
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

90

Abstract—Simulation is a very powerful method used for high-

performance and high-quality design in distributed system, and now
maybe the only one, considering the heterogeneity, complexity and
cost of distributed systems. In Grid environments, foe example, it is
hard and even impossible to perform scheduler performance
evaluation in a repeatable and controllable manner as resources and
users are distributed across multiple organizations with their own
policies. In addition, Grid test-beds are limited and creating an
adequately-sized test-bed is expensive and time consuming.
Scalability, reliability and fault-tolerance become important
requirements for distributed systems in order to support distributed
computation. A distributed system with such characteristics is called
dependable. Large environments, like Cloud, offer unique
advantages, such as low cost, dependability and satisfy QoS for all
users. Resource management in large environments address
performant scheduling algorithm guided by QoS constrains. This
paper presents the performance evaluation of scheduling heuristics
guided by different optimization criteria. The algorithms for
distributed scheduling are analyzed in order to satisfy users
constrains considering in the same time independent capabilities of
resources. This analysis acts like a profiling step for algorithm
calibration. The performance evaluation is based on simulation. The
simulator is MONARC, a powerful tool for large scale distributed
systems simulation. The novelty of this paper consists in synthetic
analysis results that offer guidelines for scheduler service
configuration and sustain the empirical-based decision. The results
could be used in decisions regarding optimizations to existing Grid
DAG Scheduling and for selecting the proper algorithm for DAG
scheduling in various actual situations.

Keywords—Scheduling, Simulation, Performance Evaluation,
QoS, Distributed Systems, MONARC

I. INTRODUCTION

HE heuristics for distributed scheduling have the main
goal optimization of resource allocation at local level (for

a limited number of homogeneous resources) and at global
level (in heterogeneous environments). The actual increasing
interest in scheduling for heterogeneous distributed systems is
due to the dimensions of some large scale applications, which
makes inadequate a single parallel architecture to cover their
needs for parallelism. When dealing with a computational
Grid for parallel and distributed computing we have to
efficiently exploit the computational power. In many practical
cases, heterogeneous systems have proved to produce higher
performance at lower cost than a single high performance
computing machine [3]. Scheduling applications on wide-area
distributed systems is useful for obtaining quick and reliable
results in an efficient manner. Optimized scheduling
algorithms for multi-criteria constraints are fundamentally
important in order to achieve advanced resources utilization

Florin Pop is with the University POLITEHNICA of Bucharest, Faculty of
Automatic Control and Computers, Department of Computer Science, Spl.
Independentei, 313, Bucharest 060042, Romania, Personal web page:
http://florinpop.ro, E-mail: florin.pop@cs.pub.ro.

and considering scalability limits on hierarchical platforms
[9]. The modern applications address many fields of activity
like satellite data processing, medicine, and others. An
essential requirement for a global Data Grid is to support the
parallel and distributed processing of huge data. Therefore, it
requires a scheduling system. The system needs to access and
process the satellite image archives; the job manager should
assign the jobs to available resources, basically by splitting the
image in sub-images and process each sub-image on a
different node. Understanding the timing behavior and users
constrains of distributed applications gets more and more
important because new real-time (like multimedia and health)
applications require defined upper bounds for runtime
performance, called deadlines, in order to provide application
to application quality of service (QoS) [5]. In this context, the
scheduling algorithms for distributed systems can be divided
in two major categories, best effort based and QoS constraint
based scheduling [7].

Best effort algorithm can be chosen according to
performance and the tasks that need to be scheduled from the
following: hybrid heuristic, adaptive generalized scheduler,
adaptive scheduling algorithm, heterogeneous earliest finish
time, greedy randomized adaptive search procedure, simulated
annealing algorithm, genetic algorithm, task duplication based
scheduling algorithm for heterogeneous systems, dynamical
critical path, fast critical path [6]. QoS algorithms consist of
different classes: back-tracking algorithms, approximation
algorithms, loss and gain algorithm, and Bio-inspired
algorithms (genetic, immune, ant colony system algorithms)
[4]. The field of simulation was long-time seen as a viable
alternative to develop new algorithms and technologies for
distributed systems. Simulation represents a powerful support
to enable the development of large-scale distributed systems,
where analytical validations are prohibited by the nature of the
encountered problems. The use of discrete-event simulators in
the design and development of large scale distributed systems
is appealing due to their efficiency and scalability. Their core
abstractions of process and event map neatly to the
components and interactions of modern-day distributed
systems and allow the design of realistic scenarios. Compared
with the alternative of implementing the new technology
directly in real-world to demonstrate its viability, the
simulation of distributed systems is a far better alternative
because it achieves faster validation results, minimizing the
costs involved by the deployment process [2]. This is an
extension of [1] and presents a useful approach for analyzing
the performance of scheduling algorithms for tasks with
dependencies. Finding the optimal procedures for scheduling
in Grid systems is important especially in large scale
distributed computing systems and complex applications for

Florin Pop

Heuristics Analysis for Distributed Scheduling
using MONARC Simulation Tool

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

91

different research areas.The paper is organized as follows:
next section presents the background provided by MONARC
simulator for scheduling, and then the scheduling in
distributed systems and scheduling heuristics are presented.
The papers end with test scenarios, experimental results,
synthetic analysis and a brief overview of related work.
Finally, we will conclude and will identify future works.).

II. SIMULATION MODEL FOR SCHEDULING

MONARC is built based on a process oriented approach for
discrete event simulation, which is well suited to describe
concurrent running programs, network traffic as well as all the
stochastic arrival patterns, specific for such type of simulation
[17]. Threaded objects or "Active Objects" (having an
execution thread, program counter, stack, etc.) allow a natural
way to map the specific behavior of distributed data
processing into the simulation program. With the MONARC
simulation model, users can define various types of jobs to
model common types of actions that can occur in any
distributed systems.

TABLE I
MONARC CONFIGURATIONS FILE FOR SCHEDULING EXPERIMENTS

queue type to be used for storing events
queue_type = snoopy
the maximum number of running threads in one burst
max_simultaneous_threads = 1000
just one regional center
regional0 = testbed

"testbed" regional center section
[testbed]
latitude = 44.25
longitude = 26.60
the class name for the job scheduler
job_scheduler = JobSchedulerSimple
the number of active job threads to be created initially
initial_pool_size = 0
lan0 = testbed_LAN
maximum available bandwidth (Mbps)
lan0_max_speed = 10.0
lan0_connect = testbed_WAN
wan0 = testbed_WAN
maximum available bandwidth (Mbps)
wan0_max_speed = 100.0
wan0_connect = testbed_Router
router0 = testbed_Router
(seconds per package)
router0_latency = 10.0
The name of the section for the cpu units

cpu_unit0 = CPUtestbed
just one activity, defined in the "activityTestbed" section
activity0 = activityTestbed

[CPUtestbed]
from = 1 # the id of the first CPU
to = 8 # the id of the last CPU
(SI95) maximum available cpu power of one cpu unit
cpu_power = 112.0
(MB) The maximum available memory
memory = 512.0
The address of the first cpu unit, the others will have 100.100.100.101
link_node = 10.0.1.12
(Mbps) The maximum available bandwidth of the link port attached
link_node_max_speed = 10.0
connect all cpu units to the LAN named testbed_LAN
link_node_connect = testbed_LAN

[activityTestbed]
The name of the activity class
class_name = ActivityScheduling

The MONARC simulation model is not limited to specific

activities, the user having the possibility to easily incorporate
new advanced job behaviors, as specified in the simulation
scenario being executed. A simulated regional center also uses
the services of a job scheduler. In order to schedule a job for
execution the scheduler executes an appropriate scheduling

algorithm. An example used for experiments in this paper is
presented in Table I.

The modeled job object contains a number of parameters
that are used to estimate the time needed for execution. The
time needed by a job to complete a CPU-intensive operation is
estimated based on a number of attributes such as the CPU

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

92

power, memory and the processing time needed to complete.
For the data processing jobs, these attributes depend on the
type of data that the job works with (in the configuration file,
the user can set this parameters for each data type used in the
simulation). Once the CPU-intensive job starts processing the
time needed to complete its operation is pre-computed. If
another job starts executing on the same processing unit before
the first one completes, then an interrupt mechanism is used to
handle the re-estimation of the time needed for both jobs. The
time needed for an I/O intensive job (for example, a data
transfer handling type of job) is based on the mechanism
provided by the network model. In this case again an interrupt
mechanism is used to simulate the competition for bandwidth
usage of data transfer jobs.

Within the job model the user can define new jobs starting
from the basic behavior provided. It can even combine several
behaviors in one single composite job type. This aspect can be
used to simulate a job that transfer some data, then processes it
and in the end transfers back the obtained results. This
behavior represents a composition between the processing and
data transfer types of jobs and can be modeled using only five
lines of codes. But, in the same type, the user can include a job
which does all the data processing according to some
advanced algorithm, extending in this case one method
provided by the processing data type of job.One interesting
aspect is the job decompositions being offered by the job
model. The user can specify a situation where a job requests
some data, and then split itself in several parallel tasks, each
one processing a particular chunk of data, and in the end the
obtained results are reassembled and sent back. This fork-join
programming paradigm can be modeled with the dependence
mechanisms being offered.Any job cans instantiate new jobs.
This means that, for example, one job receives the data, splits
it into chunks and instantiate processing jobs, each one
supplied with one specific chunk of data. It then specify the
dependence, meaning it specifies what jobs must be executed
after it finishes its own execution. The dependency between
jobs can be specified in the form of a DAG structure [4].

The simulation model also allows the evaluation of
advanced scheduling algorithms such as the ones we were
particularly interested in, evaluating DAG Grid strategies.
However, in order to accommodate the modeling of the DAG
scheduling algorithms we had to extend this default behavior
of the job model in MONARC.

The simulation model is presented in Figure 1 [8].

Fig. 1 Simulation Model for meta-scheduling in Clouds

III. SCHEDULING FOR DISTRIBUTED COMPUTING

We present a flexible approach for analyzing the
performance of meta-scheduling technics and algorithms for
tasks with or without dependencies in Cloud environments.
Finding the optimal procedures for meta-scheduling is
important especially in large scale distributed computing
systems and complex applications for different research areas.
The main scope of the experimental scenarios is to evaluate
scheduling algorithms using a powerful simulation tool, an
approach suitable for different scheduling algorithms using
bag-of-tasks model and various task dependencies and
considering a wide range of systems architectures. Our
proposed solution is based on MONARC, a generic simulation
framework designed for modeling large scale distributed
systems.

This section presents the extension of the simulation
platform to accommodate various scheduling procedures and,
as a case study, and offers a critical analysis of four well
known scheduling strategies: Federated Grid Algorithm and
Community-Aware Scheduling Algorithm. We consider static
objective and dynamic objective. The comparisons of different
algorithms for tasks with dependencies are also important. We
consider CCF (Cluster ready Children First), ETF (Earliest
Time First), HLFET (Highest Level First with Estimated
Times) and Hybrid Remapper. The obtained results confirm
that the proposed solution is a very good model for
performance evaluation in a wide range of DAG scheduling
algorithms and a large scale distributed system architectures.

The evaluation model for scheduling algorithms stats with
presumption that it is quite difficult to make a comparison
among different scheduling systems, since each of them is
suitable for different situations.

For different scheduling systems, the class of targeted
applications and resource configurations may differ
significantly. The evaluation criteria for scheduling systems
are: Application Performance Promotion (involves reviewing
how well the applications can benefit from the deployment of
the scheduling system), System Performance Promotion
(concerns how well the whole system can benefit, like the
utilization of resources is increased by, and how much the
overall throughput gains), Scheduling Efficiency (the
scheduling system should introduce additional overhead as
low as possible and the overhead introduced by the scheduling
system may exist in the information collection, the mapping
process, and the resources allocation), Reliability (level of
fault-tolerance for large collection of loosely-coupled
resources considering that the scheduler should handle such
frequent resource failures), Scalability (a scalable scheduling
infrastructure should maintain good performance with not only
increasing number of applications, but also increasing number
of participating resources with heterogeneity) [4]. The
scheduling objective is represented in Figure 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

93

Fig. 2 Scheduling Objectives for Large Scale Environments

Simulation Model

The distributed approach of simulation model is presented
in Figure 3.

Fig. 3 Distributed approach of simulation model

When designing the scheduling infrastructure of a Grid

system, these criteria are expected to receive careful
consideration. Emphasis may be laid on different concerns
among these evaluation criteria according to practical needs in
real situations. There are some objective functions that could
be used in order to optimize the process of scheduling. These
functions could be a key order to satisfy the QoS constrains.
There are bottleneck functions (for instance the makespan and
the maximum lateness) and sum/mean functions. The latter
ones may also appear in: mean/sum of completion time,
mean/sum of weighted completion time, mean/sum of flow
time, mean/sum of weighted flow time, and mean/sum of
tardiness, number of late tasks and total weight of late tasks.

For task scheduling problem in distributed computing,
considering dependencies for tasks, the model is bag-of-task
with dependencies called DAG (Directed Acyclic Graph). In a
DAG, a vertex (node) is the task and an arc is the
communication constrain between two tasks. In a distributed
system, the communication cost will be ignored if both tasks
are run on the same processor. A schedule is an assignment of

tasks (in the required order) on each processor. The goal is
minimizing the makespan (or other function that is mention as
a measure for QoS) of the schedule. Makespan represents the
time elapsed between the start of the first task and the end of
the last task and it is a good measure for QoS for scheduling
problem.

The following algorithms give a suboptimal solution to the
task scheduling problem. The trade-offs considered are
minimizing makespan, running time of algorithm, number of
processors and task communication costs [10]. These
algorithms were chosen because they are much closed to DAG
scheduling.

Wave Front Method (WFM): The wave fronts of the graph
are determined according to the level of the vertices in a
breadth-first-search traversal of the DAG. The vertices in each
wave front are independent from each other, and are all
assigned to different processors [11].

Critical Path Merge (CPM): A critical path in a DAG is a
maximum weight root to leaf path (the path weight is the
summation of all vertex and edge weights on the path). CPM
computes the critical path, clusters all tasks in it, assigns them
to the same processor, and removes them from the graph. This
process is iterated until all tasks are scheduled. This logic
behind this algorithm is that getting all the nodes on the
current critical path on the same processor removes the edge
costs and the duration of the critical path itself. Also the
duration of an infinitely parallelizable dependency graph will
still be equal to the duration of the critical path so reducing it
is a necessary condition for optimality [12].

Heavy Edge Merge (HEM): Heavy Edge Merge works by
iteratively clustering vertices (tasks) along edges with non-
increasing weights. During an initialization stage, the edges
are sorted in non-increasing order by edge weight, one task is
assigned to each (virtual) processor, and the makespan of this
assignment is computed. Then, all edges are processed in
sorted order. For each edge, the makespan resulting from
merging the tasks associated with the endpoints (perhaps
clusters themselves) is computed. If the makespan increases,
then the merge is not performed.

Min-min heuristic: Min-min heuristic uses minimum
completion time (MCT) as a metric, means that the task which
can be completed earliest is given priority. This heuristic
considers a graph of tasks (G) and begins with the set U of all
unmapped tasks. Then the set of minimum completion times
tasks: M={min_compl_time(Mj, Ti))|i,j in G} is
found. M consists of one entry for each unmapped task. Next,
the task with the overall minimum completion time from M is
selected and assigned to the corresponding machine. Then the
workload of the selected machine will be updated and finally
the newly mapped task is removed from U. This process
repeats until all tasks are mapped.

IV. TEST SCENARIOS, EXPERIMENTAL RESULTS AND

SYNTHETIC ANALYSIS

Using MONARC's extensions we proceeded to evaluate the
scheduling algorithms in order to satisfy the QoS constrains
discussed in this paper. We were particularly interested in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

94

analyzing their performance considering the use of two
realistic scenarios. For this reason the modeling experiment
considered the use of two and eight connected processors and
a set of tasks with dependencies. The communication costs
were considered between 0 and 20 and the tasks execution
time were considered between 0 and 40.

The evaluated scheduling strategies were: Wave Front
Method (WFM), Critical Path Merge (CPM), Heavy Edge
Merge (HEM) and Min-min heuristic (MIN), discussed in this
paper.

In our experiments, in order to satisfy the QoS constrains
and to have the value 1 for satisfy operator for all assignments,
we exclude all un-matching possibility. The makespan (as
maximum execution time provided by scheduler) and
logarithmic runtime (measured after tasks execution) were
considered in order to compare the performances op evaluated
scheduling strategies.

The results for presented scenarios are represented in
Figures 4-7. The quantitative analysis of these graphics shows
that CPM, MIN and WFM are simple and efficient. WFM has
good results because the input graph was artificially built.
HEM gives good schedules but takes a lot of time. Depending
of the particularities of the input graph, each algorithm
behaves strongly or weakly. As a direct observation, the site
manager of a cluster must adapt algorithms (set-up) to the
problem and this paper gives you the necessary insight.

Fig. 4 Makespan Comparison for nprocs = 2

Fig. 5 Logarithmic Runtime for nprocs=2

Fig. 6 Makespan Comparison for nprocs = 8

Fig. 7 Logarithmic Runtime for nprocs=8

The Figures 8 to 13 presents the simulation results for 50

and 100 set of tasks and for 3 different algorithms: FCFS
Scheduling algorithm (queuing model), Shortest job first
Scheduler (a model oriented to task execution cost evaluation)
and Earliest deadline first Scheduler (a model oriented to
balancing resource utilization). The conclusion of this tests
show that the increasing of task number submitted to
scheduling consist in a decreasing of CPU utilization in time,
so it si good to calibrate this number in order to have the good
performance.

Fig. 8 Simple FCFS Scheduler (50 tasks)

0

2000

4000

6000

8000

10000

12000

14000

10 50 100 200 500 1000

M
ak

es
p

an

Number of tasks (Expreriment number)

WFM

HEM

MIN

CPM

1

10

100

1000

10000

100000

1000000

10 50 100 200 500 1000

1 2 3 4 5 6

Number of tasks (Expreriment number)

WFM

HEM

MIN

CPM

0

1000

2000

3000

4000

5000

6000

7000

8000

10 50 100 200 500 1000

M
ak

es
p

an

Number of tasks (Expreriment number)

WFM

HEM

MIN

CPM

1

10

100

1000

10000

100000

1000000

10 50 100 200 500 1000

1 2 3 4 5 6

Number of tasks (Expreriment number)

WFM

HEM

MIN

CPM

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

95

Fig. 9 Simple FCFS Scheduler (100 jobs)

Fig. 10 Shortest job first Scheduler (50 tasks)

Fig. 11 Shortest job first Scheduler (100 jobs)

Fig. 12 Earliest deadline first Scheduler (50 tasks)

Fig. 13 Earliest deadline first Scheduler (100 tasks)

V. RELATED WORK

Regarding simulation as a tool for scheduling evaluation
there are multiple research projects and papers in the last ten
years. Alea simulation is based on the GridSim simulation
toolkit which was extended to provide a simulation
environment that supports simulation of varying Grid
scheduling problems. Alea demonstrates the features of the
GridSim environment implementing an experimental
centralized Grid scheduler which uses advanced scheduling
techniques for schedule generation [13]. Li and Buyya

[14] present statistical models that are able to reproduce
various autocorrelation structures, including pseudo-
periodicity and long range dependence. By conducting model-
based simulation they quantitatively evaluate the performance
impacts of workload autocorrelations in Grid scheduling. The
results obtained indicate that autocorrelations result in system
performance degradation, both at the local and the Grid level.
Few years ago, Phatanapherom er al. [15] sustain that to
develop grid scheduling algorithms, a high performance
simulator is necessary since grid is an uncontrollable and
unrepeatable environment. They propose a discrete event
simulation library called HyperSim is used as extensible
building blocks for grid scheduling simulator. The use of
event graph model for the grid simulation is proposed. This
model is well supported by HyperSim which yields a very
high performance simulation. Fu and Fan [16] focus in their
paper on how to schedule a system with distributed resources
for multiple task execution. They explore the dynamic
scheduling method for the parallel tasks with dependencies in
distributed environments.

VI. CONCLUSION

Simulation is a very powerful tool, and now maybe the only
one, considering the complexity (and cost!) of Grid systems.
In Grid environments, it is hard and even impossible to
perform scheduler performance evaluation in a repeatable and
controllable manner as resources and users are distributed
across multiple organizations with their own policies. In
addition, Grid test-beds are limited and creating an
adequately-sized test-bed is expensive and time consuming.

The aim of the experiments was to evaluate a few
scheduling algorithms (for task without and with
dependencies) in order to measure a QoS constrains (like
makespan). It is very hard to compare these algorithms
because there are many different assumptions and conditions
from which some of the scheduling algorithms start. Tasks
with DAG dependencies are frequent in case of Grid
applications and they require advanced scheduling procedures
that must consider QoS requirements. In this paper was
proposed a simulation-based solution to evaluate the
performances of Grid scheduling algorithms.

The results could be used in decisions regarding
optimizations to existing Grid DAG Scheduling and for
selecting the proper algorithm for DAG scheduling in various
actual situations. The main contribution of the presented
research consists in the development of the simulation layer in
MONARC that is appropriate for DAG scheduling algorithms
evaluation. It was introduced a set of recent algorithms and
presented the solution to evaluate DAG scheduling algorithms
using a generic simulator for large scale distributed systems
guided by QoS constrains.

In this field, future work will include, among other things:
the analysis of a wider set of scheduling algorithms currently
used in Grid systems; the establishment of relevant
performance measures and an improved simulation model; the
evaluation of the current scheduling algorithms, using the
chosen model. We will consider new scheduling algorithms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

96

for real-time scenarios, solutions for backup and recovery
from error (re-scheduling) and solving the problem of co-
scheduling and multi-criteria constraints scheduling.

ACKNOWLEDGMENT
The research presented in this paper is supported by

national project "SORMSYS - Resource Management
Optimization in Self-Organizing Large Scale Distributes
Systems", Contract No. 5/28.07.2010, Project CNCSIS-PN-II-
RU-PD ID: 201. The work has been co-funded by the
Sectorial Operational Program Human Resources
Development 2007-2013 of the Romanian Ministry of Labor,
Family and Social Protection through the Financial Project
and Agreement POSDRU/89/1.5/S/62557.

REFERENCES
[1] Florin Pop. 2011, Simulation based Evaluation of QoS-guided

Scheduling for Distributed Computing in Large Environments, In Proc.
of ESM 2011, The 2011 European Simulation and Moelling Confernce,
October 24-26, University of Minho, Portugal, pp: 84-90.

[2] Ciprian Dobre, Florin Pop, and Valentin Cristea. 2009. New Trends in
Large Scale Distributed Systems Simulation. In Proceedings of the 2009
International Conference on Parallel Processing Workshops (ICPPW
'09). IEEE Computer Society, Washington, DC, USA, 182-189.

[3] Fatos Xhafa and Ajith Abraham. 2010. Computational models and
heuristic methods for Grid scheduling problems. Future Gener. Comput.
Syst. 26, 4 (April 2010), 608-621.

[4] Florin Pop and Valentin Cristea. 2009. Decentralised meta-scheduling
strategy in Grid environments. Int. J. Grid Util. Comput. 1, 3 (August
2009), 185-193.

[5] Li Chunlin and Li Layuan. 2007. Optimization decomposition approach
for layered QoS scheduling in grid computing. J. Syst. Archit. 53, 11
(November 2007), 816-832.

[6] Peng Li and Binoy Ravindran. 2004. Fast, Best-Effort Real-Time
Scheduling Algorithms. IEEE Trans. Comput. 53, 9 (September 2004),
1159-1175.

[7] Zhiang Wu, Junzhou Luo, and Fang Dong. 2006. Measurement model of
grid QoS and multi-dimensional QoS scheduling. In Proceedings of the
10th international conference on Computer supported cooperative work
in design III (CSCWD'06), Weiming Shen, Junzhou Luo, Zongkai Lin,
Jean-Paul A. Barthos, and Qi Hao (Eds.). Springer-Verlag, Berlin,
Heidelberg, 509-519.

[8] Florin Pop, Ciprian Dobre, and Valentin Cristea. 2008. Performance
Analysis of Grid DAG Scheduling Algorithms using MONARC
Simulation Tool. In Proceedings of the 2008 International Symposium
on Parallel and Distributed Computing (ISPDC '08).

[9] Fabricio A. B. da Silva and Hermes Senger. 2011. Scalability limits of
Bag-of-Tasks applications running on hierarchical platforms. J. Parallel
Distrib. Comput. 71, 6 (June 2011), 788-801.

[10] N.M. Amato, P. An. 2000. Task scheduling and parallel mesh-sweeps in
transport computations, Technical Report TR00-009, Department of
Computer Science, Texas A&M University, January 2000.

[11] Hamed Nooraliei and Amir Nooraliei. 2009. Path Planning Using Wave
Front's Improvement Methods. In Proceedings of the 2009 International
Conference on Computer Technology and Development - Volume
01 (ICCTD '09), Vol. 1. IEEE Computer Society, Washington, DC,
USA, 259-264.

[12] Marek Wieczorek, Andreas Hoheisel, and Radu Prodan. 2009. Towards
a general model of the multi-criteria workflow scheduling on the
grid. Future Gener. Comput. Syst. 25, 3 (March 2009), 237-256.

[13] Dalibor Klusáček, Luděk Matyska, and Hana Rudová. 2007. Alea: grid
scheduling simulation environment. In Proceedings of the 7th
international conference on Parallel processing and applied
mathematics (PPAM'07), Roman Wyrzykowski, Konrad Karczewski,
Jack Dongarra, and Jerzy Wasniewski (Eds.). Springer-Verlag, Berlin,
Heidelberg, 1029-1038.

[14] Hui Li and Rajkumar Buyya. 2009. Model-based simulation and
performance evaluation of grid scheduling strategies. Future Gener.
Comput. Syst. 25, 4 (April 2009), 460-465.

[15] Sugree Phatanapherom, Putchong Uthayopas, and Voratas
Kachitvichyanukul. 2003. Dynamic scheduling II: fast simulation model

for grid scheduling using HyperSim. In Proceedings of the 35th
conference on Winter simulation: driving innovation (WSC '03). Winter
Simulation Conference 1494-1500.

[16] Yanfang Fu and Yan Fan. 2010. Research of the Simulation Grid System
Based on Multi-agent Dynamic Scheduling. In Proceedings of the 2010
Second International Conference on Computer Modeling and Simulation
- Volume 03 (ICCMS '10), Vol. 3. IEEE Computer Society, Washington,
DC, USA, 392-395.

[17] Ciprian Dobre, Corina Stratan, and Valentin Cristea. 2008. Realistic
Simulation of Large Scale Distributed Systems using Monitoring.
In Proceedings of the 2008 International Symposium on Parallel and
Distributed Computing (ISPDC '08). IEEE Computer Society,
Washington, DC, USA, 434-438

Florin Pop, PhD, is lecturer with the Computer Science Department of the
University Politehnica of Bucharest. His research interests are oriented to:
scheduling in Grid environments (his PhD research), distributed system,
parallel computation, communication protocols and numerical methods. He
received his PhD in Computer Science in 2008 with Magna cum laudae
distinction. He is member of RoGrid consortium and participates in several
research projects, in collaboration with other universities and research centers
from Romania and from abroad developer. E-mail: florin.pop@cs.pub.ro
Web-page: http://florinpop.ro

