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Abstract—An important step in three-dimensional reconstruction 
and computer vision is camera calibration whose objective is to 
estimate the intrinsic and extrinsic parameters of each camera. In this 
paper, two linear methods based on the different planes are given. In 
both methods, the general plane is used to replace the calibration 
object with very good precision. In the first method, after controlling 
the camera to undergo five times’ translation movements and taking 
pictures of the orthogonal planes, a set of linear constraints of the 
camera intrinsic parameters is then derived by means of homography 
matrix. The second method is to get all camera parameters by taking 
only one picture of a given radius circle. experiments on simulated 
data and real images,indicate that our method is reasonable and is a 
good supplement to camera calibration. 

Keywords—camera calibration, 3D reconstruction, computer 
vision

I. INTRODUCTION

  Camera calibration is a necessary and very important step 
in three-dimensional reconstruction in order to extract metric 
information from 2D images. One of the tasks of computer 
vision is to calculate the geometry information of the image by 
the camera and then reconstruct and recognize the object based 
on this information. The relation between the points on the 
object surface(3D) and the corresponding points on the 
images(2D) lies on the geometrical model of the camera. The 
parameters of the geometrical model are the different 
combination of the camera parameters. The process to get these 
parameters by the calculation and the experiments is camera 
calibration [1]. 

Much work has been done. The methods of camera 
calibration mainly include: the traditional methods, the 
self-calibration methods and the active motion based methods. 

Traditional method is also called photogrammetric 
calibration[2-3]. Calibration is performed by observing a 
calibration object, as shown in figure 1, whose geometry in 3D 
space is known with very good precision. Using image process 
and mathematical translation, all camera parameters will be 
gotten and calibration can be done very efficiently. This 
method is under the limited conditions, such as calibration 
object with given figure and size. So traditional calibration 
requires an expensive calibration apparatus and an elaborate 
setup. 
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Fig. 1. The calibration object 

Manybank and Faugeras first proposed the self-calibration 
based on Kruppa equation [3]. Many researchers put forward 
some similar methods recently [4-8]. All of these methods are 
based on the absolute conic and absolute quadric, which need to 
work out the non-linear equations of several values. Though 
this method is flexible, it has large computational complexity. 
The greatest shortcoming of self-calibration is the lack of 
robustness. For solving these problems, some researchers 
advance the active motion based camera calibration. 

In active methods, camera calibration is undergoing with the 
known motion of the camera [9]. The known motion 
information includes the quantitative and qualitative 
information. Up to now, active methods focus on linearly 
working out the model parameters with minimum limitations to 
the motion of the camera. However, minimum limitation 
doesn’t means without any restriction.  If there are no 
limitations, the calibration goes back to solve the nonlinear 
optimization and this method is the same with the 
self-calibration. 

In this paper, two different linear camera calibrations are put 
forward. In both methods, the general plane is used to replace 
the calibration object with very good precision. With the 
characters of the orthogonal planes, the homography matrix in 
the first method defines the constraint equation of the intrinsic 
parameters. In second method, we get the all camera parameters 
by taking only one picture of a given radius circle at the 
optional direction. It uses the coordinates of the special points 
and ellipse equation to define the constrain equations of the 
parameters of the camera.

II. CAMERA MODEL AND BASIC EQUATIONS

The camera parameters are always relative to some kind of 
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the geometric model.  The pinhole is the basic model of the 
camera calibration, which is showed in figure 2. Camera 
calibration is the method of parameterizing and acquiring with 
accurate geometric knowledge of the camera system.In general, 
camera calibration should calculate the following parameters: 

1. Intrinsic parameter, which describe the optic and 
geometric characters of camera, such as the focus, the 
scale factor and lens distortion; 

2. Extrinsic parameters, which describe the camera 
coordination relative to the word coordination system, 
such as the rotation and translation. 

Fig. 2. The model of pinhole 

Usually, the camera intrinsic parameters matrix is expressed 
as following: 
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Then the relation between the coordinates of the point 
X =(Xw, Yw, Zw, 1) in world coordination system and its 
corresponding point U=(u, v, 1) in projected image is:  

( )U K R T X MX                                 (2) 

Where ax=f/dx, ay=f/dy, (u0,v0) delegates the intersection point 
of the optical axis and the image plane, that is, the coordinates 
of the principal point. Each pixel’s sizes in x-axis and y-axis in 
the image are dx, dy respectively, and s means the distortion 
factor.  is an arbitrary scale factor and means that equation 2 
would have the exclusive meanings without the non-zero 
constant factor. (R ,T) called the extrinsic parameters, is the 
rotation and translation matrixes which relates the camera 
coordination system to the world coordination system. 

III. SOLVING STRATEGY OF THE TWO PROPOSED CALIBRATION

A. Camera Calibration based on the Orthogonal Planes 
When the points in the 3D word coordinate system are in the 

same plane , the homography matrix can exclusively 
determine the relation of the corresponding points in the two 
projected images [10-11].  

2 1U HU                                        (3) 
Where,  indicates having the same meanings without the 
non-zero constant. When the plane  has no crossing point with 
the optics center of the camera, the homography matrix rank is 
three. And the corresponding point of a certain point can be 
uniquely attained by equation 3. The equation of the plane  is 
expressed as nX=d, where n is the unit normal vector of the 
plane , and d denotes the distances from the origin of 
coordinates to the plane , then, there are some equations as 
following.  

11U KX (4)
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Consequently, the homography matrix can be represented as 
following.  

11( )
d

H K R Tn K                         (6) 

The matrix having difference of a non-zero constant with 
homography matrix is also called homography matrix. 
Especially, the matrix in equation 6 without  is standard 
homography matrix. 

When the camera only has the translation movements, that is, 
R=I. Then, we can get: 

11( )
d

H K I Tn K                        (7) 

As for a pair of orthogonal planes, 1: n1X=d1, 2: n2X=d2,
because the orthogonality of these two planes, then we can easy 
attain that n1n2

T=0. The two homography matrixes: H1, H2, of 
the two orthogonal planes: 1, 2, can be determined by the 
camera’s translation movement (I, T) respectively. 
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According to n1n2
T=0, we can get: 

1 1( ) ( ) 0T T
1 2H I KK H I                 (9) 

Let’s C=KKT, then: 

1 1( ) ( ) 0T
1 2H I C H I                  (10) 

Then we get: 
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Since rank (KTnK-1)=1, we can get rank(H- I)=1. There is 
only one linear constrain of C. It needs five constraint 
equations to determine C at least. Therefore, the camera should 
perform five times’ translation movements. Then we can get 
the intrinsic matrix K by Cholesky factorization. 

By above steps, the homography matrix H can be determined 
after the camera’s translation movement every time. Generally 
speaking, the homography matrix H3×3 can be obtained through 
four pairs of corresponding points in different images. At the 
same time, because of rank (H- I)=1, then as for the entire 
second determinant of (H- I), we can get det (H- I) 2×2=0.
Then we can work out the the unique value of .

The process of determining the corresponding relation of the 
points in two images is important. It needs to match the 
characters of the different images. Character match is the focus 
and difficult in computer vision. At the same time, it also needs 
to determine the corresponding relation of the points in the 3D 
plane and those in 2D images. When we select many points, the 
process will be complex and difficult. Simultaneity, in 
traditional methods with calibration object, the points projected 
by the 3D points do not always correspond with one pixel in 2D 
images. To achieve precision, we need correspond them with 
the pixels, even sub-pixels. 

To avoid the above problems, we design a plane that has five 
lines: four parallel lines and a line that cuts the four parallels at 
four points. We use Hough Translation to get the equations of 
the lines and can further attain the coordinate of the 
intersections. Because the camera only has the translation 
movement, under the condition of properly arranging the 
position of the five lines, the relative position of the four 
intersections will not be changed. So we can get the 
corresponding relations of the four crossing points without 
matching. At the same time, this method gets the coordinates of 
the intersections by the lines equations, which avoiding 
corresponding these points with pixels or sub-pixels in 2D 
images. 

According to the above analysis, the steps of the calibration 
based on the orthogonal planes are as following: 

1. Control the camera to perform five times’ translation 
movements; 

2. Determine the homography matrixes H1, H2 of the 
planes 1, 2 after the camera’s translation movement 
every time and calculate the i;

3. According to equation 10, we can get the linear 
constrain equations of the intrinsic parameters of the 
camera.

We can attain C by working out the above equations and 
then further get the intrinsic parameters matrix K by Cholesky 
factorization.

B. Circle based Camera Calibration 
The first calibration method replaces the calibration object 

with general planes. The calibration process is simplified to a 
great extent by avoiding matching the corresponding points in 
2D images. However, this method confines the camera to have 
five times’ translation moments, and we only attain camera 

intrinsic parameters o. 
In this paper, another one is brought forward: the linear 

calibration method base on circle. This method inherits the first 
method’s advantages, which using a simple plane instead of  
the calibration object with very good precision. In addition,  it 
is to get all camera parameters by taking only one picture of a 
known radius circle with two lines crossing the center of it at 
any direction. The method uses Hough Transform to attain the 
equations of the circle and the lines and farther gets the 
corresponding point information by the intersections between 
the circle and the two lines. 

Without loss of generality, we suppose Zw of the points on 
the planes is equal 1, and then according to equation 2, we can 
get: 

( ) )
1
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w w

w w

w
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In world coordination system, the circle with the center (X0,
Y0, Z0, 1) and radius  can be expressed as the curve of 
intersection of the sphere and a plane, where the sphere is with 
center  (X0, Y0, Z0,1) and radius , the plane is Z= Z0. Then the 
equation of the circle is expressed as: 

0

0
Z Z

TX QX                                 (12) 

where X=(Xw ,Yw , Z0 ,1)T
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Then the points in the circle after projection can satisfy the 
following equation: uTPu=0 where

TQ M PM         (14)

The sign  has the same denotation as that of equation 3, and 
means to have the exclusive meanings without the non-zero 
constant factor.  

Usually, the circle in the plane will be projected an ellipse on 
the image. The equation of the ellipse can be directly attained 
using Hough Translation. In other words, we can directly get 
the matrix P.

2 22 2 2 0Au Buv Cv Du Ev F           (15) 
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       (16) 

We suppose that the coordinate of the circle center in world 
coordination system is (0, 0, 1), and then we can get: 
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2

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

Q
                         (17)

Then according to equation 14, we can get:

2
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0 0 1 1
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T TQ M PM M M       (18) 

Usually, after the projection, the center of ellipse isn’t the 
center of the circle [10]. Using two lines through the center of 
the circle, we can easily determine the projection position (u0,
v0) in the image of the circle center. Then according to equation 
11, we can get: 

0

1 0

0
0
1

1
1

u
v M

                                 (19) 

There are six intrinsic parameters and six extrinsic 
parameters in matrix M. According to equation 16 and 19, we 
can get the twelve linear constraint equations. By working out 
these equations, we can get the matrix M. Then further figure 
out the intrinsic and extrinsic parameters of the camera.. 

IV. CALIBRATION EXPERIMENTS

The calibration method based on the circle has smaller 
calculation complexity than the first method. It doesn’t need the 
additional parameters, such as homography matrix H.
Therefore, the second calibration method has smaller relative 
error in theory than the first method. In this paper, we mainly 
make experiments and analysis of the calibration method based 
on the circle. 

A. Simulation Experiment 
Firstly, we use synthetic data to evaluate the performance of 

our algorithms in presence of noise. By calculating the intrinsic 
parameters at different noise levels, we can get the stability of 
our algorithms. 

We use the FUJIFILM-FinePix6900ZOOM camera to take a 
picture of a circle with 70mm radius as shown in figure 3. 

Fig. 3. The picture of a circle with 70mm radius 

In
table 1, Gaussian noise is added in the projected image. We 
vary the level from 0 to 1.0 of the variance of Gaussian noise, 
and its mean is zero. The results show that the error increases 
with the noise level and the largest relative error is 0.8627%. 

B. Experiment using Real Image 
   The candidate camera is FUJIFILM-FinePix6900ZOOM. 

We take a picture of the circle with 70 mm radiuses. The image 
resolution is 2048×1536. Firstly, we calculate the matrix M
shown in below. 

12.6 0 6.5289597 989.47104
0 5.9 11.70447219 914.295527
0 0 0.014082 0.985917

M

 where =1/0.014082. 
   The camera to be calibrated is a super CCD camera with 

1/1.7 inch’s area. The diameter of its single pixel reaches 
2.94366 m. According to the formula ax=f/dx=|m1×m2| in [2], 
we can get f=26.338671. The relative error of f is 0.0914%. 

V. CONCLUSION

In this paper, two linear calibration methods based on 
different planes are given. The first one is based on the 
orthogonal planes. By controlling the camera to do five times’ 
translation movements, we use homography matrixes and the 
orthogonality of the planes to build the constraint equations. 
Then we can attain the intrinsic matrix K by Cholesky 
factorization. To reduce errors and simplifies calibration 
process, we deduce the second method, which only takes one 
picture of the circle at optimal direction and needs not the 
camera to do extra movements in the whole calibration process 
as that of the first method. Both computer simulations and real 
data to be used to test the feasibility and correctness of the 
second calibration method, and achieves accuracy and reliable 
results. In theory, these two methods are good supplement to 
the camera calibration and would have applied practice in 
computer vision. 
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