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Minimal critical sets of inertias for irreducible
zero-nonzero patterns of order 3

Ber-Lin Yu, Ting-Zhu Huang

Abstract—If there exists a nonempty, proper subset S of the set
of all (n + 1)(n + 2)/2 inertias such that S ⊆ i(A) is sufficient
for any n × n zero-nonzero pattern A to be inertially arbitrary,
then S is called a critical set of inertias for zero-nonzero patterns
of order n. If no proper subset of S is a critical set, then S is
called a minimal critical set of inertias. In [3], Kim, Olesky and
Driessche identified all minimal critical sets of inertias for 2 × 2
zero-nonzero patterns. Identifying all minimal critical sets of inertias
for n × n zero-nonzero patterns with n ≥ 3 is posed as an open
question in [3]. In this paper, all minimal critical sets of inertias
for 3 × 3 zero-nonzero patterns are identified. It is shown that the
sets {(0, 0, 3), (3, 0, 0)}, {(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)},
{(0, 0, 3), (1, 0, 2)}, {(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are
the only minimal critical sets of inertias for 3 × 3 irreducible zero-
nonzero patterns.

Keywords—Permutation digraph; Zero-nonzero pattern, Irre-
ducible pattern, Critical set of inertias, Inertially arbitrary.

I. INTRODUCTION

AN n×n zero-nonzero pattern is a matrix A = [αij ] with
entries in {∗, 0} where ∗ denotes a nonzero real number.

The set of all real matrices with the same zero-nonzero pattern
as the n × n zero-nonzero pattern A is the qualitative class
denoted by Q(A). If A ∈ Q(A), then A is a realization of A.
A subpattern of an n × n zero-nonzero pattern A = [αij ] is
an n × n zero-nonzero pattern B = [βij ] such that βij = 0
whenever αij = 0. If B is a subpattern of A, then A is a
superpattern of B. The inertia of a matrix A is an ordered triple
i(A) = (n+, n−, n0) where n+ is the number of eigenvalues
of A with positive real part, n− is the number of eigenvalues of
A with negative real part, and n0 is the number of eigenvalues
of A with zero real part. The inertial of zero-nonzero pattern
A is i(A) = {i(A)| A ∈ Q(A)}. An n × n zero-nonzero
pattern A is an inertially arbitrary pattern (IAP) if given any
ordered triple (n+, n−, n0) of nonnegative integers with n+ +
n− + n0 = n, there exists a real matrix A ∈ Q(A) such that
i(A) = (n+, n−, n0). Equivalently, A is an inertially arbitrary
pattern if all the (n+1)(n+2)/2 ordered triples (n+, n−, n0)
of nonnegative integers with n+ + n− + n0 = n are in i(A);
see, e.g., [3-7].

Let S be a nonempty, proper subset of the set of all (n +
1)(n+ 2)/2 inertias for any n× n zero-nonzero pattern A. If
S ⊆ i(A) is sufficient for A to be inertially arbitrary, then S
is said to be a critical set of inertias for zero-nonzero patterns
of order n and if no proper subset of S is a critical set of
inertias, S is said to be a minimal critical set of inertias for
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zero-nonzero patterns of order n; see, e.g., [3]. All minimal
critical sets of inertias for irreducible zero-nonzero patterns
of order 2 are identified. But as posed in [3], identifying all
minimal critical sets of inertias for irreducible zero-nonzero
patterns of order n ≥ 3 is an open question. Also open is the
minimum cardinality of such a set.

In this paper, we address this open question by identifying
all the minimal critical sets of irreducible zero-nonzero pattern
of order 3. It is shown that the sets {(0, 0, 3), (3, 0, 0)},
{(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)}, {(0, 0, 3), (1, 0, 2)},
{(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are the only min-
imal critical sets of inertias for 3× 3 irreducible zero-nonzero
patterns, which strengthens Theorem 4 in [3].

II. PRELIMINARIES AND MAIN RESULTS

We begin with some graph theoretical concepts, since graph
theoretical methods are often useful in the study of zero-
nonzero patterns.

A zero-nonzero pattern A = [αij ] has digraph D(A) with
vertex set {1, 2, . . . , n} and for all i and j, an arc from i to j
if and only if αij is ∗. A (directed) simple cycle of length k
is a sequence of k arcs (i1, i2), (i2, i3), . . . , (ik, i1) such that
the vertices i1, . . . , ik are distinct. The digraph of a matrix is
defined analogously; see, e.g., [1, 2]. A digraph is strongly
connected if for each vertex i and every other vertex j �= i,
there is an oriented path from i to j. A zero-nonzero pattern
A is irreducible if and only if its digraph, D(A), is strongly
connected.

Let D be a digraph of order n and k be an integer such
that 1 ≤ k ≤ n. A digraph P is said to be a k-permutation
digraph of D if P is a subdigraph of D with k vertices, and
the arcs set of P is a union of one or more disjoint cycles;
see, e.g., [4].

Lemma 2.1. [3, Theorem 1] For n ≥ 2, let A be an n× n
zero-nonzero pattern. Then the following hold:

(1) If A allows the inertias (0, 0, n) and (p, 0, n− p) or its
reversal for some integer p in {1, . . . , n}, then D(A) has at
least two loops and a 2-cycle.

(2) If A allows the inertias (n, 0, 0) or its reversal, and
(p, 0, n−p) or its reversal for some integer p in {0, . . . , n−1}
where n−p is odd, then D(A) has at least two transversals.

For an n × n real matrix A, the sum of all the k × k
principle minors of A is denoted by Sk(A). It is well known
that pA(x) = xn +

∑n
k=1(−1)kSk(A)xn−k where p(x) is

the characteristic polynomial of A. For a given integer k,
a zero-nonzero pattern A is Sk-znz-arbitrary if there exist
matrices A∗ and A0 ∈ Q(A) such that Sk(A∗) �= 0 and
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Sk(A0) = 0; see, e.g., [4]. It is clear that if an n × n zero-
nonzero pattern A is spectrally arbitrary, then A is Sk-znz-
arbitrary for all k = 1, . . . , n. We note that if an n× n zero-
nonzero pattern A is Sk-znz-arbitrary, then D(A) must have
at least 2 permutation digraphs of order k for all k = 1, . . . , n.

Lemma 2.2. Let A be an n×n zero-nonzero pattern. Then
following hold:

(1) If A is S1-znz-arbitrary, then D(A) has at least two
loops.

(2) If A is S2-znz-arbitrary and has no 2-cycle, then D(A)
has at least three loops.

(3) If A is Sn-znz-arbitrary, then D(A) has at least two
transversals.

Proof. (1) If A is S1-znz-arbitrary, then there exist matrices
A∗ and A0 ∈ Q(A) such that S1(A∗) �= 0 and S1(A0) = 0.
Since S1(A∗) is the sum of all diagonal entries of A∗, A∗
(and hence A) has at least one nonzero diagonal entry. If A
has exactly one nonzero diagonal entry, then there exists no
real matrix A ∈ Q(A) such that S1(A) = 0. So S1(A0) = 0
is contradicted.

(2) If A is S2-znz-arbitrary, then there exist matrices A∗,
A0 ∈ Q(A) such that S2(A∗) �= 0 and S2(A0) �= 0. If A has
no 2-cycle, then S2(A∗) =

∑
1≤i<j≤n a

∗
iia

∗
jj and S2(A∗) =∑

1≤i<j≤n a
0
iia

0
jj where a∗ii (respectively, a0

ii) denotes (i, i)th
entry of A∗ (respectively, A0). It follows that D(A) has at
least three loops.

(3) If A is Sn-znz-arbitrary, then there exist matrices A∗ and
A0 ∈ Q(A) such that det(A∗) = Sn(A∗) �= 0 and det(A0) =
Sn(A0) = 0. It follows that D(A) has at least two transversals.

We proceed by showing the following zero-nonzero pattern
is nearly inertially arbitrary.

Lemma 2.3. Let

M =

⎛
⎝ ∗ ∗ 0

∗ 0 ∗
∗ ∗ 0

⎞
⎠ .

Then M allows all inertias except (0, 0, 3).
Proof. Since (0, 0, 3) ∈ i(M) if and only if i(M) allows

some characteristic polynomial of the form x3 +qx for q ≥ 0.
Suppose A is a realization of M. Without loss of generality,

A =

⎛
⎝ a 1 0

b 0 1
c d 0

⎞
⎠

for some nonzero real numbers a, b, c and d. Then the
characteristic polynomial of A is

pA(x) = x3 − ax2 − (b+ d)x+ ad− c.

Suppose pA(x) = x3 + qx. Then a = 0; a contradiction. It
follows that M does not allow (0, 0, 3).

Next, we show that M allows all the remaining inertias
except. Note that for an arbitrary zero-nonzero pattern M,
(n+, n−, n0) ∈ i(M) if and only if (n−, n+, n0) ∈ i(M). So
it suffices to show that M allows (1, 0, 2), (1, 1, 1), (2, 0, 1),
(3, 0, 0) and (2, 1, 0).

Consider realizations of M⎛
⎝ 2 1 0

2 0 1
−4 −3 0

⎞
⎠ ,

⎛
⎝ 1 1 0

1 0 1
1 1 0

⎞
⎠ ,

⎛
⎝ 2 1 0

−2 0 1
2 1 0

⎞
⎠ ,

⎛
⎝ 3 1 0

1 0 1
−5 −2 0

⎞
⎠ ,

⎛
⎝ 1 1 0

0.5 0 1
−0.5 0.5 0

⎞
⎠ .

with inertias (1, 0, 2), (1, 1, 1), (2, 0, 1), (3, 0, 0) and (2, 1, 0),
respectively. It follows that M allows all inertias except
(0, 0, 3).

Corollary 2.4. Let S be a nonempty, proper subset of the
set of all the ten inertias for 3 × 3 irreducible zero-nonzero
patterns. If S is a critical set of inertias, then (0, 0, 3) ∈ S.

Proof. By a way of contradiction assume that (0, 0, 3) does
not belong to S. Then S must contain some of the remaining
inertias. By Lemma 2.3, S ⊆ i(M) and M is not inertially
arbitrary. It follows that S is not a critical set of inertias; a
contradiction.

To identify all critical sets of inertias for 3 × 3 irreducible
zero-nonzero patterns, we first establish a graph theoretic
characterization for a 3 × 3 inertially arbitrary zero-nonzero
pattern. We note that for a 3 × 3 irreducible zero-nonzero
pattern A, its associated digraph, D(A), must have either a
3-cycle or two 2-cycles.

Theorem 2.5. Let A be a 3 × 3 irreducible zero-nonzero
pattern. Then A is inertially arbitrary if and only if its
associated digraph, D(A), has a subdigraph that has two
loops, two permutation digraphs of order 3 and at least a
2-cycle.

Proof. Sufficiency: Let A be a 3×3 irreducible zero-nonzero
pattern. If D(A) has a subdigraph that has two loops, a 2-cycle
and two permutation digraphs of order 3, then there are two
cases to be discussed.

If the subdigraph is isomorphic to the associated digraph
D(D1), where D1 is stated in Proposition 2.2 in [6], then A
is a superpattern of the zero-nonzero pattern D1. A is inertially
arbitrary follows Theorem 1.1 in [5]. If the subdigraph is
isomorphic to the associated digraph D(D2), where D2 is
stated in Proposition 2.2 in [6], then A is a superpattern of
the zero-nonzero pattern D2 stated in Proposition 2.2 in [6].
Similarly, A is inertially arbitrary follows Theorem 1.1 in [5].

Necessity: If A is inertially arbitrary, then A is Sk-znz-
arbitrary. By Lemmas 2.1 and 2.2, it follows that D(A), has
a subdigraph that has two loops, two permutation digraphs of
order 3 and at least a 2-cycle.

Theorem 2.6. The sets of inertias {(0, 0, 3), (3, 0, 0)},
{(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)}, {(0, 0, 3), (1, 0, 2)},
{(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are critical sets
of inertias for 3 × 3 irreducible zero-nonzero patterns.

Proof. The sets {(0, 0, 3), (3, 0, 0)}, {(0, 0, 3), (0, 3, 0)} are
minimal critical sets of inertias for 3 × 3 irreducible zero-
nonzero patterns by Theorem 4 in [3]. Next, we show that
{(0, 0, 3), (1, 0, 2)}, {(0, 1, 2), (0, 0, 3)}, {(0, 0, 3), (2, 0, 1)}
and {(0, 0, 3), (0, 2, 1)} are critical sets of inertias.

If {(0, 0, 3), (0, 1, 2)} or {(0, 0, 3), (1, 0, 2)} is contained in
i(A), then D(A) has at least two loops, a 2-cycle by Lemma
2.1. Since A is a 3×3 irreducible zero-nonzero pattern with at
least two loops, it follows that D(A) has at least a permutation
digraph of order 3.

Case 1. D(A) has three loops. It is clear that D(A) has a
subdigraph that has at least two permutation digraphs of order
3. By Theorem 2.5, A is inertially arbitrary.
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Case 2. D(A) has exactly two loops. Then consider the
following two subcases.

Subcase 2.1. D(A) has a 3-cycle. Without loss of generality
let the 2-cycle be (1, 2), (2, 1). If the two loops are at vertices
1 and 2, respectively, then D(A) has exactly one permutation
digraph and is not S3-znz-arbitrary by Lemma 2.2. It follows
that (0, 0, 3) is not allowed by A; a contradiction. Hence
one of the two loops is at vertices 3. So D(A) has at least
two permutation digraphs of order 3. By Theorem 2.5, A is
inertially arbitrary.

Subcase 2.2. D(A) has two 2-cycles and no 3-cycle.
Without loss of generality let (1, 2), (2, 1) and (2, 3), (3,
2) be the two 2-cycles. If there is one loop at vertex 2, then
D(A) has only one permutation digraphs of order 3. So A
does not allow the inertia (0, 0, 3). Hence the two loops must
be at vertices 1 and 3, respectively. It follows that D(A) has a
subdigraph that has at least two permutation digraphs of order
3. By Theorem 2.5, A is inertially arbitrary.

All the above cases indicate that the sets {(0, 0, 3), (1, 0, 2)}
or {(0, 0, 3), (0, 1, 2)} ⊆ i(A) is sufficient for any zero-
nonzero pattern A to be inertially arbitrary. It follows that
{(0, 0, 3), (1, 0, 2)} and {(0, 0, 3), (0, 1, 2)} are critical sets of
inertias.

Similarly, it can be shown that {(0, 0, 3), (2, 0, 1)} and
{(0, 0, 3), (0, 2, 1)} are critical sets of inertias.

Theorem 2.7. The sets of inertias {(0, 0, 3), (3, 0, 0)},
{(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)}, {(0, 0, 3), (1, 0, 2)},
{(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are the only min-
imal critical sets of inertias.

Proof. The set {(0, 0, 3)} is not a critical set of inertias
by Theorem 4 in [3]. And by Lemma 2.3, it follows that a
set with a single inertia is not a critical set of inertias for
3 × 3 irreducible patterns. So a critical set of inertias with
cardinality 2 must be a minimal critical set of inertias. Hence,
all the sets stated in Theorem 2.6 must be minimal sets of
inertias. Next, we shot that there are no other minimal critical
sets of inertias for 3 × 3 irreducible patterns. By Corollary
2.4, if a set S does not contain the inertia {(0, 0, 3), then
S is not a critical set of inertias. To complete the proof, it
suffices to show that {(0, 0, 3), (1, 1, 1)}, {(0, 0, 3), (2, 1, 0)}
and {(0, 0, 3), (1, 1, 1), (2, 1, 0)} are not minimal critical sets
of inertias.

Consider the irreducible zero-nonzero pattern

N =

⎛
⎝ 0 ∗ ∗

∗ 0 ∗
∗ ∗ 0

⎞
⎠

and its realizations⎛
⎝ 0 1 1

(
√

13 + 1)/2 0 1
1 (−√

13 + 1)/2 0

⎞
⎠ ,

⎛
⎝ 0 1 2.5

0.4 0 1
−1 1 0

⎞
⎠ ,

and ⎛
⎝ 0 1 5/8

8/5 0 1
1 −1 0

⎞
⎠

with inertias (2, 1, 0), (0, 0, 3) and (1, 1, 1), respectively. But
the zero-nonzero pattern N is not inertially arbitrary by

Theorem 2.5. It follows that the sets {(0, 0, 3), (1, 1, 1)},
{(0, 0, 3), (2, 1, 0)} and {(0, 0, 3), (1, 1, 1), (2, 1, 0)} are not
minimal critical sets of inertias.
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