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Abstract—To define or predict incipient motion in an alluvial 

channel, most of the investigators use a standard or modified form of 

Shields’ diagram.  Shields’ diagram does give a process to determine 

the incipient motion parameters but an iterative one.  To design 

properly (without iteration), one should have another equation for 

resistance.  Absence of a universal resistance equation also magnifies 

the difficulties in defining the model. Neural network technique, 

which is particularly useful in modeling a complex processes, is 

presented as a tool complimentary to modeling incipient motion. 

Present work develops a neural network model employing the RBF 

network to predict the average velocity u and water depth y based on 

the experimental data on incipient condition. Based on the model, 

design curves have been presented for the field application.

Keywords—Incipient motion, Prediction error, Radial-Basis 

function, Sediment transport, Shields’ diagram. 

I. INTRODUCTION

NCIPIENT motion in plane bed sand channels is described 

as the force required to initiate motion. At the point of 

incipient motion, a particle experiences a critical shear stress 

that sets it in motion. If the force of the flowing water is less 

than the critical shear stress, particles will remain motionless. 

Only when the force exerted by the flowing water is greater 

than or equal to the critical shear stress movement will be 

observed. Incipient motion has been studied extensively over 

the past years following the work by Shields [1], who 

presented a semi-empirical approach to incipient motion. 

Much of the subsequent research into incipient motion builds 

on the original work of Shields. The factors that are important 

in the determination of incipient motion are the shear stress ,

the difference in density between sediment and fluid s-

diameter of the particle d, the kinematic viscosity  and the 

gravitational constant g.  Different forms from these variables 

are grouped and presented as X and Y variables in Shields’ 

diagram, where X has been denoted as du*  and known as 

particle shear Reynolds number and Y is dsco  and 

known as non-dimensional shear stress.  This approach needs 

an iterative process for determining the incipient motion 
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values. Although this approach is used universally, many 

researchers [2-8] have pointed several limitations of using this 

method.  

The existing methods to design incipient motion in alluvial 

channels knowingly or unknowingly assume the Manning’s 

roughness coefficient for velocity determination, and this 

implies of assuming the velocity instead calculating it.  This 

also leads to the erroneous designs of alluvial channels. The 

mechanism of incipient motion in reality is so complex that it 

is difficult to model in either a traditional or a conventional 

manner and the challenge to discover a superior solution 

continues.  

Artificial intelligence modeling systems, where functional, 

performance, and reliability requirements demand the tight 

integration of physical processes and information processing, 

are among the most significant technological developments of 

the past 20 years [9-10]. This has opened up new 

opportunities for modeling processes about which either the 

level of available knowledge is too limited to put the relevant 

information in a mathematical framework or too little data is 

available for calibrating an appropriate model. Artificial 

intelligence modeling has been used in a wide variety of 

applications, including calibrating water distribution system 

[11-12], flood management [13], modeling of chemical 

reactors [14], modeling of aircraft operation [15] and complex 

ground water modeling [16]. Neural network techniques have 

been used to study several hydrologic and hydraulic 

phenomena including water quality, stream flows, rainfall, 

runoff, sediment transport, and to infill missing data [17]. 

Caamaño et. al. [18] has used metamodeling technique to 

derive the bed load sediment transport formula 

 This paper attempts the application of the neural network 

technique into the sediment transport problem. The objectives 

of this study are to develop an RBF neural network model for 

simulating and predicting incipient motion of alluvial channel 

and to demonstrate the practical capability and usefulness of 

this technique. 

II.  LIMITATIONS OF MANNING’S COEFFICIENT

Alluvial channels may exhibit significantly differing 

resistance to flow considering the range of flow conditions 

and the variety of rivers operating under varying geomorphic 

conditions and subjected to changes due to developing water 

resources programs. In order to ascertain responses of alluvial 

systems, the most important variable is velocity and the 
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Manning’s equation is utilized to determine velocity, if it is 

not measured. The hydraulic radius and slope of energy 

gradient are precisely defined but may not always be precisely 

determined. However, error in determining R and Sf can be 

minimized by careful field measurements and adequate 

knowledge of river response to varying flows. Resistance to 

flow can vary significantly with type of alluvial channel, 

regime of flow, gradient, and geometry of channel, flow, and 

form of bed roughness, grain roughness, width/depth ratios, 

bank alignment and vegetation. The hydraulic radius and 

slope of energy gradient are precisely defined but may not 

always be precisely determined. Manning n values are highly 

variable over time and distance, and generally are much more 

difficult to estimate accurately especially in open-channel, 

alluvial flow cases. Inaccuracies of up to one order of 

magnitude are not uncommon when estimating n on the basis 

of inadequate experience and no field data. 

There is no single, specific n value for a given reach of an 

alluvial stream that experiences different flows. There are 

numerous n values, each dependent upon a number of 

imposed, interdependent variables. 

III. EXPERIMENTATION

Experiments are conducted in two rectangular smooth 

walled sand bed channels under steady and fairly uniform 

flow conditions.  One channel is smaller in dimensions of 360 

cm long 15 cm wide and 20 cm deep where as the second 

channel is relatively bigger and its dimensions are respectively 

1416 cm, 61.5 cm and 80 cm.  The first one has plexi glass 

walls supported on steel frame with a provision of tilting 

arrangement where as the second one is made out of masonry, 

which has a fixed horizontal bed slope with smooth (painted) 

walls.  A sand bed with a uniform thickness of 8 cm in smaller 

channel and 18 cm in the bigger channel was employed. 

Quartz silica sands of 4 sizes i.e., d50 = 0.44, 0.65, 1.00, 

1.77mm along with a gravel of 8.00mm were used as bed 

material in the flumes. All sizes are of fairly uniform material 

having the gradation coefficient of 

)dddd(5.0 16505084  is in the range of 1.08 to 

1.3.  Where, d16, d50 and d84 are the sizes pertaining to percent 

finer at 16, 50 and 84 percent respectively.  The bed is made 

plane without any undulations in every experimental run.  

After setting a desired bed slope, So (in smaller flume only) 

and a tailgate position, movement of the bed particles is 

continuously observed by gradually increasing the discharge, 

Q.  Incipient motion tests are conducted by following Yalin’s 

[19] method of identifying incipient motion in a test reach in 

which flow is expected to be free from up-stream and down-

stream controls and the flow is fully developed.  After 

reaching the stable conditions, the water surface elevations 

were measured with an accuracy of 0.015 mm of water head 

at regular intervals along the channel by using a micro 

manometer [20] to determine the water surface slope Sw.  Flow 

depths along the central line of the channel were measured at 

regular intervals using a point gauge of accuracy of 0.10 mm, 

in order to obtain the average flow depth, y over a test reach.  

The inlet discharge Q was measured either volumetrically or 

with the help of a calibrated V-notch.  Thus, the basic 

variables of So, Sw, Q and y are obtained in every experimental 

run.  The physical properties like density and unit weight of 

fluid and sediment particles as well the fluid viscosity are 

determined by appropriate methods.  An over view of the data 

obtained from the present experiments is shown in the Table 

1.

A. Data from other sources and their comparison 

In order to substantiate the results, additional data from 

various other sources is also used along with the present 

experimental data.  Various researchers’ data [21-25] has been 

used. Salient features of the experimental data are given in 

Table 1.  It may be noted that all the data are pertaining to 

plane sediment beds only; however the criteria followed to 

observe incipient motion vary from one investigator to other.  

Hence it may be required to compare and contrast their 

methods of observations to arrive at incipient motion so as to 

see any significant variations in the data used in the analysis. 

Yalin’s criterion [19] of incipient motion observations is 

followed in the present as well as in Yalin and Karahan’s 

experiments [24]. Mantz [22] has followed a method of 

obtaining incipient motion which is similar to Shields [1] 

extrapolation of sediment rate curves to zero transport.  As an 

alternative, Mantz stated that a same condition may be 

subjectively estimated by naturally laying a stable sedimentary 

bed from slowly depositing solids of a shear flow suspension.

Mantz [22] has conducted incipient motion runs by increasing 

the average velocity of the shear flow, until bed forms are 

observed during deposition and then slightly reduced below 

the critical stage, a flat bed of maximum stability will be 

attained.  The critical stress can then be estimated subjectively 

by observation of incipient transport [22] from such beds.  

Ashida and Bayazit [21] have arrived at incipient motion by 

extrapolation of the curve between shear stress and sediment 

discharge to a vanishing transport.  According to Vanoni [25], 

the motion occurred in bursts or gusts produced by the 

turbulence near the bed and covered areas that were at least of 

magnitude larger than the viewing area. It may be noted that 

in spite of several approaches are being followed to arrive at 

incipient motion by various investigators, the final outcome 

appears to be more or less the same as demonstrated in data 

analysis at a later stage.

Figure 1 shows all the incipient data with Shields’ diagram 

in order to verify its incipient condition including several 

investigators’ data with present runs. Rao and Sreenivasulu 

[26] have fitted an equation to the Shields’ fuctional diagram 

which fits the incipient motion data reasonably well. Smooth 

wall correction procedures are not applied in the runs shown 

in Figure 1 in computing the critical shear stress because of 

the reason that maximum bed shear stress, which acts along 

the central region of the channel, can be computed by ySf and 

it is generally valid for the aspect ratios B/y 4 [27]. So also 

the observations on the incipient motion are made in the same 

region hence critical shear stress, co is taken as equal to ySf

(without wall correction) for 4yB .  Along with this 
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condition on aspect ratio, the data used in the analysis is 

restricted to another condition of relative roughness height y/d

 3, as it is generally difficult to make accurate measurements 

for relative roughness heights, y/d less than 3.  These two 

constraints, 4yB  and y/d  3, are self-imposed for better 

understanding of the concepts rather than entering into 

misjudgments due to unavoidable experimental errors that are 

likely to creep into the analysis and understanding the 

concept.
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Fig. 1 Shields’ Diagram 

IV. RADIAL BASIS FUNCTION (RBF) MODELING 

The Radial Basis Function (RBF) model can be viewed as a 

realization of a sequence of two mappings. The first is a 

nonlinear mapping of the input data via the basis functions 

and the second is a linear mapping of the basis function 

outputs via the weights to generate the model output. This 

feature of having both nonlinearity and linearity in the model, 

which can be treated separately, makes this a very versatile 

modeling technique [28]. 

The objective here is to construct a RBF metamodel that 

approximates an unknown input-output mapping on the basis 

of given simulation data. The goal, however, is not to provide 

an exact fit to the data but to develop a metamodel that 

captures the underlying relationship so that it can be used to 

predict the output at some future observation of the input. The 

network consists of three layers: an input layer, a hidden layer 

and an output layer. The output of the RBF in Figure 2 is 

calculated according to [28]: 

j

i

jji xwwx

1

1),(                                        (1) 

where x is input vector matrix,  is a basis function, ||.|| 

denotes the Euclidean norm, w1j are the weights in the output 

layer, j is the number of neurons (and centers) in the hidden 

layer and  is the RBF centers in the input vector space. The 

first layer (input layer) distributes input vectors to each of the 

receptive field units in the second layer (hidden layer) without 

any multiplicative factors. The hidden layer has m receptive 

field units (or hidden units), each of which represents a 

nonlinear transfer function called a basis function. The hidden 

units play a role in simultaneously receiving the input vector 

and nonlinearly transforming the input vector into a j-

dimensional vector. The outputs from the j-hidden units are 

then linearly combined with weights to produce the network 

output at the output layer. There are several common types of 

functions used, for example, the Gaussian, the multiquadric, 

the inverse multiquadric and the Cauchy.  Present work uses 

the multiquadric function,which is given as: 

22 )(x
                                                     (2) 

where parameter  controls the “width” of the RBF and is 

commonly referred to as the spread parameter [29]. The RBF 

model is completely defined by the parameters ( , , w).

Therefore the RBF design problem is that of determining its 3j

parameters, namely, j centers, j widths and j weights. It is 

quite common in many applications to use a global width. 

Then the number of parameters to be determined reduces to 

(2j+1).  Each of these can have significant impact on the 

quality of the resulting fit, and good values for each of them 

need to be determined. The crucial problem is how to select 

centres appropriatly [30]. According to Bian [31], Statistical F

test is used to choose the number of centres, and K mean 

method is used for locating the centres. The basis of K mean 

method is the criterion for the sum of errors squares.  This 

algorithm also starts from zero centers, and selects centers in a 

forward selection procedure. The algorithm finds (among the 

data points not yet selected) the data point with the largest 

residual, and chooses that data point as the next center. This 

process is repeated until the optimal number of centers is 

reached. For deciding the width “TrialWidths” algorithm of 

Matlab
® 7 [32] has been used. This routine tests several width 

values by trying different widths. A set of trial widths equally 

spaced between specified initial upper and lower bounds are 

selected. The width with the lowest value of generalized 

cross-validation is selected.  

Fig. 2 Structure of a RBF network 

Entire modelling work has beed done by using  

MATLAB® 7 [32]. The total numbers of data points at 

inicpient condition are 53. It contains the lietrature data and 

Hidden

layers

X1 X2 Input 

Layer

Output Layer
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the present experimental data. The basic parameters which 

define the incipient condition are u, d, y and Sf. Input patterns 

are d and Sf and the output parameters of the model are y and 

u. The main parameter in order to get a good fit with an RBF 

is the maximum number of centers. To get a better fit different 

combination of centers, RBF functions and regularisation 

parameter have been tried.  

The best fit model is a radial basis function network using a 

multiquadric kernel with 13 centers and a global width of 

1.8878. The model ouput and experimental point hasve been 

plotted in Figure 3a and 3b.  The R2, also called multiple 

correlation or the coefficient of multiple determination, is the 

percent of the variance in the dependent explained uniquely or 

jointly by the independents.  R2 can also be interpreted as the 

proportionate reduction in error in estimating the dependent 

when knowing the independents. That is, R2 reflects the 

number of errors made when using the regression model to 

guess the value of the dependent, in ratio to the total errors 

made when using only the dependent's mean as the basis for 

estimating all cases.  Figures 4 shows how well the present 

model predicts over the design region. Low values of 

prediction error means that good predictions are obtained at 

that point. 

Fig. 3a Modelling result for y

                              Fig. 3b Modelling result for u

                         Fig. 4 Prediction error of the model  

A. Design Curves 

There are four basic design variables, namely, particle size 

d, flow depth y, water discharge Q, and friction/energy slope 

Sf. Out of these four variables at least two of them are to be 

known to solve the remaining two variables. Based on the 

RBF model, for different values of d and Sf, design curves 

have been generated to predict the values of u and y.

Subjectivity of these design curves (Figure 5a and 5b) lie in 

the experimental range covered in the present paper.  

Fig. 5a Design curve for y

Fig. 5b Design curve for u
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V.  CONCLUSION

Traditional parametric design analysis is inadequate for the 

analysis of large-scale engineering systems because of its 

computational inefficiency; therefore, a departure from the 

traditional parametric design approach is required. 

Approximation techniques may be applied to build 

computationally inexpensive surrogate models for large-scale 

systems to replace expensive-to-run computer analysis codes 

or to develop a model. Although there are several techniques, 

in this work RBF approach is considered for designing the 

incipient motion phenomena. The fitting capability of methods 

is exciting; at the present time it is based on a small set of 

exemplars. Thus, this approach gives an approximation route 

of designing the system and at the same time Manning’s 

equation can be avoided while designing the incipient motion 

in alluvial channels. 
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TABLE I

EXPERIMENTAL OBSERVATIONS

Source d50 102 y 104 Q 104 Sf B 

 mm m m3/s  m 

0.44 2.07 – 3.18 6.10 – 9.90 7.89 – 13.17 0.1575 

0.65 3.00 – 5.89 42.75 – 85.43 5.53 – 11.81 0.6150 

1.00 3.12 – 3.84 13.13 – 14.42 12.78 – 20.24 0.1575 

1.77 1.94 – 3.35 8.51 – 17.54 36.81 – 62.46 -do- 

Present

Experiments 

8.00 2.59 – 3.41 22.60 – 32.36 205.5 – 254.3 -do- 

6.40 2.40 24.00 250.00 0.20 Ashida and Bayazit 

[21] 12.00 3.65 50.00 250.00 -do- 

0.015 6.01 26.30 0.92 0.30 

0.030 2.27 – 5.86 9.93 – 32.30 1.52 – 3.46 -do- 

0.045 2.43 – 5.96 11.90 – 36.10 1.80 – 4.06 -do- 
Mantz [22] 

0.066 2.46 – 6.07 13.50 – 42.80 2.42 – 5.14 -do- 

0.32 1.90 – 2.68 6.68 – 8.00 8.10 – 11.17 0.1575 

0.80 2.70 13.00 17.52 -do- Rao and Nagaraj [23] 

1.30 3.15 15.75 28.33 -do- 

0.10 0.65 2.25 30.00 0.15 

0.14 0.55 1.69 30.00 -do- 

0.19 0.57 1.78 30.00 -do- 

0.40 0.47 1.50 50.00 -do- 

0.56 0.47 1.52 60.00 -do- 

Yalin and Karahan 

[24] 

1.00 0.63 2.72 100.00 -do- 

Vanoni [25] 0.102 9.327-11.92 90.61-116.10 - 0.39 


