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Efficient solution for a class of Markov chain
models of tandem queueing networks
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Abstract—We present a new numerical method for the compu-
tation of the steady-state solution of Markov chains. Theoretical
analyses show that the proposed method, with a contraction factor
α, converges to the one-dimensional null space of singular linear
systems of the form Ax = 0. Numerical experiments are used to
illustrate the effectiveness of the proposed method, with applications
to a class of interesting models in the domain of tandem queueing
networks.
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I. INTRODUCTION

IN this paper, we study a new numerical method for solving
a class of Markov chain models of queueing systems, such

as the tandem queueing network described in Fig. 1.

Fig. 1. Tandem queueing network.

Fig. 1 gives a system with two finite queues in tandem.
Suppose the new customers arrive according to a Poisson
process with rate μ. They receive the service at the two single-
server stations, exponentially distributed with rates μ1 and μ2,
respectively.

Mathematically, the numerical solution for the tandem
queueing network in Fig. 1 requires us to find a vector x ∈ R

n

that satisfies

Qx = x, xi ≥ 0 ∀i, ||x||1 = 1, (1)

where Q = (qij) ∈ R
n×n is a column stochastic and

irreducible matrix, and x is the stationary probability vector
of the queueing model.

According to the theory of Perron-Frobenius for nonnega-
tive matrices (see, e.g., [1]), it follows that

ρ(Q) = 1 is a simple eigenvalue of Q, (2)

where ρ(Q) denotes the spectral radius of Q. There exists a
positive right eigenvector x corresponding to (2) such that (1)
is satisfied.

In recent years, the iterative computation for the queueing
model in Fig. 1 has received a lot of attention; see, e.g., [2, 3,
4, 5]. The Power method is a simple and often used iteration
method for approximating the unique stationary probability
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vector of an irreducible Markov chain. Specifically, the Power
method is given as follows; see, e.g., [2, 4, 5].

Power method. Given an initial guess x0, with ||x0||1 = 1,
compute

xk+1 = Qxk,

for k = 0, 1, 2, ..., until {xk} converges.
However, this paper presents a new numerical mehtod for

calculating the stationary probability vector of Markov chains.
As a matter of fact, our starting point is inspired by papers
[6, 7]. The new method is the triangular and skew-symmetric
splitting (TSS) method that has been developed to solve
positive-definite linear systems. Our main contribution is to
extend the applications of the TSS iteration method to solve
the homogeneous linear system

Ax = 0, with A = I − Q, (3)

where I ∈ R
n×n is an identity matrix, and A ∈ R

n×n is an
irreducible singular M -matrix. Clearly, the numerical solution
of (1) is equivalent to find a nontrivial solution of (3).

The remainder of this paper is organized as follows. Section
2 makes some preliminaries, and explores the convergence of
the TSS iteration method for queueing systems. In addition,
the theoretical choice of the contraction factor α is discussed
here. Section 3 presents the numerical experiments on the
tandem queueing network as shown in Fig. 1 to validate the
effectiveness of the TSS iteration method. Section 4 makes
some conclusions.

II. THE TSS ITERATION METHOD FOR MARKOV CHAINS

A. Preliminaries
Theorem 2.1 [2, 8] (a few properties of irreducible singular

M -matrices).
(i) Each proper principle minor of irreducible singular M -

matrices is a nonsingular M -matrix;
(ii) Irreducible singular M -matrices have a unique solution

to the problem Ax = 0, up to scaling. Components of x have
strictly the same sign, xi > 0 ∀i;

(iii) Irreducible singular M -matrices have nonpositive off-
diagonal elements, and strictly positive diagonal elements (n >
1).

Let R(A) and σ(A) denote the range and spectrum of A,
respectively. If A = M − N with M ∈ R

n×n a nonsingular
matrix is a splitting of the matrix A. Then T = M−1N is
called the iteration matrix. The rate of convergence for the
present case of this context is given by the convergence factor
γ(T ) defined as

γ(T ) = max{|λ|, λ ∈ σ(T ), λ �= 1}.
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Definition 2.2 [8]. Assume λ is an eigenvalue of the matrix
A, then the smallest nonnegative integer k with R((λI −
A)k) = R((λI−A)k+1) is called the index of A with respect
to λ, and denoted as k = indλA.

Theorem 2.3 [8]. A matrix T with ρ(T ) = 1 is convergent
if and only if each of the following conditions hold:

(i) if λ ∈ σ(T ) and λ �= 1, then γ(T ) < 1;
(ii) ind1T = 1, i.e., rank(I − T ) = rank((I − T )2).

B. Convergence analysis

This section proposes the TSS iteration method for a class
of Markov chain model of queueing systems, and discusses its
convergence.

Similarly to the splitting method in [6, 7], let the matrix A
in (3) have the splitting of the form

A = T + S, (4)

where T ∈ R
n×n is a triangular matrix with the diagonal

elements are positive, and S ∈ R
n×n is a skew-symmetric

matrix, i.e., ST = −S. Then the corresponding TSS iteration
method for singular systems (3) is given as follows.

The TSS iteration method for Markov chains. Given an
initial guess x(0) ∈ R

n, compute{
(αI + T )x(k+1/2) = (αI − S)x(k),
(αI + S)x(k+1) = (αI − T )x(k+1/2),

(5)

for k = 0, 1, 2, · · · , until {x(k)} converges, where α is a given
positive constant.

Comparing with the TSS iteration method proposed in [6,
7], the main difference between it and the TSS iteration
method for Markov chains lies in that the coefficient matrix
in (3) is a singular matrix with the null space of A is one-
dimension, and the right-hand vector is null. Observing that
the roles of the matrices T and S in the above TSS iteration
method are able to be reserved such that the linear system
with the coefficient matrix αI +S is solved first, and then the
linear system with the coefficient matrix αI +T is calculated.

For simplicity, let M1 = αI + T, N1 = αI − S,M2 =
αI + S,N2 = αI − T . It is clear that the matrices M1 and
M2 are nonsingular for any positive constant α, and the TSS
iteration method for Markov chains can be equivalently written
as

x(k+1) = T (α)x(k), k = 0, 1, 2, · · · , (6)

where T (α) = M−1
2 N2M

−1
1 N1 = (αI +S)−1(αI−T )(αI +

T )−1(αI − S).
Actually, (6) may give rise to the splitting

A = M(α) − N(α),

with {
M(α) = 1

2α (αI + T )(αI + S),
N(α) = 1

2α (αI − T )(αI − S),

such that T (α) = M(α)−1N(α) is the iteration matrix in (6).
Note that for analyzing the convergence of the TSS iteration

matrix T (α), we need to prove the conditions in Theorem 2.3
hold.

Since the splitting A = M(α)−N(α), the system Ax = 0
can be rewritten as (M(α)−N(α))x = 0 such that T (α)x =
M(α)−1N(α)x = x, x �= 0. Thus 1 ∈ σ(T (α)) is true.

In addition, from A = M(α)−N(α), we have I −T (α) =
I − M(α)−1N(α) = M(α)−1A such that

rank(I − T (α)) = rank(A) = n − 1.

On the other hand, from (2) and (3), we deduce that λ = 0 is
a simple eigenvalue of A, which implies that λ = 0 is also a
simple eigenvalue of I−T (α) and the number of the nonzero
eigenvalues of I−T (α) is n−1. According to the knowledge
of algebra, we get that the eigenvalues of (I − T (α))2 are
squares of the eigenvalues of I − T (α). It then follows that
λ = 0 is a simple eigenvalue of (I − T (α))2 and the number
of the nonzero eigenvalues of (I−T (α))2 is also n−1. Hence,
it has rank((I − T (α))2) = n − 1 and the second condition

ind1T (α) = 1

holds.
Furthermore, for proving the first condition in Theorem

2.3, we need to illustrate the condition λ ∈ σ(T (α)), λ �=
1, γ(T (α)) < 1 holds. Observing that the iteration matrix
T (α) is similar to the matrix

T̃ (α) = (αI − T )(αI + T )−1(αI − S)(αI + S)−1.

Thus as a result of the similarity invariance of the matrix spec-
trum, it is equivalent to show the condition λ ∈ σ(T̃ (α)), λ �=
1, γ(T̃ (α)) < 1 is true. Note that we use the analyzing
techniques offered in [6, 7] here.

For any λ ∈ σ(T̃ (α)), λ �= 1, we have

γ(T̃ (α)) ≤ ‖(αI − T )(αI + T )−1(αI − S)(αI + S)−1‖2

≤ ‖(αI − T )(αI + T )−1‖2‖(αI − S)(αI + S)−1‖2.

Let V (α) = (αI − S)(αI + S)−1, then V (α) is a unitary
matrix (see [6, 7] for details) such that

‖V (α)‖2 = ‖(αI − S)(αI + S)−1‖2 = 1.

Hence, we obtain

γ(T̃ (α)) ≤ ‖(αI − T )(αI + T )−1‖2 = max
λi∈λ(T )

∣∣∣α−λi

α+λi

∣∣∣ = δ(α).

Note that T is a triangular matrix with the diagonal elements
are positive such that its any eigenvalues satisfy λi > 0 (i =
0, 1, 2, · · · , n). Therefore, given a positive constant α, we see
that γ(T̃ (α)) ≤ δ(α) < 1, which implies

γ(T (α)) < 1

and the first condition in Theorem 2.3 holds.
Summarizing the above analysis, we obtain the following

convergence theorem with respect to the TSS iteration method
for Markov chains.

Theorem 3.1. Let A ∈ R
n×n be an irreducible singular

M -matrix. If A possesses the splitting A = T +S, where T ∈
R

n×n is a triangular matrix with all the diagonal elements are
positive, and S ∈ R

n×n is a skew-symmetric matrix. Then the
iteration matrix T (α) of the TSS iteration method for Markov
chains (5) is convergent.
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C. The choice of α

This section discusses the theoretical choice of the contrac-
tion factor α for an explicit triangular and skew-symmetric
splitting method that can be found in [6] for the matrix A.

Let A = D +L+U , where D be a diagonal matrix formed
with the diagonal elements of A, and L and U are strictly
lower and upper triangular matrix of A, respectively. Then we
have

A = (LT + D + U) + (L − LT) ≡ T + S, (7)

where T and S are triangular matrices with the positive
diagonal elements (see the properties in Theorem 2.1) and
skew-symmetric matrices, respectively.

We briefly discuss the approximate estimation of the con-
traction factor α for the splitting (7), along the ideas of [6].
Let G = LT + U , which is a strictly upper triangular matrix
such that

[G(αI + D)−1]n = [(αI + D)−1G]n = 0,

and

(αI + T )−1 = [(αI + D) + G]−1

= (αI + D)−1
∑n−1

j=0 (−1)j [G(αI + D)−1]j .

It then follows that

(αI − T )(αI + T )−1 = (αI − D − G)(αI + T )−1

≈ (αI − D − G)(αI + D)−1[I − G(αI + D)−1]
(the first − order approximation)
= (αI − D)(αI + D)−1 + G(αI + D)−1G(αI + D)−1

−G(αI + D)−1 − (αI − D)(αI + D)−1G(αI + D)−1.

Observing that the matrix products G(αI + D)−1 is also
strictly upper triangular matrix, thus we have

‖(αI − T )(αI + T )−1‖2 ≈ ‖(αI − D)(αI + D)−1‖2

= max
1≤j≤n

{(α − ajj)(α + ajj)−1}.

Let amin and amax be the minimum and maximum elements
of the diagonal matrix D, then it has

α̃ = arg min
α>0

max
1≤j≤n

∣∣∣∣α − ajj

α + ajj

∣∣∣∣ =
√

aminamax. (8)

Note that α = α̃ only is a theoretical choice that minimizes
the upper bound of δ(α). In practice, as stated in [6, 7],
determining how to compute the optimal parameter α is a
hard task that needs further in-depth study.

III. NUMERICAL EXPERIMENTS

In this section, we report on numerical results obtainded
with a Matlab 7.0.1 implementation on Window XP with
2.93GHz 64-bit processor and 2GB memory. The main goal
is to examine the effectiveness of the TSS iteration method
for the numerical solution of Markov chains and compares it
with the Power method that given in Section 1.

The test problem is the queueing model of two queues in
tandem as shown in Figure 1. In our experiments, we choose
μ = 10, μ1 = 11 and μ2 = 10, and limit the number of
customers in the queues to m = 7, 15, 23, 31, 63 such that
the total problem size is h2 = (m + 1)2. The initial guess

is a uniform probability distribution over all the states, i.e.,
x0 = [ 1

n ]n×1. All the iterations are terminated when RES =
‖Ax(k)‖1 = ‖x(k) − Qx(k)‖1 ≤ 10−6 with x(k) the current
approximate solution. Numerical results are reported in the
following table and figures, where “IT” is the number of
iterations.

TABLE I
COMPARISONS OF THE RES FOR THE POWER, TSS AND MTSS

ITERATION METHODS WHEN GIVEN THE DIFFERENT ITERATION COUNTS.

IT RES
Power TSS MTSS

20 2.0991e-2 1.8330e-2 1.2435e-2
40 1.8054e-2 1.3521e-2 5.7040e-3
60 1.5516e-2 9.3714e-3 2.0169e-3
80 1.3131e-2 5.6959e-3 6.0110e-4
100 1.0865e-2 3.2079e-3 1.6423e-4
120 8.6543e-3 1.7478e-3 4.3098e-5
140 6.5893e-3 9.3219e-4 1.1096e-5
160 4.9083e-3 4.9003e-4 2.8308e-6
180 3.5934e-3 2.5509e-4 7.1895e-7
200 2.6071e-3 1.3192e-4 1.8219e-7

Fig. 2. Graph for an intuitive comparison of the numerical
results in Table 1.

Fig. 3. Comparisons of the iteration counts for the Power,
TSS and MTSS iteration methods with the different sized

tandem queueing networks.

Note that, throughout this paper, we use α = α̃ to denote
the theoretical parameter obtained in (8), and α = αexp to
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denote the experimental parameter obtained by trial and error.
For this test problem in Fig. 1, we have obtained α̃ = 1,
and αexp = 0.065, 0.075, 0.135, 0.183, 0.3 for corresponding
different problem sizes h2 = 82, 162, 242, 322 and 642. For
convenience of notations, we use MTSS to denote the TSS
iteration method with α = αexp.

Table 1 provides the RES of the Power, TSS and MTSS
iteration methods when given the different iteration counts.
From Table 1, we find that the MTSS iteration method has
given the most effective results, and the precision of the TSS
iteration method is superior to that of the Power method in
terms of the residual vectors.

Fig. 2 plots the curves for obtaining an intuitive comparison
of the numerical results in Table 1. Clearly, the convergence
rate of the TSS and MTSS iteration methods is better than
that of the Power method for this tandem queueing problem.

Furthermore, Fig. 3 plots the curves of the iteration counts
for the Power, TSS and MTSS iteration methods with the
different sized tandem queueing networks. As shown in Fig.
3, the IT of the TSS and MTSS iteration methods is much less
than that of the Power method. Therefore, the effectiveness of
the TSS and MTSS iteration methods is illustrated once again.

IV. CONCLUSIONS

In this paper, we have proposed the TSS and MTSS iteration
methods for approximating the stationary probability vector
of tandem queueing networks. Numerical results in Table 1
and Figs. 2 and 3 have validated their effectiveness in terms
of improving the convergence rate, and reducing the iteration
counts by comparing with the standard Power method. One
future work may be to study how to obtain an optimal
parameter α for the TSS iteration method.
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