
people believe that the same URL shows the same page, but it is
dangerous to believe it. Malicious sites can respond to a page
with malware when usual people access the site, while the sites
response the same page (which looks like the same for usual
people, but functionally not the same) without any malware. If
the response is implemented in malicious sites, pre-scanning
service for web site explained in section 2 does not work well,
since it is easy for malicious users to know the IP addresses of
the service site.

HTTP proxy may be one of the solutions of above problem.
With using HTTP proxy, HTTP request from clients goes
through HTTP proxy to servers. HTTP proxy can cache the
response to the next client who is to access the same page of the
server. If scanning services described in section 2 are
implemented in HTTP proxy servers, clients under the same
proxy server will be safe.

However, there are problems with using HTTP proxy. HTTP
proxy decides whether it sends client's IP address to web
servers or not in HTTP request header on HTTP protocol. One
that sends client's IP address is called anonymous HTTP proxy,
and the other is called non-anonymous HTTP proxy.
Anonymous HTTP proxy is efficient to prevent malicious web
sites from selecting clients. However, with anonymous HTTP
proxy, good web sites cannot distinguish good clients from
malicious clients, then the number of anonymous HTTP proxy,
especially the one which any users can freely access, has
decreased.

HTTPS is a secure protocol for the web. It guarantees
confidentiality of communication and authentication between a
server and a client. HTTPS seems the best solution, if the
malicious third party tries to listen or change someone's data in
communication. However, HTTPS provides no forensics when
a client or a server is malicious. To make matters worse,
HTTPS prevents security software from scanning virus via
HTTP communication, since any software between a server
and a client cannot see the communication data.

B. Effective Malware Checking Method
On the basis of arguments in section 3.A, an effective

malware checking method is suggested as shown in Fig. 2.

Web Server

Client
Malware
Checking

Server

(a)

(1) download

(2) check(3) ask whether
the contents is safe

(4) if safe, download
if not safe, do nothing

Web Server

Client
Malware
Checking

Server

(b)

(3) check(2) transfer the contents

(5) if safe, view
if not safe, do nothing

(4) ask whether
the contents is safe

(1) download

Fig. 2 Malware checking method

Fig. 2 (a) shows the method of existing online scanning
services. In this method, if a malicious web server sends
different contents to client from malware checking server, the
answer of malware checking server does not make sense.
Therefore, a new method is suggested as shown in Fig. 2 (b).
The important thing is that clients never execute and show any
content form web servers before checking. As soon as web
browser downloads contents from the web server, it sends the
contents directly to malware checking server without executing
or viewing. Malware checking server checks contents and
answer the client whether the contents are safe or not. After
receiving the answer, the client shows the contents.

The method still has a problem that data size in
communication becomes double. If the client downloads big
size contents from the web server, the client have to upload the
same size to the malware checking server, although uplink is
narrower than downlink in popular broadband communication
services.

Another suggestion is shown in Fig. 3.

Web Server

Client
Malware
Checking

Server

(3) download

(4) check(2) ask whether
the contents is safe

(5) answer safe or not
with hash digest

(7) if safe, view
if not safe, do nothing

(1) download

(6) compare received hash digest
with calculated hash digest

Fig. 3 Fast malware checking method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

386

In this method, both a client and a malware checking server
download the same page from the same web server. The client
never sends contents to the malware checking server, so that
client can avoid uploading big size contents. The malware
checking server answers whether the contents are safe or not
with a hash digest of the contents. The client compares the hash
digest received from malware checking server with a hash
digest which is calculated from the contents that the client
download from the web server, so that the client would be
aware of the difference, if the web server send different
contents to the client and the malware checking server.

IV. PROBLEMS IN CLOAKING
The method that is shown in Fig. 3 in section 3.B works

effectively, even if HTTPS is used, since the same contents are
downloaded by the client and the malware checking server.
However, if contents are dynamically created on the web
server, contents that the client has and those that the malware
checking server has are different from each other. The method
above is called cloaking. For example, an article of usual news
sites is shown in Fig. 4.

Title of article

Body of article

Commercial Commercial

same

different
Fig. 4 News article on the web

The article is the same for all the people. However,
commercials attached with the article is sometimes randomly
changed or changed according to users' taste. In this case, title,
body and commercial parts should be partially calculated to
make hash digests, and then only parts that can not get the
assurance of the malware checking server are replaced with
safe picture etc.

Another solution for the news article is to combine two
methods in Fig. 2 and Fig. 3 in section 3.B. First, the client tries
the method in Fig. 3. Then if the two hash digests are different
from each other, the client tries the method in Fig. 2 (b) or
abandons viewing of the contents.

Another example is shown in Fig. 5.

Receipt / Bill

Products, Amount,
Client Name,
Client Address, etc.

different
(privacy)

Merchant Name,
Merchant Address,

etc.
same

Fig. 5 Receipt or bill on the web

Fig. 5 shows receipt or bill displayed on the web. As the
same way as in the news article, the different part and the same
part are included. Moreover, in that case, personal information
and privacy is also included.

The method in Fig. 3 is not appropriate to this case, since
personal information and privacy is sent to the malware
checking server. Moreover, to make the receipt or bill, the
malware checking server has to copy the behavior of the client,
i.e. which button the client push and what the client input in the
textbox etc. Web browser on the client has to send that
information to the server.

I think one of the best solutions is applying mask for
contents. Under consideration of the problem of malware
sandbox analysis described in section 2, the best solution seems
to partially apply the method in Fig. 2 (b). The method in Fig. 2
(b) can solve both the problem described in section 2 and the
problem of privacy. The method of checking malware without
revealing any personal information to the malware checking
server is explained in section 5.

V. MASKING CONTENTS ON WEB
In this section, the method of masking contents on the web is

explained. As is mentioned in section 4, the method in Fig. 2 (b)
has to be applied to prevent malware from recognizing that it is
in malware sandbox analysis described in section 2, while
keeping privacy on clients of users. There are some types of
contents delivered on HTTP such as HTML, script, XML,
XSLT, image, sound, etc. Through the method in this paper,
each type of them is masked on clients as follows.

HTML can be masked more easily than other types of
contents as shown in Fig. 6.

Each value of tags such as "Original Header" is concatenated
with a random number, and then is hashed into a hash digest.
Original value is replaced with the hash digest. Each value of
attributes of tags such as "image1" is replaced with hash digests
in the same way. The random number must be the same in one
communication session between a client and the malware
checking server in order to replace the same values with the
same hash digests. For example, the value of "id" attribute must
be referred by other HTML tags, style sheets or scripts on the
same HTTP session. If one of the values of "id" attribute has
changed, others which have had the same value must be
changed into the same value as that one. The random number is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

387

required to prevent the malware checking server from guessing
original text by comparing with hash digests in other contents
by other clients.

<h1>Original Header</h1>
<p>This is original text.

</p>

Original HTML

Masked HTML

"Original Header"

<h1>e8367ab2 ... 1c462803</h1>
<p>4c3846ae ... 296e3f

</p>

+ "d634 ... fa7" "e8367ab2 ... 1c462803"

Hash DigestRandom NumberOriginal Text
Hash

<h1>Original Header</h1>
<p>This is original text.

</p>

Original HTML

Masked HTML

"Original Header"

<h1>e8367ab2 ... 1c462803</h1>
<p>4c3846ae ... 296e3f

</p>

+ "d634 ... fa7" "e8367ab2 ... 1c462803"

Hash DigestRandom NumberOriginal Text
Hash

Fig. 6 Masking HTML

Script as represented by JavaScript is masked as shown in
Fig. 7.

function func1(var1) {
if(var1 == 0)

return 0;
else

return 1;
}

<script type="text/javascript">
<!--

var var2;
var2 = prompt("original text 1", "original text 2");
document.write("original text 3" + func1(var2));

//-->
</script>

Original Script

function f5c9 ... 326(vf3da ... 902) {
if(vf3da ... 902 == 0)

return 0;
else

return 1;
}

<script type="text/javascript">
<!--

var v63a ... 8fe;
v63a ... 8fe = prompt("d753 ... 461", "3583 ... b7f");
document.write("6df4 ... 2e8" + f5c9 ... 326(v63a ... 8fe));

//-->
</script>

Masked Script

"var1" + "d634 ... fa7" "f3da ... 902"

Hash DigestRandom NumberOriginal Variable
Hash

"v" +

function func1(var1) {
if(var1 == 0)

return 0;
else

return 1;
}

<script type="text/javascript">
<!--

var var2;
var2 = prompt("original text 1", "original text 2");
document.write("original text 3" + func1(var2));

//-->
</script>

Original Script

function f5c9 ... 326(vf3da ... 902) {
if(vf3da ... 902 == 0)

return 0;
else

return 1;
}

<script type="text/javascript">
<!--

var v63a ... 8fe;
v63a ... 8fe = prompt("d753 ... 461", "3583 ... b7f");
document.write("6df4 ... 2e8" + f5c9 ... 326(v63a ... 8fe));

//-->
</script>

Masked Script

"var1" + "d634 ... fa7" "f3da ... 902"

Hash DigestRandom NumberOriginal Variable
Hash

"v" +

Fig. 7 Masking scripts

Names of variables and functions are replaced with the
masked value. For example, one of the variables name "var1" is
concatenated with a random number, and then is hashed into a
hash digest. A character "v" is added in front of the hash digest

to make a masked value. After that, "var1" is replaced with the
masked value. In order to keep variables and functions referred
by the name, the value of the random number must be the same
in one communication session between a client and the
malware checking server. The character "v" is required because
the first character of the name of both variables and functions
must not be numeric one. In masking the name of functions,
character "f" is added in place of "v", because of the same
restriction as in the name of variables. On the other hand, string
in scripts requires no additional character in front of the value
of the hash digest. Additionally, the value of "type" attribute in
"script" tag must not be masked in order to tell the malware
checking server the type of the script.

XML may be able to be masked in the same way as the
masking way of HTML. In masking of XML, all of the names
of tags must be masked. Moreover, character "/" for XPath in
values of attributes must be eliminated from masking. XSLT
may also be masked in the same way as the masking way of
XML. By way of exceptions in masking XSLT, operators and
some specific characters such as wildcard, "@", "[", etc. in
values of attributes must be eliminated from masking.

Image and sound cannot be masked in the way as described
above. However, ordinary image players and sound players
usually execute no code in contents. Therefore, it seems to be
enough to find malware on the malware checking server, if
there are information in header of a file and information of the
size of the file.

Application software cannot be masked either. To avoid the
problem of malware sandbox analysis described in section 2,
most of properties of clients should be transferred to the
malware checking server, when the masked contents are
transferred.

There remain problems that personal information might be
leaked to the malware checking server, if numeric values in
scripts include personal information such as credit card
number, and if application software contains personal
information in it when the server inserts the information at
downloading. Solutions of the problems will be appeared in
future works.

VI. CONCLUSION
In this paper, the problems of existing services that prevent

various attacks from malware are described. Existing
countermeasure against malware is not enough, since cipher
algorithm in communication protocol is used only for
confidentiality and authentication. HTTPS provides
authentication between servers and clients, but nothing is
assured about information exchanged between customers and
traders. The method suggested in this paper especially pays
attention to digital forensics on the web. With this method,
electronic commerce or web surfing will be safer than with
existing one. Some browsers provide environments for
implementation of plug-in software. It seems the time that we
have to consider the web of security with keeping existing
protocols.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

388

ACKNOWLEDGMENT
This research was partially supported by the Grant-in-Aid

for Young Scientists (B), 21700088, 2010, the Ministry of
Education, Culture, Sports, Science and Technology.

REFERENCES
[1] LinkScannerOnline,

http://linkscanner.explabs.com/linkscanner/default.aspx
[2] Dr. Web Online, http://online.us.drweb.com/?url=1
[3] Unmask Parasites (beta), http://www.unmaskparasites.com/
[4] vURL Online, http://vurldissect.co.uk/
[5] aguse, http://www.aguse.jp/ (Japanese)
[6] gred, http://www.gred.jp/ (Japanese)
[7] K. Yoshioka, Y. Hosobuchi, T. Orii, T. Matsumoto, “Vulnerability in

Public Malware Sandbox Analysis Systems”, in Proc. 2010 10th
IEEE/IPSJ International Symposium on Applications and the Internet,
2010, pp.265–268.

[8] T. Kasama, T. Orii, K. Yoshioka, T. Matsumoto, “Vulnerability of
Malware Sandbox Analysis as an Online Service (Part 2)”, IPSJ Anti
Malware Engineering Workshop 2010, 2E1-1 (Japanese).

[9] U. Bayer, C. Kruegel, E. Kirda, “TTAnalyze: A Tool for Analyzing
Malware”, in Proc. 15th Annual Conference of the European Institute for
Computer Antivirus Research (EICAR), 2006.

[10] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, K. Nalao, “Automated
Malware Analysis System and its Sandbox for Revealing Malware's
Internal and External Activities”, IEICE Trans. Vol.E92D, No.5,
pp.945–954, 2009.

[11] S. Miwa, T. Miyachi, M. Eto, M. Yoshizumi, Y. Shinoda, “Design and
Implementation of an Isolated Sandbox with Mimetic Internet Used to
Analyze Malwares”, in Proc. DETER Community Workshop on Cyber
Security Experimentation and Test 2007, pp.6, 2007.

[12] C. Willems, T. Holz, F. Freiling, “Toward Automated Dynamic Malware
Analysis Using CWSandbox”, Security & Privacy Magazine, IEEE,
Vol.5, Issue 2, pp.32–39, 2007.

[13] K. Yoshioka, T. Matsumoto, “Multi-pass Malware Sandbox Analysis
with Controlled Internet Connection”, IEICE Trans. E93A No.1,
pp.210–218, 2010.

[14] NormanSandbox, http://www.norman.com/technology/norman_sandbox/
[15] Anubis, http://analysis.seclab.tuwien.ac.at/
[16] ITU-T Recommendation X.200, 1994.

