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Abstract—Computer modeling has played a unique role in 

understanding electrocardiography. Modeling and simulating cardiac 
action potential propagation is suitable for studying normal and 
pathological cardiac activation. This paper presents a 2-D Cellular 
Automata model for simulating action potential propagation in 
cardiac tissue. We demonstrate a novel algorithm in order to use 
minimum neighbors. This algorithm uses the summation of the 
excitability attributes of excited neighboring cells. We try to 
eliminate flat edges in the result patterns by inserting probability to 
the model. We also preserve the real shape of action potential by 
using linear curve fitting of one well known electrophysiological 
model. 
 

Keywords—Cellular Automata, Action Potential Propagation, 
cardiac tissue, Isotropic Pattern, accurate shape of cardiac action 
potential.  

I. INTRODUCTION 
OMPUTATIONAL systems biology is an emerging field 
that provides tools to model and analyze complex 
dynamic systems such as the heart [1] Computer models 

have long been used for the simulation of electrical activity in 
the heart[2]. The goal of modeling cardiac tissue is to provide 
a platform to study and understand the features underlying the 
spread of electric activity through the cardiac tissue [1]. 

The modeling of electrical propagation in cardiac tissue has 
been approached using a number of distinct methods, each 
with different degrees of realism, complexity and 
computational cost [3].  Cellular Automata (CA) models can 
be valuable tools to assist in studying the complex process of 
propagation in the heart [4]. The CA model uses a simple set 
of rules to represent the complex physiological processes that 
result in electrical impulse generation, conduction and 
propagation. The simplicity of the assumptions allows one to 
simulate wave propagation within a realistic whole heart 
model [4]. 

CAs is dynamical systems in which space and time are 
discrete. The cells are arranged in the form of a regular lattice 
structure and each must have a finite number of states. These 
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states are updated synchronously according to a specified 
local rule of interaction. At each step, each cell computes its 
new state from that of its close neighbors. Thus, the laws of 
the system are local and uniform [5] 

The neighborhood is described by specifying the set of cells 
that neighbor a given cell. For a square lattice, two types of 
neighborhood are typically used. The first one, the generalized 
“Von Neumann” neighborhood (the cells above, below, right 
and left from a local cell) and the second, the “Moore” 
neighborhood (the eight cells surrounding a central cell)[5]. In 
this paper, both “Moore” and “Von Neumann” are studied.  

Excitable media exist popularly in nature [6]. The study of 
excitable media is important in understanding the behavior of 
complex systems such as mold growth, star formation, and 
cardiac tissue contraction [7]. The cells in CA model which 
constitute the cardiac muscle tissue have special properties 
which allow to consider the cardiac tissue to be the excitable 
medium, i.e., the medium which have the ability to propagate 
signals without damping [8]. The properties of nonlinear 
waves in excitable media have been a focus for studying [6].  
As a kind of simple waves, ring waves and spiral waves [9]are 
studied in this paper (see fig. 1).  

The model presented for action potential propagation in 
excitable media must be able to show these patterns. Ideally 
waves generated by computer models should be as circular as 
possible avoiding flat edges. 

Whilst CA models are efficient they exert problems such as 
a lack of curvature in the spiral waves generated. Solutions to 
create this curvature have been proposed but many of them 
require complex operations which significantly decrease the 
performance of the CA models. 

 
 

                      
(a)                         (b) 

Fig. 1 Wave propagation patterns including (a) ring pattern (b) 
spiral pattern 
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that simulates complex electrophysiological phenomena and 
does not require a sophisticated computing infrastructure. Our 
model can produce isotropic patterns from a simple 
probabilistic rule by using minimum neighbors. 

In this paper, we propose a new model for simulating action 
potential propagation in cardiac tissue using cellular automata 
concepts, together with accurate action potential morphology 
for the ventricular cells. We discuss the sensitivity analysis in 
our presented model. We also find the minimum 
neighborhood between “Moore” and “Von Neumann” 
neighborhoods for optimization of our model. We shall show 
qualitatively that our model reproduces cardiac action 
potential propagation with less computational time than 
previous models. 

II. CELLULAR AUTOMATA MODELS OF PROPAGATION IN 
EXCITABLE MEDIA 

An early CA model for atrial flutter consisting of states and 
transition rules was the Moe et al. [10]model. He considered 
five states for his model; consist of one state for resting, one 
state for being fully excited and three intermediate states for 
describing different refractory levels (fig. 2 (a)). Six neighbors 
were assumed for each cell with regard to hexagonal shape 
cells (fig. 2 (b)). A spiral wave generated by Moe model in 
cardiac tissue after 184 sec. is shown in fig. 3 below. 

  One problem of this model is its lack of isotropy means 
the model does not provide precise representation of the shape 
of cardiac spiral wave. Lacked spatial or temporal information 
about the model and the parameters that were used was the 
other disadvantage of this model [4]. Therefore, future models 
were presented more convenient model for excitable media 
relying on the principles used in this model. 

Gerhardt [11]reproduced wave curvature using a CA by 
introducing two variable u and v for the excitation and the 
recovery value for each cell. The variable u can have a value 
of 0 or 1, while the variable v can have a value between 0 and 
vmax which is determined before by the model. This model 
presented a near isotropic pattern by using square 
neighborhood with a radius of 3 (containing 48 neighbor for a 
central cell), as depicted in fig. 4 (a). Although the model used 
large number of neighbors for a central cell, flat edges in 
result patterns were observed over large distances. By using 
this amount of neighbors, the advantage of applying CA was 
ignored and the speed of simulation in large scale reduced 
significantly. 

 
 
 
 

 

 

Fig. 2 (a) 6 neighbours of a central cell in Moe method. (b) schematic 
representation of the five states of activity 

0 10 20 30 40184  

Fig. 3 Spiral wave produced by Moe model in arbitrary time (t=184) 
in which black colors shows fully excited cells is displayed. It also 
shows resting and refractory states by White and gray colored cells 

respectively. 

A model of excitable Media to achieve the same goal of 
isotropy by creating some changes in Gerhardt idea was 
proposed by Markus [12]. He reduced two variables u and v 
into one variable S. This new variable can have the value 
between 0 and N+1. He showed the quiescent state and fully 
exciting state by S=0 and S=N+1, respectively. Any value of 
S between 1 and N was the representative of the recovery state 
of a cell. Each cell had a point placed at a random position 
inside of it. A cell’s neighbors are those which have their 
random point within a circular radius of the local cell’s own 
random point (fig. 4 (b)). By this method, Markus achieved 
Isotropy. The achieved spiral pattern was shown in fig. 5 (a). 
Because of this circular neighborhood, a square root operation 
was needed for each pair of 2 points and therefore the 
simulation was taken long time. 

Another models which attempted isotropy was proposed by 
Weimar [13], [14] containing weighted mask for expressing 
the premiership of nearer and farther neighbors. These 
weights were proceeded to 19 or 20 for close neighbors. A 
square neighborhood with the radius of 7 was used in this 
model. In these models anisotropy of wave propagation is not 
completely eliminated, either. This kind of large-scale 
simulation is only feasible with parallel processing rather than 
with conventional serial computing [2]. And this is the only 
problem of these models. 

These models recover curvature well; however anisotropy 
of wave propagation is not completely eliminated. 

 

             

(a)             (b) 

Fig. 4 (a) Graphical representation of a cell with a radius of 3, (b) an 
example of Circular neighborhood of the Markus mode [12] 
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(a)         (b) 

Fig. 5 A spiral wave generated (a) by the Markus model (b) by 
Weimar model on a 686*960 cell domain [14] 

III. METHOD 
In this section, we describe in detail the cellular automata 

model used in this paper. 

A. The geometry of ventricular action potential 
In fig. 6, the ventricular action potential (AP) can be 

divided into 5 states. A cell’s relaxed state is shown by state 4. 
In this case, quiescent cells are polarized with a 
transmembrane potential equal to −90 mV. If a cell has a large 
enough current applied, the cell begins an action potential 
starting with state 0. This sharp rise is called the upstroke. 
Once, this upstroke has reached its maximum value, the cell’s 
voltage declines slightly during state 1. Next, the cell reaches 
state 2 which is a voltage plateau which makes up the majority 
of the action potential’s length (Action Potential Duration1). 
Finally, during state 3 -which is called refractory state- the cell 
moves back towards the relaxed state of state 4.  

 For inserting the geometry of ventricular action potential  
to our model, the action potential is defined by means of a 
piece-wise linear function fitting as shown in fig. 7, where 
each linear segment is associated to a different state of AP. 

In our case, we used a prototype action potential obtained 
from the model called Noble 2000. This model was found in 
COR2 software [15]. We choose our appropriate action 
potential by fitting the states of AP according to fig. 8. 

According to fig. 8, the gradient of fitted action potential in 
state 1 is 65.39. This value in state 2 is -0.42. And -2.49 in 
state 3 is discovered. 

 
Fig. 6 An example of Ventricular Muscle Action Potential [16] 
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Fig. 7 An approximate action potential used in this research 

0 50 100 150 200 250 300 350 400 450
-100

-80

-60

-40

-20

0

20

40

60

80

 

Fig. 8 Noble 2000 action potential model (black line) with its fitting 
curve (gray dash line) with a proportion of 1/2.8 

B. Action potential propagation model 
In this section, we describe the rule of CA model which 

reproduces isotropic patterns for cardiac action potential 
propagation. 

The basic rules for our model are an extension of the 2-D 
cellular automaton model first described by Markus with 
fewer neighbors. In this paper, we use both “Moore” and 
“Von Neumann” neighborhoods and introduce St

mn like the 
one proposed by Markus. Where m, n and t denote the row 
number, column number, and the time step, respectively, 
when the situation will be studied. 

Here St
mn is defined by the sum of values of the states ut

mn at 
the time t over the neighboring cells. In fact, we use this 
method to eliminate flat edges in result patterns. The state 
variables ut

mn and vt
mn are introduced like Gerhard’s ones. But 

in our model, each of the state variables can take values from 
0 up to N-1. N is a parameter of the model which shows the 
number of discrete states between resting and fully excited in 
excitability (ut

mn) and recovery (vt
mn) variables. 

All cells in the CA network are governed by the uniform 
rule. Schematic representation of the model is shown in fig. 9. 

The cell first increases its excitability value by uup at each 
time step (t) until u=N-1. Then; the refractory value rises by 
vup at each time step until v=N-1. And u decreases by u2, 
simultaneously. Next; u decreases by uDown at each time step 
until u=0. Finally; v begins decreasing by vDown at each time 
step until v=0. At this point; u=0 and v=0, and the cell is back 
at its relaxed state. 

In other words; the transition rule is as follows: 
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1) If St
mn is greater than the threshold of excitation (Δ) 

and vt
mn =ut

mn=0, the cell will be excited in next time step. In 
this case, ut+1

mn=uup and vt+1
mn=0.  

2) If St
mn < Δ and vt

mn =ut
mn=0, the cell stays at its 

previous state. We should remind that the parameter Δ must 
be in the range of 0<Δ<2N and 0<Δ<N in the case of 
“Moore” and “Von Neumann” neighborhoods, respectively.  

3) Once vt
mn+ut

mn≠0 and a cell has enough excited 
neighbors to meet its excitability variable, the cell moves 
through the transitions given in fig. 9. 

If u2 = uDown; the atrial action potential (triangular shape) 
can be seen that can be used for studying the arrhythmias in 
atrial for future researches. 

After discussing the model with constant parameter Δ, two 
different threshold Δ 1 and Δ 2 with probability of P will be 
used in fallowing section. We can achieve the isotropy to the 
model by using Δ 1 and Δ 2 added randomly over the cells as 
shown in fig. 10.  

 
 
 
 

 

 

 

Fig. 9 The diagram which represent the state transitions of a cell 

 

 

 

 

 

Fig. 10 two different thresholds ( 1Δ  and  2Δ  ) are distributed 
randomly over the lattice 

IV.  RESULT 
The simulation code was done using both dev-c++ the 

Matlab® computational software package (The MathWorks 
Inc.) The source code is available to interested parties as per 
request to the author. 

The cellular automata model comprises a grid of Ni × Nj 

rectangular cells. Firstly, the effect of variables N, Δ, two 
different threshold Δ 1 and Δ 2 with probability of P and 
different neighborhoods are tested in network with 50×50 and 
150×150 cells. We discuss the nature of the patterns and 
obtain some important results regarding the construction of an 
isotropic pattern. Secondly, the action potential geometry 
added to the model by means of a piece-wise linear function 
fitting of Noble 2000 action potential geometry as mentioned 
before. Then, action potential propagation is simulated by our 

CA model. 
a) The effect of Δ on producing or eliminating flat edges 

in result patterns is studied in this section. Fig. 11 shows the 
action potential propagation simulated with the N value of 10, 
uup = 1, uDown = 1, u2 = 0.2, Δ=2 and Δ=3. It can be observed 
that the threshold value of 3 gets octagonal pattern. And a 
Quadrilateral pattern is obtained for Δ=2 and a dodecagonal 
pattern for Δ=6. As a result, by greater Δ, the obtained pattern 
is more isotropic. It has less flat edges and it is more similar to 
ideal ring pattern shown in fig. 1 (a). 

b) The effect of N on result patterns is depicted in fig. 
12. It is obvious that the result do not impress by various 
values of N. By greater N, the thickness of pattern is 
increased.   

According to figures 11 and 12, we can control the shape 
and propagation speed of the generated patterns by choosing 
an appropriate value of the threshold.  

c) The effect of different neighborhoods on producing or 
eliminating flat edges in result patterns is studied in this 
section. In fig. 13 and fig. 14, the comparison of two different 
neighborhoods used in this paper is mentioned. It can be seen 
that using “Moore” neighborhood has appropriate result in 
generating isotropy. In fact, eliminating flat edges by reducing 
the neighbors from “Moore” up to “Von Neumann” proved 
less successful. So we will continue to use a “Moore” 
neighborhood for the remainder of our work. 

d)   Action potential propagation in a network of 10000 
cells with Δ=3 is shown in fig. 15 (a). However, using two 
different threshold values Δ 1 and Δ 2 is depicted in Fig. 15 (b) 
for comparison. Using these two distinct threshold value 
inserted randomly in the lattice, can generate isotropic patterns 
as shown in fig. 15 (b). As a result, using this method has 
appropriate effect on eliminating flat edges. 
 
 
 

                 

(a)           (b) 

Fig. 11 ring pattern obtained by above method with N=10, uup= uDown 
=1, u2 = 0.2 and (a) Δ=2 (b) Δ=3. Part b in this figure is more similar 

to fig. 1 (a) which is shown ideal ring pattern. 

               
(a)         (b) 

Fig. 12 effect of N on presented model at a network of 10000 cells 
with Δ=3 and (a) N=7 (b) N=10 
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(a)         (b) 

Fig. 13 spiral wave generated by using (a) Moore neighborhood (b) 
Von Neumann neighborhood.  

 

         
 (a)         (b) 

Fig. 14 ring pattern obtained by using (a) Von Neumann 
neighborhood (b) Moore neighborhood. 

 

            
(a)          (b) 

Fig. 15 a network of 22500 cells with N=10 and (a) Δ=3 (b) Δ1=3 
and Δ2=7 

e) In this section, the geometry of action potential is 
inserted to the model as described before. We show 
propagation of AP on a 2-D square lattice with the above 
simple rule, using “Moore” neighborhood as a minimum 
neighborhood described before.  

Normal ventricular action potential propagation is 
simulated in a 2-D cardiac tissue by using Noble 2000 AP 
geometry, as shown in fig. 16. The membrane potential is 
represented depolarized and hyperpolarized tissue by white 
and black colors, respectively. 

Abnormal action potential in 2-D cardiac tissue based on 
Noble 2000 geometry is shown in fig. 17. As it can be seen, 
the spiral wave is more isotropic and is similar to ideal one 
shown in fig. 1 (b). Meanwhile, the shape of action potential 
in our proposed model is more compatible with real APs. 

It is obvious that this model is faster than Markus model as 
it needs no complex operations such as square root 
calculations. The Markus model used circular neighborhoods 
but the calculation of distances using square root calculations 
proved extremely slow. However, in our model the transition 
rule depend on the sum of the excitability attributes of excited 
neighboring cells. 

V. CONCLUSION 
In this paper we discussed new computational aspects of 

modeling excitable media using cellular automata. Then, we 

developed the model of excitable media in order to simulate 
cardiac electrical activity. In this paper, a new cellular 
automata model for action potential propagation was 
presented with fewer neighbors compared to previous studies.  

The effect of model parameters (Δ and N) on the isotropy 
and speed of run time was survived in this research. By 
inserting probability in threshold value of our CA lattice, we 
avoided flat edges in result patterns. We also find Moore 
neighborhood as the minimum neighborhood of the presented 
model. 

By means of a piece-wise linear function fitting Noble 2000 
action potential shape, an accurate AP was achieved. By 
applying this model to a square network, the AP propagation 
was simulated and an isotropic spiral wave was obtained. 

 

           
 
 

              

          Fig. 16 Linear wavefront propagation in 2-D cardiac tissue. 

 

 
Fig. 17 Spiral wave generated by presented model with Noble 2000 

AP geometry. 
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