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Computational Algorithm for Obtaining Abelian
Subalgebras in Lie Algebras
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Abstract—The set of all abelian subalgebras is computationally
obtained for any given finite-dimensional Lie algebra, starting from
the nonzero brackets in its law. More concretely, an algorithm
is described and implemented to compute a basis for each non-
trivial abelian subalgebra with the help of the symbolic computation
package MAPLE. Finally, it is also shown a brief computational study
for this implementation, considering both the computing time and the
used memory.
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I. INTRODUCTION

THERE exist an extensive research on Lie Theory due
to its applications in Engineering, Physics and, above

all, Applied Mathematics, in addition to its theoretical study.
However, some aspects and properties of Lie algebras remain
unknown. In fact, the classification of nilpotent and solvable
Lie algebras is still an open problem, although the classi-
fication of other types of Lie algebras (such as semisimple
and simple ones) was already obtained in 1890. In this way,
the study of other structural properties of Lie algebras is
very interesting for overcoming the difficulties involved in the
unsolved problem of the classification of solvable and nilpotent
Lie algebras.

This paper is devoted to the study of the abelian subalgebras
of any given finite-dimensional Lie algebra g. In this way, a
basis is obtained for all the non-trivial abelian subalgebras of
g; that is, all the abelian subalgebras with dimension greater
than 1 and less than or equal to the maximal abelian dimension
of g (the maximum among the dimensions of its abelian
subalgebras). Note that the maximal abelian dimension can
be usefully applied, for example, to characterize Lie algebras
in several senses. So Tenorio [7] gave some criteria about
properties of Lie algebras starting from this notion. Moreover,
this topic has already been studied by different authors,
being classical and fundamental the following references:
Krawtchouk [4] ; Laffey [5], which computed the maximal
abelian dimension of the algebra of n × n matrices over any
field; or Suprunenko and Tyshkevich [6], which dealt with
the problem of determining maximal abelian subalgebras of
nilpotent type. However, in some cases like in [8] abelian
ideals were considered instead of abelian subalgebras.

M. Ceballos and J. Núñez are with the Department of Geometry and
Topology, Faculty of Mathematics, University of Seville, Aptdo. 1160, 41080-
Seville, Spain, e-mail: {mceballos,jnvaldes}@us.es.
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Previously, the authors have already studied abelian sub-
algebras by considering both points of view: Theoretical
and practical. Moreover, the maximal abelian dimension was
computed for two different families of complex Lie algebras:
gn, of n × n strictly upper-triangular matrices (see [1], [2]);
and hn, of n×n upper-triangular matrices (see [3]). To do it,
an algorithmic procedure was introduced in [2].

At this time, the main goal of the article is to show an
analogous algorithmic procedure which works for any arbitrary
finite-dimensional complex Lie algebra (not necessarily of the
types gn or hn). This new algorithm, which generalizes the
previous one, is formally given by indicating and commenting
each of its steps. Besides, some computational data of its
implementation with MAPLE are also shown and studied.

II. THEORETICAL BACKGROUND

This section is devoted to recall some concepts and results
on Lie algebras to be applied later. For a general overview
on such subjects, the interested reader can consult [9]. Note
that, from here on, only finite-dimensional Lie algebras over
the field F, where F can be R or C, are considered.

Given a finite-dimensional Lie algebra g, a vector sub-
space h of g is an abelian subalgebra if the following con-
ditions hold:

[h, h] ⊆ h; and [u, v] = 0, ∀ u, v ∈ h.

The maximal abelian dimension of a given and fixed
d-dimensional Lie algebra g, which is denoted by M(g), is the
maximum among the dimensions of its abelian subalgebras. A
maximal abelian subalgebra is an abelian subalgebra whose
dimension is M(g).

To compute the basis of a maximal abelian subalgebra of g,
a basis Bd = {Xi}

d
i=1 of g is considered together with another

basis B = {vh}
r
h=1 of an arbitrary r-dimensional (abelian)

subalgebra h (with r ≤ d). As each vector vh ∈ B is a linear
combination of the vectors in Bd, vh =

∑d

i=1 ah,iXi, the basis
B can be translated to a matrix in which the hth row records
these coordinates of vh with respect to the basis Bd:

⎛
⎜⎝

a1,1 a1,2 · · · a1,d

...
...

. . .
...

ar,1 ar,2 · · · ar,d

⎞
⎟⎠ . (1)

The rank of the matrix (1) is obviously equal to r and,
hence, its echelon form is the following by using elementary
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row and column transformations:⎛
⎜⎜⎝

b1,1 0 · · · 0 b1,r+1 · · · b1,d

0 b2,2 · · · 0 b2,r+1 · · · b2,d

...
...

. . .
...

...
. . .

...
0 0 · · · br,r br,r+1 · · · br,d

⎞
⎟⎟⎠ . (2)

So, without loss of generality, any given basis B of h can
be expressed by (2). Hence, each vector in B is a linear
combination of two different types of vectors Xi: The ones
coming from the pivot positions and the remaining ones. The
first are called main vectors of B with respect to Bd, being
called non-main vectors the rest.

III. ALGORITHM COMPUTING ABELIAN SUBALGEBRAS

An n-dimensional Lie algebra g is considered together with
the basis Bn = {Z1, . . . , Zn}. If n is lower, the abelian
subalgebras of g can be easily computed because the number
of nonzero brackets with respect to Bn is quite greater in
proportion with the dimension of g. To solve this computa-
tional problem, an algorithmic method has been implemented
to compute a basis of each non-trivial abelian subalgebra of
g. In this algorithm, the main and non-main vectors will be
used to express any given basis of the subalgebra in order
to determine the existence of nonzero brackets. The vectors
in this basis will be expressed as a linear combination of the
vectors in Bn.

To implement the algorithm, the symbolic computation
package MAPLE has been used. First the libraries linalg
and ListTools are loaded to activate commands like
Flatten and others related to Linear Algebra, since Lie
algebras are vector spaces endowed with a second inner
structure: The Lie bracket. Besides, the library combinat has
to be also loaded to apply commands related to Combinatorial
Algebra.

Now, an explanation is given for the different steps consti-
tuting the algorithm and its implementation. The structure of
the algorithm is based on a main routine calling several other
subroutines with different functions.

1) Implementing a subroutine which computes the Lie
bracket between two arbitrary vectors in Bn. This sub-
routine depends on the law of g.
The subroutine, named bracket, receives two nat-
ural numbers as inputs. These numbers represent the
subindexes of two vectors in Bn. The subroutine returns
the result of the bracket between these two vectors.
Besides, conditional sentences are included to determine
nonzero brackets (which are introduced in the subrou-
tine) and the skew-symmetry property.

> bracket:=proc(i,j)
> if i=j then return 0;end if;
> if i>j then return -bracket(j,i);end if;
> if (i,j)=... then return ...;end if;
> ....
> else return 0;
> end if;
> end proc;

The first two suspension points are associated with
the computation of [Zi, Zj ]: First, the value of the

subindexes (i, j) and second, the result of [Zi, Zj ] with
respect to Bn. The third ellipsis denotes the rest of
nonzero brackets. For each nonzero bracket, a new
sentence if has to be included in the cluster.

2) For each k-dimensional subalgebra h of g, computing
the bracket between two arbitrary vectors in the basis
of h. Those vectors are linear combinations of a main
vector (with nonzero coefficient) and the n−k non-main
ones. These expressions depend on the dimension of h.
After the law of g is introduced, the brackets in an
arbitrary subalgebra h are computed by the subroutine
ex, which requires four inputs: The dimension n of g;
the subindexes i and l, indicating the main vectors
in the bracket to be computed; and a list M with the
subindexes of the non-main vectors in h. To do it, three
local variables exp, L and P are defined. For computing
the brackets between the vectors in Bn, the subroutine
ex calls the subroutine bracket, which is necessary to
obtain each bracket in the law of h. Whereas the variable
exp saves the expression of the bracket belonging to the
law of h, the list P takes the elements of M two by two
and finally, L is a list containing all the coefficients in
the expression of exp with respect to Bn. Precisely, the
list L is the first term of the output of the subroutine
ex. The second is a list with the subindexes i and l
corresponding to L. Note that the subindexes of the main
vectors has to be saved together with the coefficients in
order to use them in another subroutine.
Each vector in the subalgebra h can be expressed as a
linear combination of one main vector and the n − k

non-main ones according to expression (2), where each
row represents the coefficients of one vector in the basis
of h. Obviously, the coefficient of each main vector can
be assumed to be equal to 1, because the row of (2)
corresponding to that main vector can be divided by
its coefficient. To implement the subroutine ex, the
coefficients of the non-main vectors are denoted by
a[i,k].

> ex:=proc(n,i,l,M::list)
> local exp,L,P;
> L:=[];
> if nops(M)=1 then P:=[[M[1],M[1]]] else

P:=choose (M,2);
> end if;
> exp:=bracket(i,l);
> for k from 1 to nops(M) do
> exp:=exp+a[l,M[k]]*bracket(i,M[k])

+a[i,M[k]]*bracket(M[k],l);
> end do;
> for j from 1 to nops(P) do
> exp:=exp+(a[i,P[j][1]]*a[l,P[j][2]]

-a[i,P[j][2]]*a[l,P[j][1]])
*bracket(P[j][1],P[j][2]);

> end do;
> for m from 1 to n do
> L:=[op(L),coeff(exp,Z[m])];
> end do;
> return L,[i,l];
> end proc;

3) Solving a system whose equations are obtained by
imposing the abelian law to the brackects computed in
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the previous step for the subalgebra h.
This subroutine, named sys, receives two inputs: The
dimension n of g and a list M with the subindexes of
the non-main vectors in the basis of h. This subroutine
solves the system of equations generated by the sub-
routine ex. Four local variables L, P , R and S have
been defined for its implementation. L is a list with the
subindexes of the main vectors. The list R contains the
expressions computed by the subroutine ex. P is defined
as in the previous subroutine. Finally, S is a set where
the equations of the system are saved:

> sys:=proc(n,M::list)
> local L,P,R,S;
> L:=[]; R:=[]; S:={};
> for x from 1 to n do
> if member(x,convert(M,set))=false
> then L:=[op(L),x];
> end if; end do;
> if nops(L)=1 then P:=[[L[1],L[1]]] else

P:=choose (L,2);
> end if;
> for j from 1 to nops(P) do
> r[j]:=[ex(n,P[j][1],P[j][2],M)];
> end do; R:=[seq(r[i][1],i=1..nops(P))];
> for y from 1 to nops(R) do
> for k from 1 to n do
> S:={op(S),R[y][k]=0};
> end do; end do;
> return {solve(S)};
> end proc;

4) Programming a subroutine which determines the exis-
tence of abelian subalgebras in the dimension considered
in the previous two steps.
This subroutine, called absub, is implemented by in-
troducing two natural numbers n and k, namely: n is
the dimension of g and k is less than n. This sub-
routine determines the existence of abelian subalgebras
with dimension k. Two local variables are used by the
subroutine: L and S. The first variable, L, is a list whose
elements are lists with the subindexes of the n−k non-
main vectors. The variable S is a set with the solutions
given by the subroutine sys and the main vectors. In
this way, absub returns a message indicating the non-
existence of k-dimensional abelian subalgebras or the
set S if there exist k-dimensional abelian subalgebras.
Since the coefficient of each main vector is 1, the system
given by the subroutine sys has not solutions when S
vanishes. When the system has some solution, the family
of computed vectors is linearly independent and forms
a basis of the subalgebra. Note that, if all the solutions
in S contain some complex coefficient, there are no real
solutions for the system solved by sys and there do
not exist any abelian subalgebras of dimension k for
the case F = R. For this field, it would be necessary to
include a conditional sentence for determining if such
complex coefficients appear.

> absub:=proc(n,k)
> local L,S;
> L:=choose(n,n-k);
> S:={ };
> for i from 1 to nops(L) do
> if sys(n,L[i])={{}} then S:=S else

> for j from 1 to nops(sys(n,L[i])) do
> S:={op(S),{convert(L[i],set),

sys(n,L[i])[j]}};
> end do; end if; end do;
> if S={{}} then return "There do not exist

any abelian subalgebras of dimension k."
> else return S;
> end if;
> end proc;

5) Computing the basis of an abelian subalgebra for a fixed
set of non-main vectors and some restrictions given by
the previous subroutine.
This subroutine, named basabsub, receives three in-
puts: the dimension n of g and two sets, S and T, with
the subindexes of the non-main vectors in the basis of
h and some equations. This subroutine will be used
with the solution given by sys. Four local variables
R, B, M and N have been defined for its implementation.
First, a conditional sentence if, for the sets M and N,
is introduced in the cluster to find out wether S or
T is the set of non-main vectors. This is due to the
fact that MAPLE sometimes returns the solutions in
different order. R is a set with the subindexes of the
main vectors and, in the set B, we compute the basis for
the abelian subalgebra. In this way, B is the output of
this subroutine.

> basabsub:=proc(n,S::set,T::set)
> local R,B,M,N;
> R:={};B:={};
> if type(S,set(integer))=true then M:=S;

N:=T else M:=T; N:=S;
> end if;
> for x from 1 to n do
> if member(x,M)=false then R:={op(R),x};
> end if; end do;
> for i from 1 to nops(R) do
> b[i]:=Z[R[i]];
> end do;
> for i from 1 to nops(R) do
> for j from 1 to nops(M) do
> b[i]:=b[i] + a[R[i],M[j]]*Z[M[j]];
> end do; end do;
> B:={seq(b[i],i=1..nops(R))};
> return eval(B,N);
> end proc:

6) Programming a subroutine which computes a list with
all the abelian subalgebras of g with certain dimension k.
This subroutine, named listabsub, requires two in-
puts: The dimension n of g and a natural number k,
less than n and which corresponds to the dimension
of the abelian subalgebra. To implement it, two local
variables S and L are considered. This subroutine calls
the subroutine basabsub for computing the basis for
each k-dimensional abelian subalgebra. Whereas this
value is saved in the local variable S, L is a set with the
basis of each abelian subalgebra of g with dimension
k. Precisely, the list L is the output of the subroutine
listabsub.

> listabsub:=proc(n,k)
> local S,L;
> S:=absub(n,k);L:={};
> for i from 1 to nops(S) do
> L:={op(L),basabsub(n,S[i][1],S[i][2])};
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> end do;
> return L;
> end proc:

7) Computing the maximal abelian dimension of g by
ruling out dimensions for abelian subalgebras.
The subroutine mad receives the dimension n of g as its
unique input and returns the maximal abelian dimension
of g. The subroutine starts studying if the maximal
abelian dimension is n by using the subroutine absub.
Then a loop is programmed to stop when absub does
not find abelian subalgebras:

> mad:=proc(n)
> if type(absub(n,n-1),set)=true then

return n-1
> end if;
> for i from 2 to n-1 do
> if absub(n,i)="There do not exist any abelian

subalgebras."
> then return i-1;
> end if; end do;
> end proc;

8) Programming the main routine to compute a list with
the basis of all the non-trivial abelian subalgebras of g

by using the previous subroutines.
The main routine allabsub receives the dimension n
of g as its unique input. The routine allabsub returns
a set with the basis of all the abelian subalgebras of g

with dimension greater than one and less than or equal
to the maximal abelian dimension of g. In this way, the
routine starts computing the maximal abelian dimension
and then, the output is defined by using the previous
subroutine listabsub.

> allabsub:=proc(n)
> local B,k;
> k:=mad(n);B:={};
> for i from 2 to k-1 do
> B:={op(B), listabsub(n,i)};
> end do;
> return B;
> end proc:

IV. STATISTICAL AND COMPUTATIONAL DATA

In this section, a computational study is developed for
the previous algorithm, which has been implemented with
MAPLE 9.5, in an Intel Core 2 Duo T 5600 with a 1.83
GHz processor and 2.00 GB of RAM. Table I shows some
computational data about both the computing time and the
memory used to return the outputs according to the value of
the dimension n of the algebra.

This computational study was done considering a particular
family of Lie algebras: The Lie algebras sn generated by
{e1, e2, . . . , en} with the following nonzero brackets:

[ei, en] = ei for i < n.

This family has been chosen because they constitute a special
subclass of non-nilpotent solvable Lie algebras, which allow
to check empirically the computational data given for both the
computing time and the used memory.

In Table I, the set of all non-trivial abelian subalgebras has
been computed for the algebras in this family up to dimension

n = 13 inclusive. Starting from n = 8, the computing time is
about three times greater when the dimension n is increased
in one unit.

TABLE I
COMPUTING TIME AND USED MEMORY.

Input Computing time Used memory
n = 3 0 s 0 MB
n = 4 0 s 0 MB
n = 5 0 s 0 MB
n = 6 0.53 s 3.44 MB
n = 7 0.69 s 4.25 MB
n = 8 1.49 s 4.31 MB
n = 9 3.56 s 4.5 MB
n = 10 10.19 s 4.81 MB
n = 11 26.94 s 5.19 MB
n = 12 77.99 s 6.25 MB
n = 13 238.12 s 9.88 MB

Next some brief statistics are shown about the relation
between the computing time and the memory used by the
implementation for the Lie algebras sn.

Figure 1 shows the behavior of both the computing time
and the used memory according to the dimension n of sn.
Note that the computing time increases more quickly than the
used memory. Besides, whereas the increase of the computing
time corresponds to a positive exponential model, the used
memory does not follows such a model. This can be observed
in Figure 2.

Fig. 1. Comparative graph between C.T. and U.M. with respect to dimension.

The quotients between used memory and computing time
were also studied in this section. The resulting data can be
observed in the frequency diagram shown in Figure 3. In this
case, the behavior can be also considered exponential, although
this time is negative.

V. CONCLUSION

In this paper the authors have described new algorithmic
techniques to deal with abelian subalgebras of finite dimen-
sional Lie algebras. We hope to continue with this research in
the future in order to provide new classifications for nilpotent
and solvable Lie algebras.
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Fig. 2. Graphs for C.T. and U.M. with respect to dimension.

Fig. 3. Graph for quotients C.T./U.M. with respect to dimension.
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