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AbstractThe aim of this work is to analyze a viscous flow in 

the axisymmetric nozzle taken into account the mesh size both in the 

free stream and into the boundary layer. The resolution of the Navier-

Stokes equations is realized by using the finite volume method to 

determine the supersonic flow parameters at the exit of converging-

diverging nozzle. The numerical technique uses the Flux Vector 

Splitting method of Van Leer. Here, adequate time stepping 

parameter, along with CFL coefficient and mesh size level is selected 

to ensure numerical convergence. The effect of the boundary layer 

thickness is significant at the exit of the nozzle.  The best solution is 

obtained with using a very fine grid, especially near the wall, where 

we have a strong variation of velocity, temperature and shear stress.  

This study enabled us to confirm that the determination of boundary 

layer thickness can be obtained only if the size of the mesh is lower 

than a certain value limits given by our calculations. 
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I. INTRODUCTION 

HIS article presents a calculation of viscous flow in an 

axisymmetric converging-diverging nozzle.  In the 

present work, we employ a numerical technique to simulate 

the viscous supersonic flow and the boundary layer thickness 

in the nozzle especially at the exit section.  The gas considered 

is the air in a standard state composed of 21% of O2 and 79% 

of N
2
 which is supposed a perfect gas.   

The stagnation parameters are 2000K and 500bars, thus the 

vibration and dissociation of molecules are   neglected.  These 

parameters were selected so that the flow at the exit of the 

nozzle is at 300K, 1bar and with a Mach number equals 5. 

The nonlinear partial derivative equations system which 

governs this flow is solved by an explicit unsteady numerical 

scheme Goudjo [1] and by the finite volume method haoui [2, 

3, and 4]. The flux vector splitting method is used Van Leer 

[5]. Adequate time stepping parameter and mesh size level are 

selected to ensure numerical convergence Haoui [6].It is clear 

that the stationary solution obtained depends on the size mesh 

used in the numerical Discretization haoui [6].   
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We tested convergence for an inviscid flow by using a 

refining of grid which will enable us to have the exact 

solution; after this, we refined again the grid near the wall to 

determine the boundary layer thickness and other parameters.  

 

II.GOVERNING OF EQUATIONS 

In a Newtonian fluid the viscous stresses are proportional to 

the rates of deformation. The three-dimensional form of 

Newton’s law of viscosity for compressible flows involves 

two constants of proportionality, then first dynamic 

viscosity �, to relate stresses to linear deformations, and the 

second viscosity �, to relate stresses to the volumetric 

deformation. The viscous stress components are: ��� � 2� �	�� 
 � �������          (1) ��� � 2� ���� 
 � �������        (2) ��� � 2� ���� 
 � �������        (3) ��� � ��� � � ��	�� 
 �����        (4) ��� � ��� � � ��	�� 
 ���� �        (5) ��� � ��� � � ����� 
 �����        (6) 

 

Not much is known about the second viscosity �, because 

its effect is small in practice. For gases a good working 

approximation can be obtained by taking the value  � � � �� �, 

Schlichting [7].  

 The Navier-stokes equations in a flux-vector formulation 

in Cartesian coordinate system is given by 
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Where the vectors  ", $, % and &are given by 
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The heat flux vector 4 has three components  4�, 4� and 4� 

given by the Fourier’s law of heat conduction relates the heat 

flux to the local temperature gradient. So: 

 4� � �5 �6�� , 4� � �5 �6��  , 4� � �5 �6��      (12) 

 

Where 5 denotes the coefficient of thermal conductivity, it 

is function of Prandtl number, viscosity and specific heat.  

 5 � 71. �/:;         (13) 

 

The energy per unit of mass - is defined as sum of internal 

energy and kinetic energy such as 

 - � <�= 
 >� 2+� 
 � 
 ,�3      (14) 

 

III. AXISYMMETRIC FORMULATION 

We do not lose general information by seeking the solution 

at the points of an infinitely small domain Fig.1.  A method 

developed within the Sinus project of the INRIA Sophia-

Antipolis, Goudjo and Désidéri [1], makes it possible to pass 

from 3D to 2D axisymmetric by using a technique of 

disturbance of domain. Taking advantage of this finding, here 

the problem is considered as being axisymmetric. 

The system of equations (7) can be written as:   

 

    ?-@�<A,B� ��C,D�� 
 ∑ �%A,BF� 
 &A,BG��. HI�����IJK�,�L,�,�MN �O. P�;-�7A,B� � 0                 (15) 

 

Where ?-@�7A,B� is the measurement (in m
3
)
 

of an 

infinitely small volume of center (i,j). P�;-�7A,B� is the surface 

of the symmetry plane passing by the center of elementary 

volume.  HI is the integrated normal.  For a detailed 

calculation of  HI, P�;-�7A,B�  and   ?-@�7A,B�  we refer to 

work of Goudjo [1].  The third term of the equation expresses 

the axisymmetric flow condition.  Flows, W, F, G and H this 

time are given by:   
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Where: ��� � 2/3� �2 �	�� � �����         (20) ��� � ��� � � ��	�� 
 �����         (21) ��� � 2/3� �2 ���� � �	���         (22) ��� � ��� � 0             (23) ��� � 2/3� �� �	�� � �����         (24) ��� � ��� � 0            (25) 

IV. DISCRETIZATION IN TIME 

The present numerical method is based on an explicit 

approach in time and space.  The step of time ∆t is such as: 

 

   ΔUA,B � ?�V W�X�.Y�Z[\[]I� , �2X�3^.Y�Z�_ �`      (26) 

 

The CFL (Courant, Friedrich, Lewis) is a stability factor 

Hoffmann [8]. V is the velocity of the flow and Pthe speed of 

sound. Δa is the small length of the mesh at the same point (i, 

j). At each time step and for each point (i, j), the system of 

equations (27) can be written as:   

 

       "A,Bb]> � "A,Bb � ∆�C,Ddef�YC,D�  ∑ �%A,Bb F� 
IJK�,�L,�,�LN&A,Bb  G�� HI����� 
 ∆UA,B  IAge�YC,D�def�YC,D�  OA,Bb            (27) 

 

 

 

 

The choice of the grid plays an important role in 

determining in the convergence of calculations.  Therefore, it 

is indeed advisable to have sufficiently refine meshes at the 

places where the gradients of the flow parameters are 

significantly large. 
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V. DECOMPOSITION OF VAN

 In this study, the decomposition of  Van

selected, namely a decomposition of flows in two parts   

and h\Z]   .This decomposition must apply to the present two

dimensional problem by calculating the flow within each 

interface between two cells. Moreover, through this interface, 

the normal  direction is paramount, thus, a change of reference 

mark is applied to place in the reference mark of the interface 

and its normal by the intermediary of a rotation 

The vector "�  (variable of Euler)  is written

new reference mark  

 

"�i � j ** �b����* - k   

where  �b����  is obtained from  ��� , via the rotation 

following way: 

 ��� � �+� l  ���b � �+bb� � � <m@ n�@�V n
 

where: 

 <m@ n � op[o���[   ,      @�V n � oq[o���[ 
 [H�[ � rH�� 
 H��   

 

 

The overall transformation  R  is written overall  

 s � � <m@ n @�V n� @�V n <m@ n�      
    stu � �<m@ n �@�V n@�V n <m@ n �        

 

Moreover, at each interface � 
 1/2,  two  neighbor states

and � 
 1 are known. Thus, one can calculate the one

dimensional flow  F  through the interface, total flow 

being deduced from   F  by applying the opposite rotation, as:  

 h2", H�3 � [H�[. stu�%2"i3�  

 

This property makes it possible to use only one component 

of  flow f (F  for example) to define  the decomposition of 

flow in two dimensions.  Moreover, this method is  much easy 

and simple to implement than the decomposition of flow  in 

two dimensions  h � %H� 
 &H� . 

The expressions of  %\Z] 2"i3 and  %\Zt 2
defined like the transform of W   by rotation 
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In this study, the decomposition of  Van-Leer [5] is 

selected, namely a decomposition of flows in two parts   h\Zt   

.This decomposition must apply to the present two-

problem by calculating the flow within each 

interface between two cells. Moreover, through this interface, 

the normal  direction is paramount, thus, a change of reference 

mark is applied to place in the reference mark of the interface 

e intermediary of a rotation R, Fig. 2. 
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This property makes it possible to use only one component 

for example) to define  the decomposition of 

flow in two dimensions.  Moreover, this method is  much easy 

and simple to implement than the decomposition of flow  in 

2"i3, where  "i
 is 

by rotation R,  are:   
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Where  �b � +b P⁄  ,  +b
reference mark of the interface.

VI. BOUNDARY 

Open (far field) boundary conditions give the most serious 

problems for the designer of general purpose CFD codes. All 

CFD problems are defined in terms of initial and boundary 

conditions. It is important to specify these correctly and 

understands their role in the numerical algorithm. In transient 

problems the initial values of all the fl

specified at all solution points in the flow domain. Since this 

involves no special measures other than initializing the 

appropriate data arrays in the CFD code we do not need to 

discuss this topic further. The present work describe

implementation of the following most common boundary 

conditions in the discredited equations of the finite volume 

method: inlet, outlet, wall and symmetry, fig.1.

 

 

 

Fig. 1 Boundary conditions

 

 

 

A. Inlet boundary conditions

At the inlet the pressure and temperature are fixed, but the 

law rate of the flow, M=0.019, obligate us to leave floating 

one of flow parameters. Here, one chooses to extrapolate the 
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b and  b are the velocity in the 

reference mark of the interface. 

OUNDARY CONDITIONS 

Open (far field) boundary conditions give the most serious 

of general purpose CFD codes. All 

CFD problems are defined in terms of initial and boundary 

conditions. It is important to specify these correctly and 

understands their role in the numerical algorithm. In transient 

problems the initial values of all the flow variables need to be 

specified at all solution points in the flow domain. Since this 

involves no special measures other than initializing the 

appropriate data arrays in the CFD code we do not need to 

discuss this topic further. The present work describes the 

implementation of the following most common boundary 

conditions in the discredited equations of the finite volume 

method: inlet, outlet, wall and symmetry, fig.1. 

 
 

1 Boundary conditions 

Inlet boundary conditions 

At the inlet the pressure and temperature are fixed, but the 

law rate of the flow, M=0.019, obligate us to leave floating 

one of flow parameters. Here, one chooses to extrapolate the 
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module of velocity from the interior of the solution domain. 

This correction allows an adjustment of the flow rate.  

B. Body surface 

The no-slip condition for the velocity is usually used at the 

body surface. The temperature gradient at the wall is zero, in 

accordance with the Fourier equation of heat conduction in the 

y-direction together with the assumption of zero heat flux at 

the wall. In this study, we suppose the temperature at the wall 

is equal the stagnation temperature of free stream. The wall 

shear stress is calculated by: 

 �� � � ��\��b ��I��         (37) 

Here we assume that the coordinate of the unit vector U is in 

the direction of the shear force at the wall and the unit vector  V is normal at U, Ferziger [9]. 

C.     Axis of symmetry  
The conditions at a symmetry boundary are: (i) no flow 

across the boundary and (ii) no scalar flux across the 

boundary.  

D. Outlet boundary conditions 

At the exit of the computational domain the flow is 

supersonic and the values of the flow parameters are 

extrapolated from the interior values, including in the 

boundary layer. 

VII. RESULTS AND INTERPRETATIONS 

The nozzle tested made up  of convergent of conicity ����� � ��°  followed by an arc of which the radius   � � ��� 

and then divergent of conicity ���� � u�° fig. 2. The 

stagnations pressure and temperature are 100bars and 2000K 

respectively. The Mach number desired at the exit of the 

nozzle is 5. The simple laws of a one-dimensional isentropic 

flow provide us a radius at the exit of the nozzle ���� ��. �� � for the throat radius  �� � �. �u�. The diverging 

length is thus   ��� � �. ��¡�. In our calculations we used 

several sizes of grid while starting with that of figure 2 

(116x10), 116 mesh along the axis and 10 mesh along the 

radius, and then sizes (223x20), (350x30), (466x40), (583x50) 

and (700x60) with an aim of seeing the effect of refinement on 

the obtained results. 

 

 
Fig. 2 Grid of solution domain 

 

 Firstly, one must to fix the residue value from which the 

results remain unchanged. For this purpose we use the grid 

(116x10) since it is the least refined. The parameter which 

interests us much more in this study is the velocity profile in 

order to capture the boundary layer thickness fig .3. We 

observe that the velocity profile is almost the same when the 

order of the residue is 10
-5

 to 10
-6

. In the continuation of our 

work we stop calculations when the residue equal 10
-5

.  

 
Fig. 3 Velocity profile with various residues 

 

 Secondly, one must also fix the size of the grid of the 

calculation field from which the results remain unchanged, 

without refinement in the boundary layer. With this intention, 

one tests six sizes of grid for the same residue fig .4.  It is 

observed that the velocity profile starts to be flattened near the 

wall, ; � 0.05?, when the grid is more and more refined.   

The grid (350x30) is selected since it gives good results and 

requires less time computing. 

 

 
Fig. 4 Velocity profile with various meshes size 

 

 

 Thirdly, one must refine the grid near the wall in order to 

simulate well the flow parameters in the boundary layer, 

especially the velocity profile. With this intention, one 

multiplies the 40% of the meshes near the wall and according 

to the ray, that is to say 12 meshes, each time by 1, 2, 3, 4 and 

5 until where the results remain unchanged fig .5. We notice 

that the velocity profile becomes even more flattened while 

approaching the wall; the velocity on the axis is almost always 

the same. We select the grid (350x78), V� � 350 according to 

x and V£ � 78 according to y, for the final results. One can 

even deduce the boundary layer thickness at the exit of the 

nozzle, when the velocity reaches 95% of the velocity on the 

axis; the boundary layer thickness is 10.7mm, i.e. 21% of the 
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radius. If it is admitted that the boundary layer is to 99% of 

velocity on the axis, its thickness is 18.3mm and it occupies in 

this case 36% of the radius.  

Fig. 5 Velocity profile with various refinements near the wall

 

Another parameter very significant to calculate in this kind 

of flow, it is that of the stress  ���. Figure 6 shows the 

variation of the shear stress along the radius according to the 

refinement of the grid in the boundary layer. This profile itself 

converges to the exact solution for a grid of

observed that the intensity of the stress increases quickly while 

approaching the wall. The viscous stress at the wall

calculated from the all stresses at the same point

shows the variation of the stress   ��I��  along the wall of the 

nozzle without and with refinement in the boundary layer

Fig. 6 Profile of shear stress with various refinements near the wall

Fig. 7 Viscous stress at the wall with refinement

 

If it is admitted that the boundary layer is to 99% of 

velocity on the axis, its thickness is 18.3mm and it occupies in 

 
ofile with various refinements near the wall 

Another parameter very significant to calculate in this kind 

Figure 6 shows the 

stress along the radius according to the 

in the boundary layer. This profile itself 

converges to the exact solution for a grid of (350x78). It is 

observed that the intensity of the stress increases quickly while 

The viscous stress at the wall can be 

tresses at the same point. Figure 7 

along the wall of the 

nozzle without and with refinement in the boundary layer. 

 
6 Profile of shear stress with various refinements near the wall 

 
7 Viscous stress at the wall with refinement 

Concerning the profile of the temperature, 

converges to the exact values

refinement (350x78) fig .8, the wall of the nozzle is adiabatic 

and the profile of the temperature is thus perpendicular to the 

wall.   

 

Fig. 8 Temperature profile with various refinements

 

Finally one represents the flow in the nozzle and one 

compares it with the inviscid flow.  Figure 9 shows the 

temperature distribution in the 

layer thickness is visible near the wall

 

Fig. 9 Temperature contours

 

A comparison with the inviscid flow is represented on 

figure 10. The higher part represents the Mach contours of the 

viscous flow and the lower part re

of the inviscid flow. It is completely clear that the boundary 

layer influences on the flow parameters in the nozzle, for 

example at the exit the Mach number is lower than that of the 

inviscid flow.  

 

 

Fig. 10 Number Mach contours comparison

 

Concerning the profile of the temperature, the solution also 

s of the temperature by using the 

.8, the wall of the nozzle is adiabatic 

temperature is thus perpendicular to the 

 
8 Temperature profile with various refinements 

inally one represents the flow in the nozzle and one 

compares it with the inviscid flow.  Figure 9 shows the 

temperature distribution in the nozzle.  The thermal boundary 

layer thickness is visible near the wall.  

 
9 Temperature contours 

A comparison with the inviscid flow is represented on 

The higher part represents the Mach contours of the 

viscous flow and the lower part represents the Mach contours 

of the inviscid flow. It is completely clear that the boundary 

layer influences on the flow parameters in the nozzle, for 

example at the exit the Mach number is lower than that of the 

 
10 Number Mach contours comparison 
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VIII. CONCLUSION 

In conclusion, we can confirm that the results obtained in 

viscous flow depend strongly on the mesh size in numerical 

calculation. The program converges, certainly, some is the size 

of the meshes used, but the exact solution is obtained only if 

the grid, especially near the wall, is refined much more. The 

approximation by the infinite volumes method with the non 

stationary scheme gave good results. Our code is stable, 

consistent and the solution converges to the exact solution 

when the grid is very small. The exactitude of our code is 

carried out by using a mesh size of (350x78) with a residue of 

10
-5

. We saw that the mesh size influences much more the 

flow parameters in the nozzle, and even on the wall stress. The 

computer codes which do not take into account of the 

refinement of the grid, especially near the wall, their results 

remain at fault compared to the real flow. 
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