
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:1, 2011

96

 

 

  
Abstract—This paper addresses the problem of forbidden states in 

non safe Petri Nets. In the system, for preventing it from entering the 
forbidden states, some linear constraints can be assigned to them. 
Then these constraints can be enforced on the system using control 
places. But when the number of constraints in the system is large, a 
large number of control places must be added to the model of system. 
This concept complicates the model of system. There are some 
methods for reducing the number of constraints in safe Petri Nets. 
But there is no a systematic method for non safe Petri Nets. In this 
paper we propose a method for reducing the number of constraints in 
non safe Petri Nets which is based on solving an integer linear 
programming problem. 
 

Keywords—discrete event system, Supervisory control, Petri Net, 
Constraint 

I. INTRODUCTION 
UPERVISORY control theory which was presented by 
ramadge and wonham is a general theory for controlling 

the behavior of discrete event systems (DES) [1], [2]. This 
theory tries to verify a given specification by restricting the 
behavior of the system. This restriction can be performed by 
disabling some controllable events [3]. 

Automata is a tool for modeling discrete event systems 
which was used by the pioneers of the supervisory control 
theory. Automata is a state-transition tool and when the 
number of states is too large, modeling systems by this tool is 
difficult or maybe impossible [4]. So, Petri net (PN) has been 
proposed as an alternative tool for modeling these systems [5]. 
Compact structure and mathematical properties have made PN 
as a useful tool for modeling discrete event systems. In PNs, 
each event is assigned to a transition and the control is 
performed on the transitions by controllable events 
(controllable transitions). Existing uncontrollable events in the 
system may lead to entering the system in the forbidden states. 
So the system must be prevented from entering the forbidden 
states. But by disabling controllable events in special 
conditions, preventing system from entering the forbidden 
states is possible.  

For preventing the system from entering the forbidden 
states some efforts has been accomplished. In [6] the authors 
proposed to put some conditions on the controllable 
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transitions. These conditions are calculated online and lock the 
controllable transitions in special cases. A similar method is 
presented in [7] by this difference that the conditions are 
obtained from the marking graph and are calculated offline. 
Another method for preventing the system from entering the 
forbidden states is adding some places to the PN model of 
system. These places which are called control places restrict 
the behavior of the system for obtaining the objective 
function. In [8] a method for calculation of control places is 
offered. This method by knowing the forbidden states adds 
some control places to the system to forbid the forbidden 
states. Another method for adding the control places has been 
proposed in [9]. This method adds a control place instead of 
each constraint. 

In [10] a method is proposed for assigning constraint to 
forbidden states in safe PNs. then the constructed constraints 
can be enforced on the system using the idea in [9]. But when 
the number of forbidden states and consequently the number 
of constraints is large, adding control places to the system 
makes the system complicated. In [10], it is shown that the 
number of constraints can be reduced. It means that it is 
possible to use a constraint instead of some constraints without 
forbidding any authorized states. 

In [11] a method for reducing the number of constraints in 
safe PN has been proposed. This method uses the invariant 
and partial invariant properties for this reduction. Another 
method for simplification of constraints in safe PN has been 
proposed in [12] which using the over-state concept reduces 
the number of constraints. In [13] another method is proposed 
that like the last method uses the over-state concept for 
reducing the number of constraints. This method performs the 
reduction by using the relation between the over-states of 
forbidden states and authorized states. But all of the 
mentioned methods are applicable on safe PNs and we cannot 
apply them on non safe PN. 

In this paper we propose an algorithm for reducing the 
number of constraints in non safe Petri Nets by considering a 
generic constraint. In this algorithm, we want to find the 
constant coefficients in the generic constraint to consider it as 
a constraints verifying all the constraints related to forbidden 
states. For finding these constants, we solve an integer linear 
programming problem (ILP) which is composed of some 
inequalities that some of them verify the authorized states and 
some of them violate the forbidden states. When this 
algorithm has an answer, we can reduce the number of 
constraints to one constraint. 

The rest of this paper is organized as follows. In section II, 
the basic concepts which are necessary for presenting the 
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paper are considered. The new method for reducing the 
number of constraints is proposed in section III. Finally 
conclusion is presented in section IV. 

II.  PRELIMINARY PRESENTATION 

A. Place/Transition net 
A PN is represented by a quadruplet R={P, T, W, M0} 

where P is the set of places represented by circles, T is the set 
of transitions represented by bars. φφ ≠∪≠∩ TPTP , . 
W is the incidence matrix and M0 is the initial marking. A 
marking is a 1×m  vector where m is the number of places 
and assigns to each place of a Place/Transition net a non-
negative integer number of tokens. Places and transitions are 
connected together by arcs.  

PNs are divided to two subsets: safe PN and non safe PN. 
Safe PNs are the ones that the number of tokens in its places 
cannot be more than one. But in non safe PNs this number can 
be more than one. 

In an industrial system, the model of system can be divided 
into two sections. The first section is the model of process and 
the next is the model of specification. The process model of 
system is the model of components of system and the 
specification is the model of some conditions that must be 
verified by the system for obtaining the desired behavior. 

In a PN model of a system, all of the states which can be 
obtained by the model compose the set of reachable states and 
this set is shown by MR. In the set MR there may be some 
states that violate specifications or are deadlock states or the 
ones that the occurrence of uncontrollable events leads to 
these states. These states are called forbidden states [12]. So, 
the set MR can be divided to two subsets. The first one is the 
set of forbidden states and is shown by MF and the other one is 
the set of authorized states and is shown by MA. These two 
subsets don’t have any common component. 

In the set of forbidden states, there is a very important 
subset that is called the set of border forbidden states [14]. 
Forbidding these states leads to forbidding all the forbidden 
states. These states are defined as follows: 

Definition 1 ([12]): Let MB be the set of border forbidden 
state: 

},|{ ijAjcFiB MMMandM →∈∃∑∈∃∈=
σ

σ MMM  

Where ∑c is the set of controllable transitions.                  
From definition 1, it is obvious that by disabling 

controllable events when the firings of them are leading to the 
border forbidden states, preventing system from reaching to 
the border forbidden states is possible and then the system 
cannot reach to any forbidden states. 

B. control places 
To calculate the control places corresponding to each linear 

constraint, the method introduced in [9] is used. This method 
is based on the concept of invariant, and now it is briefly 
introduced. Consider the set of constraints as L.MP ≤ b where 
MP is the marking vector, L is a n×n matrix, b is a nc×1 vector, 

nc is the number of constraints and n is the number of places. 
In this method for each constraint, a place is added to the 
model. Let Wp be the PN incidence matrix. For each constraint 
a row is added to Wp and these rows are shown as Wc, 
calculated as follows: 

 
Wc = -L.Wp 

Wc is added to Wp as follows: 
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If the initial marking of the model is MP0, the initial 

marking for the added places is: 
 

Ms0=b-L.MP0 
The final initial marking of the controlled model is: 
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However when the number of control places is large, the 

controller (PN model of system) is complicated. This leads to 
the necessity to reduce the number of constraints [10].  

III. REDUCING THE NUMBER OF CONSTRAINTS 
In a system when the number of constraints is large, a large 

number of control places must be added to the PN model of 
system. But in [10] it is shown that the number of constraints 
can be reduced. It means that it is possible to apply a 
constraint which verifies some constraints. So, very active 
research in the field of reducing the number of constraints 
emerged during the recent years. In [11] a method is proposed 
that reduces the number constraints by the invariant and partial 
invariant properties. This method is applicable on safe and 
conservative PNs. Another method for reducing the number of 
constraints is proposed in [12]. This method is more general 
than the first method and is applicable in safe PN. This 
method uses the over-state concept and chooses the over-states 
which forbidding them lead to the forbidding all of the 
forbidden states and verifying all of the authorized states. 
Then by a method like the McCluskey method for simplifying 
logical expressions, chooses the smallest number of over-
states which forbidding them lead to forbidding all of the 
forbidden states. Another method for reducing the number of 
constraints is proposed in [13] which develops the idea in [12]. 
This method uses the concept of over-state too and can reduce 
the number of resultant constraints by the method in [12]. But 
all of the mentioned methods are applicable on safe PN. 
Therefore, we want to introduce a method which can be 
applicable on safe and non safe PNs. in the next section we 
discuss this problem. 

A. Reducing the number of constraints by considering a 
generic constraint 

In this section we want to introduce a method to reduce the 
number of constraints in safe and non safe PNs. For this 
reason we can consider a generic constraint as follows: 
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k1m1+k2m2+…+knmn≤x                                                    (1) 
where x and ki for i=1,…, n are constants and n is the 

number of places of PN model and mi is the number of tokens 
in place Pi. if we can obtain x and ki for i=1,…, n as the 
mentioned inequality verify all of the authorized states and 
forbid all of the forbidden states, then we can consider the 
resultant inequality as a constraint for preventing the system 
from entering all of the forbidden states. Verifying the 
forbidden states by this inequality are obtained when the term 
(k1m1+k2m2+…+knmn) is smaller than or equal to x for all of 
the authorized states and violating the forbidden states by this 
inequality is obtained when the term (k1m1+k2m2+…+knmn) is 
greater than x for all of the forbidden states. So, to verify the 
authorized states by this inequality, we put all of the 
authorized states in the inequality (1) and obtain a set of 
inequalities. Then for violating the forbidden states by the 
inequality (1), we put all of the forbidden states in the 
inequality (1) and convert the smaller equal sign to greater 
sign to obtain another set of inequalities. Now we consider the 
two sets and solve them to obtain an answer. This is an integer 
linear programming problem where the objective function is: 
minimum (k1+k2+…+kn+x) in which x>0 and ki≥0 for i=1,…n. 
when this algorithm has an answer we can consider a 
constraints for forbidding a group of forbidden states. This 
concept reduces the number of control places which must be 
added to the system. Now we generate this concept in 
algorithm 1. 

Algorithm 1. Let 111 12 1 2
11 12 1 1 2{ ... ,..., ... }ArqA tA A Ar Ar sss s s s

A A A A t Ar Ar ArqP P P P P P=M  

be the set of authorized states and 
MB={ 1 2111 12

11 12 1 1 2... ,..., ...Bg Bg BghB uB B s s sss s
B B B u Bg Bg BghP P P P P P , } the set of forbidden 

states. Follow these steps to obtain a constraint related to these 
forbidden states: 

Step 1: Consider an inequality as follows: 
k1m1+k2m2+…+knmn ≤ x                                                  (2) 

Where n is the number of places and mi is the number of 
tokens in place Pi, and x and ki for i=1,2,…,n are constants. 

Step 2: Put the markings of all the authorized states in the 
inequality (2) and construct inequalities as follows: 

111 12

1 2

11 12 1 11 11 12 12 1 1

1 2 1 1 2 2

... ... (1 3)
.
.
.

... ... ( 3)

A tA A

Arqr Ar

ss s
A A A t A A A A A t A t

ss s
Ar Ar Arq Ar Ar Ar Ar Arq Arq

P P P k s k s k s x

P P P k s k s k s x f

→ + + + ≤ −

→ + + + ≤ −

 
Where f is the number of authorized states. 
Step 3: Put the marking of all the border forbidden states in 

the inequality (2) and convert the smaller equal sign to greater 
sign as follows: 

 

111 12

1 2

11 12 1 11 11 12 12 1 1

1 2 1 1 2 2

... ... (1 4)
.
.
.

... ... ( 4)

B uB B

Bg Bg Bgh

ss s
B B B u B B B B B u B u

s s s
Bg Bg Bgh Bg Bg Bg Bg Bgh Bgh

P P P k s k s k s x

P P P k s k s k s x v

→ + + + > −

→ + + + > −

      
Where v is the number of border forbidden states. 
Step 4: Solve the set of relations (1-3) to (f-3) and (1-4) to 

(v-4) which is an integer linear programming (ILP) problem 
and obtain the minimum values of x and ki for i=1,2,…,n. (in 
this problem the objective function is: 
minimum(k1+k2+…+kn+x) where x>0 and ki ≥ 0 for 
i=1,2,…,n) 

Step 5: If step 4 has an answer, then put x and ki for 
i = 1,2,…,n in the inequality (2). The resultant inequality is a 
constraint for the forbidden 
states 1 2111 12

11 12 1 1 2... ,..., ...Bg Bg BghB uB B s s sss s
B B B u Bg Bg BghP P P P P P . 

                                                                                              
Now, we want to see this concept on the simple example. 
 
Example 1: in this example we consider a net which is 

represented in figure 1. In this example the transition t1 and t2 
are controllable and the transition t3, t4 and t5 are 
uncontrollable.  

 

 
Fig. 1. Nt system used in example 1 

Marking graph of this system is shown in figure 2. In this 
figure, the uncertain states are shown by . These states are 
those which violate specification. For example, when the 
system is in the state 2

1 4 6PP P  firing of the transition t4 violates 
the specification. 

 
 

Fig. 2. Marking graph of the system in example 1 

Looking at the marking graph, the set of authorized states 
is: 
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MA={P1P3P5
2, P1P4P5

2, P1P3P5P6, P1P4P5P6, P1P3P6
2, 

P2P3P5
2, P2P4P5

2, P2P3P5P6} 
And the set of border forbidden states is: 
MB={P1P4P6

2, P2P3P6
2, P2P4P5P6} 

So according to algorithm 1, we consider an inequality as 
follows: 

k1m1+k2m2+…+k6m6 ≤ x                                                  (5) 
Putting the authorized states in the inequality (5) leads to 

the set of inequalities as follows: 
S1={k1+k3+2k5≤x, k1+k3+k5+k6≤x, k1+k3+2k6≤x, k1+k4+2k5≤x, 

k1+k4+k5+k6≤x, k1+k4+2k6≤x, k2+k3+2k5≤x, k2+k3+k5+k6≤x, 
k2+k3+2k6≤x, k2+k4+2k5≤x, k2+k4+2k6≤x} 

And putting the forbidden states in the inequality (5) and 
converting the smaller equal sign to greater sign leads to the 
set of inequalities as follows: 

S2={k1+k4+2k6>x, k2+k3+2k6>x, k2+k4+k5+k6>x} 
Now we must solve the integer linear programming 

problem composed of the inequalities in S1 and S2 and x>0 and 
ki≥0 for i=1,…, 6 where the objective function is minimum 
(k1+k2+…+k6+x). The answer for this example is as follow: 

k1=0, k2=1, k3=1, k4=2, k5=0, k6=1, x=3 
So the inequality (5) is obtained as follows: 
m2+m3+2m4+m6≤3 
Enforcing this inequality on the system prevent it from 

entering the forbidden states. So we enforce this constraint on 
the system using the idea in [9]. The incidence matrix of this 
system is as follows: 

1 0 1 0 0
1 0 1 0 0
0 1 0 1 0
0 1 0 1 0
0 0 1 1 1
0 0 1 1 1

PW

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

 

 
And L=[0 1 1 2 0 1]  
So, Wc=[-1 -1 0 0 1] 
 
Therefore the incidence matrix of the controlled model is as 

follows: 
1 0 1 0 0

1 0 1 0 0
0 1 0 1 0
0 1 0 1 0
0 0 1 1 1
0 0 1 1 1
1 1 0 0 1

W

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The controlled model of this system is shown in figure (3). 
In this figure, the control place and the related arcs are 

shown by gray color. 
As it is obvious in figure 3, we add a control place to the 

system for preventing 3 forbidden states. But by the previous 
methods we must add three control places to the system which 
is a reason for capability of this method. 

 

 
Fig 3. The controlled system in example 1 

IV. CONCLUSION   
In this paper we have dealt with the problem of adding extra 

control places in non safe PN and introduced an algorithm for 
reducing the number of control places. For this reduction, we 
have considered an integer linear programming problem which 
consist a set of inequalities that some of them verify the 
authorized states and the others violate the forbidden states. 
Solving this problem may give us a constraint that enforcing it 
on the system, prevents the system from entering a group of 
forbidden states. But by the previous methods, we must add a 
large number of control places to the system.  
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