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Jean-Michel Morreau1,Philippe Giraud3, Behzad Shariat1

Abstract—Organ motion, especially respiratory motion, is a tech-
nical challenge to radiation therapy planning and dosimetry. This
motion induces displacements and deformation of the organ tissues
within the irradiated region which need to be taken into account
when simulating dose distribution during treatment. Finite element
modeling (FEM) can provide a great insight into the mechanical
behavior of the organs, since they are based on the biomechanical
material properties, complex geometry of organs, and anatomical
boundary conditions. In this paper we present an original approach
that offers the possibility to combine image-based biomechanical
models with particle transport simulations. We propose a new method
to map material density information issued from CT images to
deformable tetrahedral meshes. Based on the principle of mass
conservation our method can correlate density variation of organ
tissues with geometrical deformations during the different phases of
the respiratory cycle. The first results are particularly encouraging,
as local error quantification of density mapping on organ geometry
and density variation with organ motion are performed to evaluate
and validate our approach.

Keywords—Biomechanical simulation, Dose distribution, Image-
guided radiation therapy, Organ motion, Tetrahedral mesh, 4D-CT

I. INTRODUCTION

D
ISPLACEMENTS and deformations of organ tissues

that occur as a result of breathing can have a significant
impact on radiation dosimetry for lung and liver cancer.
Therefore it is very important to take into account these
modifications during radiation therapy simulations in order
to improve treatment planning systems. Internal details of
the human body can be obtained using imaging techinques
like Computer Tomography (CT) or non-invasive Magnetic
Resonance Imaging (MRI). These techniques output voxelized
geometries of the human body. Each voxel has a gray value
which is directly related to the material density and chemical
composition of the corresponding tissue [1]. These pieces of
information are required to simulate the interactions between
different particles used in radiation therapy (photons, protons,
carbon ions) and organ tissues. The chemical composition of
the tissues remains the same, but their density and position
change during the breathing cycle. These changes have an
important impact on the dose distribution [2] and are usually
taken into account by using image registration techniques that
provide non-rigid voxel mapping between datasets acquired
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2 Université de Lyon, Université Claude Bernard Lyon 1, IPNL, UMR 5822
F-69622, France
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during the breathing cycle [3], [4], [5], [6], [8]. Heath et al.
take into account density variations by actually deforming
the regular voxel grid resulting in irregular dodecahedral
voxels in the dose delivery source images [7]. The drawback
of this approach is that a nonrectangular deformed voxel is
defined by 12 irregular boundaries that need to be detected
using ray-tracing algorithms in order to calculate the energy
deposited during the particle transport simulation in each
voxel which is time consuming. Velec et al map physical dose
on tetrahedral meshes in order to include organ deformations
in dose distribution simulations [11], [12]. They use CT
images at inhale and exhale to create two voxelized density
maps at the extremes of the breathing cycle which are
then used to calculate two dose distribution matrices for
treatment planning. Further on, they use linear interpolation
to modulate the dose distribution previously calculated from
exhale position to inhale position at the centroids of each
tetrahedra in the mesh. This approximation doesn’t take into
account density variation and assumes that dose values vary
in a linear way from one position to another. The authors
themselves state the fact that an ideal system for simulating
dose distribution at intermediate breathing phases would
require density maps for these states.

Although the geometrical models based deformable
registration algorithms have been shown to accurately
model the breathing motion. A realistic biomechanical model
of the organ tissues may aid in understanding the effects dose
distribution of tumor motion and also a response of the normal
tissue in motion during treatment. Finite element modeling
(FEM) can provide a great insight into the mechanics behavior
of the organs and responses since finite element methods
is based on the biomechanical material properties, complex
organ geometry, and anatomical boundary conditions [9],
[10]. The modeled object first has to be discretized into
simple non-overlapping elements. This discretization allows a
variety of three-dimensional element shapes, like hexahedra,
tetrahedra, pyramids or prisms. Tetrahedral meshes are usually
used to represent human organs because the tetrahedron is
the three-dimensional simplex and any three-dimensional
volume can be decomposed into tetrahedra. Human organs
are not regular and their shape can be better represented
with simple 3D tetrahedral elements (4 vertices) than with
other type of elements. Furthermore, surface extraction
algorithms usually output triangle surface meshes and it
is more straightforward to create tetrahedral meshes from
them. In addition, tetrahedral meshes have the greatest
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flexibility and are less restrictive than other mesh topologies.
Another advantage of using tetrahedral elements is that,
when deformed, a tetrahedra remains a tetrahedra (4 faces),
whereas, as discussed before, a voxel, or hexahedral element,
when deformed, turns into a dodecahedral element.

In this paper we present a new method to map material
density information issued from CT images to tetrahedral
meshes used for biomechanical simulations. In this way we
can simulate, at the same time and within the same geometry
organ motion, mass density variations and particle-matter
interactions as presented in Figure 1. As opposed to the
classical voxel-based geometries usually used for this kind
of simulations, no additional tissue tracking or vector-field
calculations are necessary.
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Fig. 1. General flow chart.One single structure used for both biomechanical
and particle transport simulations. Details of the patient’s organs are extracted
from medical images and mapped on 3D deformable tetrahedral meshes used
to represent human organs.

For this purpose we assign a density value to each vertex of
the mesh, instead of each element in order to ensure mass
density continuity. There are several reasons for doing so.
First of all, organ tissues are better represented as continuous
materials with variable density rather than discrete materials
with constant densities. Second of all, the finite element
methods use shape functions which are used to determine the
value of the field variable of interest within an element by
interpolating the nodal values. Furthermore, assigning density
values to the vertices of the mesh representing a certain
object means that we can estimate the density at any point
inside the object by interpolating these values in the same
way as the finite element method.

Physically-based modelling techniques like those mentioned
in the introduction aim precisely at simulating the mechanical
behaviour of different tissues. However, the geometrical
information about organ deformation is not meaningfull for
physicians. They need to study the tomographic density
evolution. Hence, we propose here to construct a bridge

between such biomechanical simulations and treatment
planning systems: a tool to convert the deformations into
dynamic CT scanner data.

This paper is structured as follows: in the next section we
will briefly describe the correlation between the CT numbers
and material density. Next we describe how to actually map
density values to the nodes of the tetrahedral mesh by taking
into account the principle of mass conservation (Section 3).
In Section 4 we present a method to virtually generate CT
scanner images from tetrahedral meshes to properly evaluate
our density mapping algorithm (Section 5). Furthermore, this
method will be used to simulate 4D-CT scanner images from
deformable tetrahedral meshes. Finally we discuss the results
and present possible future directions.

II. DENSITY MAPPING

We present a method of mapping material density values
issued from 3D CT scanner images to the vertices of a
tetrahedral mesh. Switching from a regular grid of voxels to
a deformable mesh should be done by preserving the mass
of the organs. That is, the total mass of a tetrahedral mesh
corresponding to an organ should match the mass of the voxels
representing that organ. This process is sumarized in Figure 2.
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Fig. 2. 3D density mapping on a tetrahedral mesh representing a human
liver

A. Hounsfield number conversion to mass density

The primary source of patient data for the present work
is CT scan data. The CT image is a voxel map of linear
X-ray attenuation coefficients of the different tissues to be
visualized. The voxel values are scaled such that the linear
X-ray attenuation coefficient of air equals -1000 and that of
water equals zero. This scale is the Hounsfield scale with the
unit HU.
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Schneider et al. present a very precise method of converting
Hounsfield values into tissue parameters (mass density and
chemical composition) needed for particle-tissue interaction
simulations. Their results show a linear dependence between
material density and X-ray attenuation coefficients for almost
all type of tissues [1].

ρM = aρH + b (1)

where ρM represents the mass density, ρH the CT intensity
value in HU and a and b are constants.
This linear correlation X-ray attenuation coefficient and ma-
terial density is widely assumed in the literature [13].

B. Mass of the tetrahedra

In order to calculate the density at the vertices of the mesh,
we express the mass of each tetrahedron in two different
ways. On one hand, it can be expressed using barycentric
coordinates and linear interpolation, and on the other hand,
the mass of a tetrahedron can be calculated as the sum of
the volumes of intersection between the tetrahedron and the
grid of voxels. We obtain thus, for every tetrahedral mesh
element, one linear equation i.e we obtain a system of linear
equations. Solving this system outputs the necessary values
that need to be assigned to each vertex of the mesh.

Given a tetrahedron Tk with vertices Ak, Bk, Ck and Dk, its
mass, m(Tk) can be expressed by integrating the density value
inside the tetrahedron:

m(Tk) =

∫

M∈Tk

ρ(M) · dM (2)

and we obtain:

m(Tk) =
1

4
·V ol(Tk) ·(ρ(Ak)+ρ(Bk)+ρ(Ck)+ρ(Dk)) (3)

where ρ(Ak), ρ(Bk), ρ(Ck), ρ(Dk) are the densities at the
vertices of the tetrahedron to be determined and V ol(Tk)
represents the volume of tetrahedron k.
The mass of each tetrahedron in a mesh can also be written
as the sum of all the intersecting voxels masses. Let Jk =
{j, Ijk �= ∅} where {Ijk = Vj ∩ Tk} represent the intersection
volume between the voxel j and the tetrahedron k (Figure 3).

m(Tk) =
∑

j∈Jk

m(Ijk) (4)

We obtain the following equation:

1

4
· V ol(Tk) · (ρ(Ak) + ρ(Bk) + ρ(Ck) + ρ(Dk) =

=
∑

j∈Jk

V ol(Ijk) · ρ(Vj) (5)

Equation (5) can be further rewritten:

1

4
· (ρ(Ak) + ρ(Bk) + ρ(Ck) + ρ(Dk) =

∑

j∈Jk

·F j
k · ρ(Vj) (6)

where, F j
k =

V ol(Ij
k
)

V ol(Tk)
is the fraction of volume occupied by

each voxel inside the tetrahedron. This fractions are computed
using the Monte Carlo ”hit and miss” method [14] adapted

Fig. 3. Example of applying equation (4) in a 2D space: m(Tk) = m(I2k)+
m(I3k) +m(I4k) +m(I5k) +m(I6k) +m(I8k) +m(I9k)

to this task. We ”extract” a very large number of uniformly
distributed points inside the tetrahedron. This is done by gen-
erating random barycentric coordinates as described in [15].
For every random point ”extracted” we establish the voxel
to which he belongs to and we count the number of points
that fall in each voxel. The fractions can be approximated as
follows:

F j
k =

Nj

NR
(7)

where Nj is the number of points among the random extracted
points that are inside the voxel j and NR is the total number
of random points inside the tetrahedron.

C. Density at the vertices of the mesh

For every tetrahedron k in the mesh, we write equation
(5) computing the right term as described in the previous
paragraph. We obtain, thus, a system of equations, in which
the unknowns are the densities at the vertices of the mesh. The
number of equations equals to the number of mesh elements
(tetrahedra) and the number of unknowns is the number of
vertices of the mesh. The system can be written as follows:

A ·X = d (8)

where X is a vector containing the values to be determined and
d is a vector containing the mean densities of each tetrahedron.
A is a NT xNN sparse matrix in which elements aij are not
equal to zero if the vertex j belongs to the tetrahedron i. Given
that, the number of mesh elements is bigger than the number
of mesh vertices, the system is overdetermined, i.e there is
no solution that verifies every equation. However, an optimal
solution can be found using the least-squares method:

min
X

‖A ·X − d‖2 (9)
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The straightforward solution is:

X = (At ·A)−1 ·At · d
where (At ·A)−1 · At is known as the pseudo-inverse matrix
of A, and At is the transpose of the matrix A.

D. Mesh deformation
In this section we present our method to compute the ver-
tex densities of the mesh during deformation. Let ρ(Ak)(t),
ρ(Bk)(t), ρ(Ck)(t), ρ(Dk)(t) be the densities at the vertices
of the tetrahedron k at the time step t with 0 ≤ k < NT,
where NT is the number of tetrahedra in the mesh. We want
to compute the evolution of these densities at the next time
step of the deformation, i.e we want to calculate ρ(Ak)(t+1),
ρ(Bk)(t+ 1), ρ(Ck)(t+ 1), ρ(Dk)(t+ 1) (Figure 4).

Fig. 4. Density at the vertices of a tetrahedron at instant t and t+ 1

We do so by applying the principle of matter conservation
during the deformation, i.e the mass of each tetrahedron of
the mesh remains constant during the deformation:

m(Tk)(t) = m(Tk)(t+ 1) (10)

which can be written as:
V ol(Tk)(t) · (ρ(Ak)(t) + ρ(Bk)(t) + ρ(Ck)(t)

+ ρ(Dk)(t)) = V ol(Tk)(t+ 1) · (ρ(Ak)(t+ 1)

+ ρ(Bk)(t+ 1) + ρ(Ck)(t+ 1) + ρ(Dk)(t+ 1))

(11)

So, for every tetrahedron k, we can write:

ρ(Ak)(t+ 1) + ρ(Bk)(t+ 1) + ρ(Ck)(t+ 1)+

+ ρ(Dk)(t+ 1) =
V ol(Tk)(t)

V ol(Tk)(t+ 1)
·

(ρ(Ak)(t) + ρ(Bk)(t) + ρ(Ck)(t) + ρ(Dk)(t))

(12)

For each time step, we build a linear system of equations as
described in the previous subsection:

A ·X(t) = d(t) (13)

III. CT SCANNER IMAGE GENERATION

In this section we describe a method of simulating CT den-
sity images from deformable tetrahedral meshes representing
human organs. Density values have been previously assigned
to the vertices of the mesh as described in Section II. This is
actually the reverse procedure and we use it to evaluate our
mapping algorithm by trying to reconstruct the initial scanner
image. This procedure can be repeated at every step of a
biomechanical simulation and thus creating a 4D CT scanner
image sequence.

A. Density of a voxel

The image generation is done by assigning a corresponding
density to every voxel of the image by taking into account the
principle of mass preservation. Let Vj be the voxel for which
we want to calculate the density, and Kj = {k, Ijk �= ∅} be
the tetrahedral elements that intersect the voxel j. The mass
of the voxel j can be written as the sum of the masses of the
intersection volumes between the voxel j and the tetrahedra of
the mesh (Figure 5)

Fig. 5. 2-D example of voxel generation : m(Vj) = m(Ij
1
) +m(Ij

2
)

m(Vj) =
∑

k∈Kj

m(Ijk) (14)

with

m(Ijk) =

∫

M∈Ij
k

ρ(M)dM (15)

IV. EVALUATION

The algorithms proposed in Sections II and III have been
implemented in C++ using the ITK [16] and VTK [17]
libraries. We have tested our method on several small test
images as well as on two segmented images corresponding to
the liver and to the left lung of a patient. The zones of interest
have been segmented using the growing region methodology
available with the ITK-SNAP software [18]. Surface meshes
are then extracted using the marching cubes algorithm. We
have simplified and repaired these surfaces using the ReMesh
tool [19]. Tetrahedral meshes were generated with TetGen
and were afterwards converted to VTK format.

A. Organ motion

We evaluated our density computation approach on liver
motion due to breathing. The geometrical characteristics
of the liver were obtained from experimental data (CT
scan images). Breathing causes the motion and deformation
of the liver. Consequently, we used two series of 3D
segmented CT-scan images of a patient’s liver: initial state
(T0) and final state (T1) to generate two triangular surface
meshes corresponding to the shape of the liver at two
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respiratpry states. Next, we compute the displacement field
between the mesh surface at T0 to match the one at T1 via a
surface mesh registration algorithm [20] as shown in Figure 6.

Fig. 6. Surface registration process. Coronal cut of the meshes. Left:
Vertices of the surfaces at the two respiratory states. Right: Result of the
mesh registration.

From the triangular surface mesh at initial state T0, we built
a tetrahedral mesh of the patient liver (Figure 7) comprising
12 514 tetrahedral elements.

Fig. 7. Tetrahedral mesh representing the liver built with the Abaqus software.

To each vertex of the surface mesh we applied the dis-
placement field previously calculated by the mesh registration
algorithm as shown in Figure 8

Fig. 8. Displacement field applied to the vertices of the surface of the liver
mesh

The liver is supposed to have homogeneous, isotropic, elastic
and compressible material properties [8]. For an isotropic
elastic material the elastic energy, noted W , can be written
as:

W (E) =
λ

2

(
trE

)2
+ μ tr

(
E2

)
(16)

where E is the Green-Lagrange strain tensor characterizing
the change in shape (or deformation) near a material point, λ
and μ are the Lame’s coefficients

E = 1

2

(
gradU + gradt U + gradt U . gradU

)
(17)

For small deformations, we can write the infinitesimal strain
tensor :

ε =
1

2
(grad(U) + gradt(U)) (18)

These tensor are symmetric (εij = εji). The Cauchy stress
tensor σij represents internal forces acting at a material point
per unit area of the deformed solid.
The relation between the stress tensor and the strain tensor
is defined by Hooke’s law adapted to isotropic material. For
linear deformation it can be written as:

ε =
1 + ν

E
σ − ν

E
tr(σ)Id (19)

E is Young’s modulus and ν Poisson’s coefficient. Other
expression can be written to introduce Lame’s constants.

μ =
E

2(1 + ν)
λ = ν

E

(1− 2ν)(1 + ν)
(20)

where μ is Shearing coefficient and λ Compression coefficient.
The mechanical and geometrical properties of the liver

structure are settled in Table I.

TABLE I
MECHANICAL PROPERTIES OF THE LIVER OBJECT [8]

Poisson’s Young

ratio modulus (kPa)

0.450 7.8

The biomechanical simulation of the liver modeling was done
using the Abaqus packages software. Further on, we compute
for each vertex of the mesh its density at each time step as
described in Section II and we used the method described in
Section III to create a virtual CT-scan image of the liver at
Ti.
Figure 9 shows our methodology of the variable density model
based on the biomechanical behavior of the liver modeling.

B. Error quantification

We used several methods to evaluate our algorithms. The first
one checks if the total mass of the organ does not change.
We do this by comparing the mass of the voxelized object
(segmented image) to the mass of the tertahedral mesh.

Mass(image) =

NV∑

j=0

ρ(Vj) · V ol(Vj) (21)

where image is the voxelized image of the concerned organ.
The mass of the tetrahedral mesh representing the same organ
can be calculated as follows:
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Fig. 9. Simulated 4D CT sequence generation

Mass(mesh) =

NT∑

k=0

m(Tk) (22)

where m(Tk) is computed for every tetrahedron in the mesh
using equation (3). The relative mass error is:

Error(mass)[%] =
|Mass(image)−Mass(mesh)|

Mass(image)
· 100

(23)
Normally, if the mapping is good, the mass of the mesh
should equal the mass of the initial image. This is a fair
method of measuring the global error of our density mapping.
However this doesn’t reflect in any way the local errors that
might appear when converting a discrete voxelized density
distribution to a continuous tetrahedral one. For this, we use
the image reconstruction method described in section 5. Let
I = {Vj , 0 ≤ j < NV } be respectively the original scanner
image of the object and and Ĩ = {Ṽj , 0 ≤ j < NV } the
reconstructed image where NV is the number of voxels be
in the original image that belong to the region of interest. Ĩ
and I should be quasi-identical, that is, we should be able
to reconstruct approximately the original image. The relative
mean density error can be defined as:

RMDE[%] =
1

NV
·
NV∑

j=0

ej (24)

with

ej [%] =
|ρ(Vj)− ρ(Ṽj)|

ρ(Vj)
· 100 (25)

Ideally, the density of the reconstructed voxel ρ(Ṽj) should be
equal to the density of the initial voxel ρ(Vj). The standard
deviation of the error is:

ESD[%] =

√√√√ 1

NV
·
NV∑

j=0

(ej −RMDE)2 (26)

C. Results and discussion

1) Preliminary tests: We first tested our algorithms on
small 3D rectangular objects. For this, we randomly cropped
several test images from a CT dataset. Then, tetrahedral
meshes made out of 20 tetrahedra and 18 vertices were
constructed so that they cover exactly all the voxels in the
test images as shown in Figure 10.

Fig. 10. A 3x3x3 voxel object croped from a CT-scan. Tetrahedralization of
the voxels

We tested our algorithm on several images with sizes varying
from 3x3x3 to 10x10x10 voxels. The number of elements
and vertices in the tetrahedral mesh as well as the topol-
ogy remained the same. We used equation (24) to evaluate
the reconstruction error. The mass error for each case was
insignificant (less than 1%) , which is not surprising, as the
algorithm of density mapping is based on the principle of mass
conservation.

Fig. 11. Local density error variation in function of the size of the image
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Fig. 12. Local density error variation in function of the standard deviation
of the image

The mean local density error increased with the number
of voxels of the image and with standard deviation of the
image as shown in figures 11 and 12. This means that on
one hand it became more difficult to accurately reconstruct
an object as the number of vertices of the mesh got smaller
compared to the number of voxels of the image and on the
other hand as the heterogeneity inside that object got higher.
This hypothesis was also verified by the results that follow.

2) Density mapping on organ geometry: We next tested our
algorithm on segmented images representing a human liver
and a lung. We first used coarse meshes (smaller number of
tetrahedra), and then more refined meshes (higher number of
tetrahedra). The results are shown in Table II and IV.

TABLE II
EVALUATION OF THE DENSITY MAPPING ON A LIVER GEOMETRY

No of Mass Mass Relative mean Error Standard

tetra (kg) error(%) density error(%) Deviation(%)

9 643 1.348 3.7 1.7 4.4
64 768 1.351 3.5 1.2 4
90 726 1.350 3.5 0.9 3.9

TABLE III
EVALUATION OF THE DENSITY MAPPING ON A LUNG GEOMETRY

No of Mass Mass Relative mean Error Standard

tetra (kg) error(%) density error(%) Deviation (%)

50 983 0.232 15 28.7 69
103 549 0.232 15 26.3 62
144 550 0.233 14.9 22.1 50

First of all, we can observe the fact that the mass of the
objects were preserved with small errors. These errors were
due to the fact that the meshes do not cover entirely the
voxels representing the organ because their volume is usually
smaller than that of the voxelized object. This was due to the
simplification and smoothing previously applied to the meshes.

Fig. 13. Density image reconstruction of the liver. Up: Original segmented
image - I. Middle: Density error image - |̃I − I|. Bottom : Reconstructed
image - Ĩ . Left: Coronal view. Right: Sagital view. Hot color map: bright
regions indicate high errors while dark regions indicate small errors

We can also notice an important difference between the
relative mean density errors of the liver and that of the lung.
As predicted by our initial tests, our method was able to
reconstruct the liver image with minor errors (Figure 13)
but the errors were more significant in the case of the lungs
which is a much more heterogenous object than the liver
(Figure 14). The standard deviation of the relative density
error (ESD) in the case of the liver was small (4%) which
indicates the fact that the error does not vary a lot from the
mean relative error, which is below 2%. This can be seen
in Figure 13, the local density error being uniform. In the
case of the lungs, however the standard deviation of the
density error is high, and as it can be seen in Figure 14, high
errors occur in certain regions of the images. These regions
correspond to density heterogeneities inside the lungs. We
assumed that mass density is continuous, and therefore we
did not take into considerations mass density discontinuities
which are more present in the case of the lungs due to the
presence of blood vessels and the bronchial tree. Therefore,
it is more difficult to accurately reconstruct its CT-scan image.

In both cases we can observe higher errors on the border of
the organs. There are two kind of errors that can occur as it
can be seen in Figure 15: first, a voxel that belongs to the
organ is not entirely inside the mesh (red). This is mostly
because, after smoothing and simplification, the volume of
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Fig. 14. Density image reconstruction of the lung. Up: Original segmented image - I. Middle: Density error image - |̃I− I|. Bottom : Reconstructed image
- Ĩ. Left: Coronal view. Right: Sagital view. Hot color map: bright regions indicate high errors while dark regions indicate small errors

the mesh is usually smaller than the voxelized organ itself.
Second, a voxel that does not belong to the organ will be
reconstructed as it is inside the mesh (blue). The first type
of error was reduced by extrapolating the density value
calculated inside the region of the voxel that lays inside the
mesh to the entire voxel. The second type of error could not
be corrected. Results showed that the errors can be reduced
if the number of mesh elements is increased.

3) Density variation with organ motion: In order to evalu-
ate our density computation algorithm we compared the sim-
ulated image generated from the biomechanically deformed
mesh at T1, with the real one and we obtained the follwing
results:
The mass of the mesh was preserved after deformation with an
error of 2% as can be seen in table IV. However, the density
error was higher in the case of the deformed mesh. Figure
16 shows the density error map. We can see that most of the
errors occur in a certain zone of the liver which is due to the

Fig. 15. Errors on the border of the organ. Green: voxels that belong to the
segmented region and lay entirely inside the mesh. Red: Voxels that belong
to the segmented region and are not entirely inside the mesh. Blue: Voxels
that do not belong to the segmented region but are partially inside the mesh.
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TABLE IV
EVALUATION OF THE DENSITY MAPPING ON A DEFORMING GEOMETRY

State Mass Mass Relative mean Error Standard

(kg) error(%) density error(%) Deviation(%)

Initial 1.45 3.6 0.96 2.2
Deformed 1.48 5.7 7.9 30.1

surface mesh registration process that cannot properly deform
the surface in that zone as it can be seen in Figure 17. We did
not focus on how to improve this aspect in this study. However,
in the regions where the registration was correct, our method
was able to simulate accurately density voxel values.

Fig. 16. Density error image |̃I−I|).Left : Transversal view. Right : Sagittal
view. Hot color map: bright regions indicate high errors while dark regions
indicate small errors

Fig. 17. Mesh registration errors. Sagittal cut of the meshes representing the
liver.

V. CONCLUSIONS AND FUTURE WORKS

We have developed a novel method of representing internal
details of human organs by mapping the material density
acquired from the CT-scan images to the vertices of the mesh
representing the objects. In order to evaluate our method we
have also developed the reverse method which allows us to
reproduce CT-scan images from tetrahedral meshes.

The accuracy of our mapping method depends, on one hand
on the heterogeneity of the image of the object that we want
to represent, and one the other hand on the number of mesh
elements. For a low level of heterogeneity our method is
very adapted. For regions with a large level of hetereogeneity
we plan on using adaptive meshes that are refined in the
heterogenous regions and coarse in the homogenous ones.
Furthermore, the meshes can be refined in the regions of

interest (irradiation path, tumor, organs at risk) which can
significantly improve the simulation results. For this study,
we assumed that the mass density is continuous inside an
organ and therefore we did not take into considerations mass
density discontinuities more present in the lungs due to the
existance of blood vessels and bronchial tree. In the future,
we plan on taking into account these discontinuities by
splitting the organ mesh into regions of homogenous density.

Another important step will be to investigate in which way
the density errors affect dose distribution simulations for
radiation therapy. For this we plan on comparing particle-
transport simulations on our simulated CT images with
particle transport simulations on real CT images.

We have shown that the CT scanner image generation al-
gorithm can be coupled with biomechanical model of the
liver in order to produce a simulated sequence of a 4D-
CT scanner. Consequently, with a full biomechanical model
of the abdomen or thorax, intermediate voxelized density
images of the patient could be generated from one respiratory
state to another. These images could be included in actual
treatment planning systems for liver radiation therapy. A great
interest of our approach is that the simulated images could be
computed with any kind of deformation models. Our approach
could also be used to evaluate the quality of organ motion
simulation methods. Furthermore, as mentioned before, we
plan on coupling tetrahedral mesh deformations directly with
particle-transport simulations producing a 4D physical dose
map needed for treatment planning systems. The advantage of
this approach is that no additional tissue tracking is required as
oposed to the classical dose distribution calculation methods.
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