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Decision Making using Maximization of Negret

José M. Merigd, Montserrat Casanovas

mixed with the usual valuation methods becauseoth bases

Abstract—We analyze the problem of decision making undethe optimal choice is the one with the highest ®alu

ignorance with regrets. Recently, Yager has dewsapnew method
for decision making where instead of using reghetsuses another
type of transformation called negrets. Basicallipe tnegret is
considered as the dual of the regret. We studyptublem in detail
and we suggest the use of geometric aggregatioratope in this
method. For doing this, we develop a different rodthfor
constructing the negret matrix where all the valaes positive. The
main result obtained is that now the model is abledeal with
negative numbers because of the transformation dornlee negret
matrix. We further extent these results to anothedel developed
also by Yager about mixing valuations and negtétgortunately, in
this case we are not able to deal with negativehmusbecause the
valuations can be either positive or negative.

In this paper, we suggest a new method for decisiaking

under ignorance with negrets. We propose the use of

geometric aggregation operators in decision makivith

maximization of negret. For doing this, we will éep a new
procedure for constructing the negret matrix where will

transform all the negret values in positive numb&irsen, we
will be able to use the OWG operator because itordy deal
with positive numbers. Furthermore, we will apphist new
approach in Yagers model [20] about mixing valuatand
regret methods. Unfortunately, in this case, werarteable to

deal with negative numbers when using the OWG dpera

because the usual valuations can be either positinegative.

Keywords—Decision Making, Aggregation operators, Negret/t is also interesting to note that other transfations could be

OWA operator, OWG operator.

. INTRODUCTION

N the literature, we find a wide range of aggrewati
operators for fusing the information such as thdeced
weighted averaging (OWA) operator and the ordereghited
geometric (OWG) operator. The OWA operator
introduced by Yager [1] and it provides a paranieéer
family of aggregation operators that includes thaximum,

the minimum and the average, among others. The OWGdllows. In Section I, we briefly comment some igas

developed in the negret matrix. Among them, onesiptes
construction could be the construction used in Almalytic
Hierarchy Process (AHP) [27]. The problem foundtliis
particular construction is that it cannot deal witbgative
numbers when using geometric aggregation operagrause
the results become inconsistent. Therefore, in plaiger we

wagprefer to focus on a method that is able to de#i wegative

numbers.
In order to do so, the remainder of the paper gaoized as

operator is a geometric version of the OWA operatgggregation operators to be used throughout thesrpdp

introduced in [2] and it also provides a parameatifamily
of aggregation operators. For further reading @an@wA or
the OWG operator, see for example [3] — [24].

In [25], [26], Savage introduced the concept ofisiea
making with minimization of regret. It consists andecision
process where the payoffs are transformed in regilees that
express the regret against the optimal choice dch estate of
nature. Recently, Yager [20] has suggested a diitemethod
for dealing with regrets. He develops a process tkas the
dual of the regret. He refers to these values asnggret
against the optimal choice. Then, by using the Obgarator,

Section lll, we analyze the decision making probleith
maximization of negret. In Section IV, we study arm
general model about mixing valuation and regrethoes.
Finally, in Section V, we give an illustrative exple where
we can see the different results obtained by usiiegnew
approaches suggested in the paper.

Il.  PRELIMINARIES

A. OWA Operator
The OWA operator was introduced in [1] and it pd®8 a

this method provides a parameterized family of eegrparameterized family of aggregation operators whietve

aggregation operators. Moreover, this method cao de
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been used in a wide range of applications [9] -.[22 the
following, we provide a definition of the OWA op¢oa as
introduced by Yager [1].

Definition 1: An OWA operator of dimension is a mapping
OWAR" —R that has an associated weighting vedtérof
dimensionn having the properties:

1) w0[o, 1]
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2 2w =t OWG(y, 3. @) = []b] 3)

and such that: ) ) . N
wherely; is thejth largest of they, andR is the set of positive

n real numbers.
OWAay, &,..., &) = ij bj (1) From a generalized perspective of the reorderieg st the
=1 OWG operator, we have to distinguish between the
Descending OWG (DOWG) operators and the Ascending
whereb is thejth largest of they. OWG (AOWG) operators [13]. The weights of theseraps's
From a generalized perspective of the reorderieg,sive are related by = w*,.,, wherew, is thejth weight of the
have to distinguish between the Descending OWA (X)W pOWG (or OWG) operator and*,; ; the jth weight of the
operator and the Ascending OWA (AOWA) operator [14]AOWG operator. Note that it accomplishes similasgerties
The OWA operator is a mean or averaging operatois i5 a than the OWA operator [2] — [10]. For example, Hist
reflection of the fact that the operator is comriue operator it is also found the maximum and the mimmas
monotone, bounded and idempotent. It can also Brticular cases. Other families found in this aggtion are
demonstrated that the OWA operator has as speasa#iscthe the geometric mean, the weighted geometric meas, th
maximum, the minimum and the average criteria anwhgrs Hyrwicz geometric criteria, etc.
(1], [9], [11], [15] - [19], [21].
B. Geometric Mean [1l. DECISIONMAKING USING MAXIMIZATION OF MINIMAL

. . . . NEGRET
The geometric mean is a traditional aggregationraipe

which has been used for different applications aagin [28], A.
[29], for ratio-scale judgements. It is defined@tows:

Introduction
The use of maximization of minimal regret in deaisi
Definition 2: A geometric mean operator of dimensiois a tmhakln_g was Ttrodt;ced b); Yager [ZOJILhTh'j’.fTOdg':]"?rtLo
mappingGM: R —R’, defined as: e minimization of regret process. The differefehat the
negret process considers first the paygffwhile the regret
N 1 process considers first the maximal pay@ffor each state of
GM(ay, a,..., @) = I—l (a.)ﬁ ) nature. That is, the regret is calculated @s= c;; while the
i negret asg; —C;. With this information, we can summarize the
basic steps when taking decisions with the negethod as
whereR’ is the set of positive real numbers. The geometrfellows.
mean is commutative, monotonic, bounded and ideempot Assume we have a decision problem in which we rave
Note that it is also possible to consider a siamtivhere the collection of alternativesA;, ..., A} with states of nature$,,

weights of the arguments have different degreésipbrtance. ..., §}. ¢; is the payoff to the decision maker if he selects
Then, we are using the weighted geometric mean (\WGM alternativeA; and the state of nature$s The matrixE whose
C. OWG Operator components are the, is the negret matrix. The objective of

the problem is to select the alternative which Isasisfies the
payoff to the decision maker. In order to do tkig following
steps should be taken:

The OWG operator was introduced in [2] and it pdes a
family of aggregation operators similar to the O\Wpgerator.
It uses in the same aggregation the OWA operatdr the
geometric mean. In the following, we provide a digfon of

Stepl: Calculate the payoff matrix.
the OWG operator as introduced by [13]. P bay

Step2: CalculateC; = Max{c;} for eachS.
Step3: Calculates; = ¢; —Cj; for each pairy andsS.

Definition 3: An OWG operator of dimensiomis a mapping Step4: CalculateE; = OWAGey, ..., &) using (1), for each

OWGR" —R’ that has an associated weighting vediof
dimensiom having the properties:

A.
Step5: Selec« such thaE. = Max{E;}.

1) wi[o, 1] As we can see, once we calculate the negret matex,
2) Zr.‘_le =1 aggregate the information obtained with the OWA rafm.
= This method suggested by Yager is a general onénitlades
among others the pessimistic, the optimistic ared dherage
criteria. These particular situations are obtaitgdusing a
different manifestation in the weighting vectorSigp 4. Then:

and such that:
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1) Whenw, = 1 andw; = 0, for allj # 1, we are using an
optimistic aggregation operator.
Whenw, = 1 andw, = 0, for allj # n; we are using a

pessimistic criteria.

2)

3)
matrix with the average criteria.

Note that we will refer to this decision processtas Max-
OWA-Negret procedure. Also note that other famibédax-
OWA-Negret operators could be used in the aggregat the
negret matrix such as the step-OWA, the window-OVil#,
olympic-OWA, the OWA median, the centered-OWA, the
OWA, the maximal entropy OWA, etc.

B. Using the OWG Operator

The use of the OWG operator in decision making wit
maximization of negret is an alternative when tgkilecisions
with negret methods. It consists in using the OW@rator in
the aggregation step of the negret matrix. Whemgusi
geometric operators, we need to modify the negratrim
because it cannot deal with negative numbers. prodlem
has also been considered for the regret matrix [LBgn, the
transformation we suggest is to sum the minimunu@ent in
absolute numbers plus the maximum argument andopless;

-G + | Min{c;} + G | + 1. With this construction in the negret

matrix, we are able to aggregate with geometricregggion
operators because now, all the arguments are ymsiiihe
decision process will be the same as for the cakde QWA
operators with the differences commented above. dAle
summarize the procedure as follows:

Assume we have a decision problem in which we have
collection of alternatives4;, ..., A} with states of nature$,

..., $}. ¢ is the payoff to the decision maker if he selects

alternativeA and the state of nature$s The matrixE whose
components are thg, is the negret matrix. The objective of
the problem is to select the alternative which Isasisfies the
payoff to the decision maker. Note that we refethte process
as the Max-OWG-Negret. In order to do this, we $théoilow
the following steps:

Stepl: Calculate the payoff matrix.

Step2: CalculateC; = Max{c;} for eachS.

Step3: Calculates; = ¢; — G + | Min{c;} | + | G | + 1; for
each paiy andsS.

Step4: Calculatek; = OWGey, ..., ,) using (3), for each
A.
Step5: Selec#y- such thaE = Max{E}.

that they can be used in situations where the bighalue is
the best result and in situations where the lowakte is the
best result. The weights of these operators aetekloyw; =
W*nj:1, Wherew, is thejth weight of the Max-DOWG-Negret

Whenw; = 1/n, for allj; we are aggregating the negretandw*, ., thejth weight of the Max-AOWG-Negret operator.

As we can see, the main difference is that in tlExdOWG-
Negret operator, the elememgj= 1, 2, ...,n) are ordered in
an increasing waye, < &, <... < €, while in the Max-DOWG-
Negret (or Max-OWG-Negret) they are ordered in a
decreasing way.

Another interesting issue to consider is the prigeof this
generalized Max-OWG-Negret method:

1) Commutativity: any permutation of the argumentsthas
h same evaluation.
2) Monotonicity: If g > d; for alli = OWQey,..., ) >

OoOWdQdy,..., d).
3) Boundedness: Mirg} <OW(e,..., &) < Max{e}.
4) ldempotency: I =g, for alli = OW(Qe,,..., §) =€

As we can see, the generalized Max-OWG-Negret rdetho
accomplishes the same properties as the originalGOW
operator.

In this case, it is also included as particularesashe
maximum and the minimum. The maximum is obtaine&mwh
w; = 1 andw; = 0, for allj #1; and the minimum whew, = 1
andw; = 0, for allj #n. The geometric mean is also a special
type of aggregation operator found in this modelagpears
whenw,; = 1/n, for allj.

Other families of OWG operators could be used asthe
S-OWG operator, the olympic-OWG, the E-Z OWG weight
the OWG median,
example, ifw; =w, = 0, and for all othera;» = 1/ — 2), we
are using the Max-olympic-OWG-Negret which has shene
methodology than the OWA version [18]. Note that # 3 or
n = 4, the Max-olympic-OWG-Negret is transformedtihe
Max-median-OWG-Negret and ih = n — 2 andk = 2, the
Max-window-OWG-Negret is transformed in the Max-
olympic-OWG-Negret.

Another interesting family is the Max-S-OWG-Negret
operator which is based on [15], [17]. It can bbdivided in
three classes, the “orlike”, the “andlike” and tipeneralized
Max-S-OWG-Negret. The “orlike” Max-olympic-OWG-
Negret operator is found whew = (1h)(1 - a) + a, andw, =
(M)A - a) forj =2 ton with a O [0, 1]. Note that ifa = 0,
we get the Max-GM-Negret andaf= 1, we get the maximum.
The “andlike” Max-S-OWG-Negret operator is foundesmiw,

As we can see, the main difference in this decision (1M)(1 - /) + Bandw; = (1h)(1 - A forj =1 ton -1 with

procedure is that now we use geometric aggregapenators.
Therefore, we need to develop a different negretrirman
order to obtain positive numbers because the OW&abpr
cannot aggregate negative numbers.

From a generalized perspective of the reorderieg, sive
have to distinguish between the descending Max-ONé¢Gret
operator and the ascending Max-OWG-Negret operalote

£ 0 [0, 1]. Note that in this class, = 0 we get the Max-
GM-Negret and if3 = 1, we get the minimum. Finally, the
generalized Max-S-OWG-Negret operator is obtaindderw
w; = (Ih)(1 - (a+ pP) + a,w,= (1h)(1 - (a+ P) + B, andw,

= (AM)@A - (a+ pP) forj=2ton -1 wherea, 0 [0, 1] and
a + B < 1. Note that ifa = 0, the generalized Max-S-OWG-
Negret becomes the “andlike” Max-S-OWG-Negret d&nd

the centered-OWG operator, etc. For
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0, it becomes the “orlike” Max-S-OWG-Negret operaélso

Max-centered-OWA#-Val/Neg, the Max-SOWA#-Val/Neg,

note that ifa + S = 1, the generalized Max-S-OWG-Negretetc.

operator becomes the Max-Hurwicz-OWG-Negret cateri
We note that the median and the weighted mediaratsan
be used as Max-OWG-Negret operators. For the Madiane
OWG-Negret, ifn is odd we assign, + 1, = 1 andw; = 0 for
all others. Ifn is even we assign for examp¥,, = W) + 1 =

In this process we could also study different proee such
as commutativity, monotonicity, boundedness and
idempotency. It is commutative because any permoutadf
the arguments has the same evaluation. ThaOWA(mM,,
m,..., m) = OWAPpL, P2..., Pn), Where py,....p) is any

0.5 andwj- = O for all others. For the weighted Max-medianpermutation of the argumentsny...,m). It is monotonic

OWG-Negret, we select the argumdnt that has thekth
largest argument such that the sum of the weigbts fl tok
is equal or higher than 0.5 and the sum of the fgiffom 1
tok-1is less than 0.5.

A further family of aggregation operator that coblel used
is the Max-centered-OWG-Negret operator. Note tthiattype

of aggregation operator is based on the OWA version

developed recently by Yager [21]. We can define axM

centered-OWG-Negret operator as a centered aggregat

operator if it is symmetric, strongly decaying andlusive. It
iS symmetric ifw; = Wi.n 4. It is strongly decaying whein<j <
(n+ 1)/2 therw; <w; and wheri >j = (n + 1)/2 therw; <wj. It

is inclusive ifw; > 0. Note that it is possible to consider a

softening of the second condition by usimgs w; instead ofw;

< w. We shall refer to this as softly decaying Maxteeed-
OWG-Negret operator. Note that the Max-GM-Negretis
example of this particular case. Another particgitwation of
the Max-centered-OWG-Negret operator appears ifangove
the third condition. We shall refer to it as a rinclusive Max-
centered-OWG-Negret operator. For this situatios,fiwd the
Max-median-OWG-Negret as a particular case.

IV. USINGVALUATION AND NEGRETMETHODS IN THESAME
DECISIONPROCESS

A. Introduction

because ifm > p;, for all m, then, OWAmy, my,..., my) >
OWAPp1, P2..., Pn)- It is bounded because the OWA
aggregation is delimitated by the minimum and thfeimum.
That is, Minfm} < OWA(mMy, my,..., my) < Max{m}. It is
idempotent becauserifi = m, for all m, then,OWAmy, m,,...,
my) =m.
B. Mixing Valuations and Negret Methods with the OWG
Operator

Now we are going to further extend the previoushoet
when using geometric aggregation operators. Thegsis
very similar with the difference that now we use tBWG
operator in the aggregation step. The process can b
summarized as follows.

Assume we have a decision problem in which we rave
collection of alternativesA;, ..., A} with states of nature$,
..., S}. ¢ is the payoff to the decision maker if he selects
alternativeA; and the state of natureSs Let C; = Max{c;} for
eachS. Then:

Stepl: Letmy* = ¢ + a[| Min{c;} | + | Max{cj} | = G + 1]
wherea O [0, 1]. Note that this result is equivalentrtg* =
m; + a [| Min{c;} | + | Max{c;} | + 1].

Step2: For each alternativd;, calculateM* = OWQ@Em,*,

ey Mp®).
Step3: Select the alternativi, such thaMy* = Max[M*].

A more general formulation for decision making was

introduced by Yager in [20] where he suggestedrabiaation
between valuation and negret methods in the saroisicie
model. This process is summarized as follows.

This process can be denoted as Max-OW&al/Neg
method. From a generalized perspective of the exorgl step,
we have to distinguish between the descending MA}CGIn-

Assume we have a decision problem in which we hmveVal/Neg operator and the ascending Max-OW&Aal/Neg

collection of alternatives4;, ..., A} with states of nature$,

operator. Note that they can be used in situatighere the

..., $}. ¢ is the payoff to the decision maker if he selectBighest value is the best result and in situatiohere the

alternativeA; and the state of natureSs Let C; = Max{c;} for
eachS. Then:

Stepl: Letm; = ¢ — aC; wherea O [0, 1].
Step2: For each alternativ, find M; = OWAmy, ..., my).
Step3: Select the alternativi, such thaM, = Max [M;].

This process can be denoted as Max-OW¥al/Neg

lowest value is the best result. But in a moreciffit context,
it is better to use one of them for one situatiod ¢he other
one for the dual situation. The weights of theserafors are
related byw; = w*.1, wherew; is thejth weight of the Max-
DOWG/a-Val/Neg andw*,j,, the jth weight of the Max-
AOWG/a-Val/Neg operator.
Note that different properties could be studied tliis

method. It is easy to see that this method is nmmoft

method. As we can see,df= 0, we get the usual Max-OWA- commutative, idempotent and bounded. It is mongatoni
Val method and ifa = 1, we get the Max-OWA-Negret because ifn* > p*, for all m*, then, OWQmy*, my*,..., my*)

method. Note thaty, can be also formulated ag = a g; + (1
- a) ¢;. Also note that it is possible to consider a wialege of

> OWQps*, po*,..., pn¥). It is commutative because any
permutation of the arguments has the same evatudthat is,

families of Max-OWAfQ-VallNeg such as the MaX-Step-OVl/G(ml*v nm*,..., my*) = OWQps*, po*..., pn"), where

OWA/a-Val/Neg, the Max-window-OWA#-Val/Neg, the

(pt*,..., p*) is any permutation of the argumentsyf,...,
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my¥). It is idempotent because ifi* = m*, for all m*, then, if it is symmetric, strongly decaying and inclusivi is
OWGEmy*, my*,..., m*) = m*. It is bounded because thesymmetric ifw; = wi.n . It is strongly decaying when<j < (n
OWG aggregation is delimitated by the minimum ahé t + 1)/2 therw; <w; and wheri >j = (n + 1)/2 thenw; <wj. It is
maximum. That is, Minfi*} < OWGEm*, my*,..., m*) < inclusive if w, > 0. Note that it is possible to consider a
Max{m*}. softening of the second condition by usimgs w; instead ofw;
As we can see, ilr = 0, we get the usual Max-OWG-Val < w;. We shall refer to this as softly decaying Maxteeed-
method and ifa = 1, we get the Max-OWG-Negret method.OWG/a-Val/Neg operator. Note that the Max-GdAVal/Neg
Note that it is possible to consider a wide ranffamilies of s an example of this particular case of Max-ceadeDWGh-
Max-OWG/a-Val/Neg such as the Max-step-OWS/ Val/Neg operator. Another particular situation b tMax-
Val/Neg, the Max-window-OWG@Gr-Val/Neg, the Max- centered-OWGH-Val/Neg operator appears if we remove the
centered-OWG#-Val/Neg, the Max-SOWG#-Val/Neg, etc. third condition. We shall refer to it as a non-irgive Max-
For example, ifw, = 1 andw; = 0, for allj # k, we get the centered-OWG#Val/Neg operator. For this situation, we find
Max-step-OWGéa-Val/Neg method. The Max-GM£/Val/Neg  the Max-median-OWGr-Val/Neg as a particular case.
method is found whew; = 1/, for all &. A further interesting family is the Max-S-OW@&Nal/Neg
Whenw;: = limfork<j* <k+m-1andws = 0 forj* >k operator. It can be subdivided in three classes;dHike”, the
+ m and j* < k, we are using the Max-window-OWg&/ “andlike” and the generalized Max-S-OW#BY/al/Neg. The
Val/Neg operator. Note th&tandm must be positive integers “orlike” Max-S-OWG/a-Val/Neg operator is found whem =
such thak + m—1<n. Also note that iim =k = 1, the Max- (1/n)(1 - a) + a, andw; = (Lh)(1 - a) for j = 2 ton with a O
window-OWG/a-Val/Neg is transformed in the maximum. If[0, 1]. Note that ifo = 0, we get the geometric mean and i
m = 1,k = n, the Max-window-OWGd-Val/Neg becomes the 1, we get the maximum. The *“andlike” Max-S-OWG/
minimum. And ifm = n andk = 1, the Max-window-OWG#  Val/Neg operator is found whew, = (1h)(1 - 8) + Bandw; =
Val/Neg is transformed in the geometric mean. (1/)(1 - B forj = 1 ton - 1 with S0 [0, 1]. Note that in this
Another type of aggregation that could be usethésMax- class, if 3= 0 we get the geometric mean an@i 1, we get
EZ-OWG/a-Val/Neg weights. In this case, we shoultdthe minimum. Finally, the generalized Max-window-GVd-
distinguish between two classes. In the first ¢lags assign Val/Neg operator is obtained whem, = (1h)(1 - (a + B) +
w = (1/g) for j* = 1 toqg andw;- = O forj* > @, and in the a,w, = (Lh)(1 - (@ + B) + B, andw, = (Lh)(1 - (a + B)) for
second class, we assigp = 0 forj* = 1ton-qandw. = - gn -1 wherea, S0 [0, 1] anda + B< 1. Note that ifo =

(/) forj* =n-q+ 1ton. If q =1 for the first class, the g the generalized Max-S-OW@Nal/Neg operator becomes
Max-EZ-OWG/a-Val/Neg becomes the maximum. Anddi= e “andlike” Max-S-OWGH-Val/Neg operator and j8 = 0, it
1 for the second class, the Max-EZ-OV¥&/al/Neg becomes hecomes the “orlike” Max-S-OW@#Val/Neg operator. Also

the minimum. Note that the Max-EZ-OW&EWaI/Neg IS note that if + £ = 1, the generalized Max-S-OW&@Wal/Neg
transformed in the Max-GM#Val/Neg ifq=n. If g=mandk  operator becomes the Max-Hurwicz-OW@Val/Neg criteria.
=1, the Max-EZ-OWG#-Val/Neg becomes the Max-window-

OWG/O"VaVNeg for the first class. And for the secondss, V. |LLUSTRATIVE EXAMPLE

it is found the Max-window-OW@-Val/Neg if g = m andk = In the following, we are going to develop an examj

n-q+1. order to understand numerically all the procedemramented
Whenw, =w, = 0, and for all otherg. = 1/(0 - 2), we are apove. We will develop a decision making problendem
using the Max-olympic-OW@'-Val/Neg. Note that ih = 3 or ignorance about selection of investments. We wilalop
n = 4, the Max-olympic-OWG#-Val/Neg is transformed in the different transformations in the initial payoff matsuch as
Max-median-OWG#-Val/Neg and ifm=n - 2 andk = 2, the the usual regret matrix, the geometric regret matthe
Max-window-OWGH-Val/Neg is transformed in the Max- arithmetic negret matrix, the geometric negret matthe
olympic-OWG/-Val/Neg. arithmetic cqmblnathn petween valuations .and rsgrand
the geometric combination between valuations angrats.
Then, we will aggregate these matrixes with différypes of
aggregation operators. For the arithmetic matrixes, will
. ; consider the average (AM), the weighted average )\Vifde
andw; = O for all others. Ih is even we assign for exgmple,OWA operator and the AOWA operator, and for thergemic
W2 = W2y + 1= 0.5 andwj = 0 for all others. For the weighted ones, the geometric mean (GM), the weighted gedonean
Max-median-OWGd#-Val/Neg, we select the argumdntthat (WGM), the OWG and the AOWG operators.
has thekth largest argument such that the sum of the weight \We should note that in these methods the resulisirsa
from 1 tok is equal or higher than 0.5 and the sum of thom the aggregations are relevant for selectingléernative
weights from 1 tk — 1 is less than 0.5. but not for considering the specific result obtdinén this
A further type of aggregation operator that couddused is example, we will assume the following weighting teeovhen
the Max-centered-OW@#Val/Neg. We can define a Max- necessary: W = (0.1, 0.1, 0.2, 0.3, 0.3). For theumetera to

centered-OWG#-Val/Neg as a centered aggregation operator

Note that the median and the weighted median csm lzé
used as Max-OWG@tVal/Neg operators. For the Max-
median-OWGé#-Val/Neg, if n is odd we assigwg, + 12 = 1
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be used in the combination between valuations aqgdets, we
will consider thato = 0.5.

Step1: Assume an investment company has five possible

investments and they want to select the alterndhiae better
adapts to his interests.

1) A;is acar company.

2) A,is afood company.

3) Agis a computer company.
4) A,is a chemical company.
5) Agis a TV company.

TABLE IV
NEGRET MATRIX
S S S S S
A -50 -20 -10 -40 -50
A -40 -60 0 -50 -20
Ag -50 -30 -20 -20 -30
Ay 0 0 -70 -60 -50
As -60 =70 -60 0 0
TABLE V

NEGRET MATRIX FOR THE GEOMETRIC OPERATORS

The possible results depending on the state ofreahat S S S S S
happens in the future are shown in Table 1. A 51 81 61 61 51
A 61 41 51 51 81
TABLE | As 51 71 81 81 71
PAYOFF MATRIX
Ay 101 101 41 41 51
St S S S S As 41 31 101 101 101
A 30 60 80 40 40
A 40 20 90 30 70 TABLE VI
As 30 50 70 60 60 COMBINATION BETWEEN VALUATIONS AND NEGRETS
Ay 80 80 20 20 40 S S < s <
As 20 10 30 80 % A -10 20 35 0 -5
) A 0 -20 45 -10 25
St§p2: Cglculate the transformed matrixes. For theeteg As 10 10 - - 15
matrix we will useC; = Max{c;} for each§ andr; = G — c;;
for each paiyy andS, and for the geometric regret matrix we A4 40 40 25 20 -
will considerr; = C; —¢; + 1. For the negret matrix we will use ___#s —20 30 15 40 45
gj = ¢j — G;; for each pairA; and S, and for the geometric
negret matrix we will consideg; =c; - G + | Min{c;} | + | G | TABLE VI
+ 1. For the combination between valuations andetsgve GEOMETRIC COMB'NAT@';‘SSEPSNEEN VALUATIONS AND
will use my = ¢; — aC; wherea = 0.5, and for the geometric
version,m* = ¢; + a [| Min{c;} | + | Max{c;} | - C + 1]. The S > = S >
results are shown in Tables Il — VII. A 40.5 705 705 50.5 45.5
A 50.5 30.5 70.5 40.5 75.5
TABLE Il A 40.5 60.5 75.5 70.5 65.5
REGRET MATRIX Ay 90.5 90.5 30.5 30.5 455
S, S S s S As 30.5 20.5 65.5 90.5 95.5
A 50 20 10 40 50 ) _ ) )
Ao 40 60 0 50 20 Step 3: _Aggregate _the previous matnx_es with their
corresponding aggregation operators. We will agafeedhe
As 50 30 20 20 30 . X
regret matrix (Table II), the negret matrix (Tal\§ and the
A 0 0 70 60 50 combination matrix between valuations and negré&iable
As 60 70 60 0 0 VI), with the AM, the WA, the OWA and the AOWA
operator. The regret matrix for the geometric opgsa(Table
TABLE Il ), the negret matrix for the geometric operat¢rable V)
REGRET MATRIX FOR THE GEOMETRIC OPERATORS and the geometric combination between valuatiodsregrets
(Table VII) will be aggregated with the GM, the WGNhe
S % S S S OWG and the AOWG operator. The results obtainece&mh
AL 51 21 1 41 51 aggregation operator are shown in Tables VIII —| XNote
A 41 61 1 51 21 that we are interested in establishing an ordewfigthe
A 51 31 21 21 31 alternatives but not in the particular values aiedi in the
™ 1 1 71 61 51 aggregation because each matrix has used a differen
As 61 71 61 1 1 construction process. Therefore, the values oldaineeach
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other matrixes.

TABLE Xlll
AGGREGATED RESULTS OF THE GEOMETRIC COMBINATION
BETWEEN VALUATIONS AND NEGRETS

TABLE VIl GM WGM OWG AOWG
AGGREGATED REGRET Ar 54.07 52.91 48.97 59.71
A 50.61 54.20 4373 58.56
AM WA OWA AOWA As 61.13 65.13 56.57 66.07
A 34 36 27 a1 Ay 51.04 4274 41.06 63.45
A 34 31 % 43 As 51.26 66.65 39.42 66.65
As 30 27 26 34
Aa 36 4 23 49 Step4: Select the optimal investment for each methsl.
As 38 25 25 51 we can see, we will seledt for the Min-AM-Regret, the Min-
AOWA-Regret, the Max-AM-Negret, the Max-AOWA-
AGGREGATED RETGAF?IIE_'EIIZ)E)R THE GEOMETRIC Negret, the Max-OWAI-Val/Neg, the Max-GM-Negret, the
TRANSEORMATION Max-(?WVG-I;\INegret, th$| l\élax-(IBIW-\{jal_f‘Neg, and hfor l\;he (I\jll\?\/),(A
OWG/o-Val/Neg. A, will be selected if we use the Min- -
GM WGM owG AOWG Regret, the Ma?(-gWA-Negret, the Min-GM-Regret, -
A1 30,08 32.16 2361 38.32 OWG-Regret and the Min-AOWG-Regret. Finally, we Iwil
Az 19.3 17.73 11.70 31.81 selectAs if we use the Min-WA-Regret, the Max-WA-Negret,
As 29.3 26.81 25.79 33.29 the Max-AMf-Val/Neg, the Max-WAd-Val/Neg, the Max-
A4 11.71 26.18 5.07 27.07 AOWA/a-Val/Neg, the Min-WGM-Regret, the Max-WGM-
As 12.14 5.25 5.25 28.05 Negret, the Max-AOWG-Negret, the Max-WGddVal/Neg
and the Max-AOWGi-Val/Neg.
TABLE X Another possibility is to establish an ordering thfe
AGGREGATED NEGRET investments. The results are shown in Table XIVteNtbat ¢
meangreferred to
AM WA OWA AOWA
A -34 -36 -27 -41 TABLE XIV
Ao —34 -31 =25 —43 ORDERING OF THE INVESTMENTS
As -30 -27 -26 -34
As _36 a7 o3 _49 Min-AM-Regret AstA=PotAstAs
As . o5 5 51 Min-WA-Regret AstAtA AL A
Min-OWA-Regret AqtA=AstAgtA
TABLE XI Min-AOWA-Regret AstAstAotAutAs
AGGREGATED NEGRET FOR THE GEOMETRIC Max-AM-Negret AstA=Aot A As
TRANSFORMATION Max-WA-Negret At A A AL AL
GM WGM OowWG AOWG Max-OWA-Negret AdtAo=As Agt A
A 60.09 58.41 56.36 64.08 Max-AOWA-Negret AstAs bAoA A
Az 55.5 58.36 50.93 60.49 Max-AM/a-Valuation/Negret AstAs A=At AL
As 70.05 73.36 66.00 74.34 Max-WAmL-Valuation/Negret AstAstA AL A
A4 61.42 5242 51.29 73.56 Max-OWAh-Valuation/Negret AstAst A tAotAy
As 66.59 82.01 54.07 82.01 Max-AOWA#A-Valuation/Negret AstAst Ao tAstA
Min-GM-Regret AstAst Ao tAstA
AGGREGATED RESULT-SI—'?FL'IE'}-)I(E” COMBINATION BETWEEN Min-WGM-Regret AstAztAatAat Ay
VALUATIONS AND NEGRETS Min-OWG-Regret AstAst Ao tAgtAS
AM WA OWA AOWA Min-AOWG-Regret AdtAstAotAstAy
A P 6.5 1 15 Max-GM-Negret AstAstAstAstA
A 8 11.5 ) 18 Max-WGM-Negret AS}A?%A:[ }A }A4
As 12 15.5 75 16.5 Max-OWG-Negret AstAdtAstAstA
Ay 6 -4.5 -6.5 18.5 Max-AOWG-Negret AstAst AL ALLA
As 16 23.5 4 28 Max-GM/a-Valuation/Negret AstALtAs AL A
Max-WGMa-Valuation/Negret B AHAL AL A
Max-OWGh-Valuation/Negret AALP A AL As
Max-AOWG#A-Valuation/Negret tAgtALAL A
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decision making”,Int. J. Intelligent Systemsvol. 18, pp. 689-707,

; iai 2003.
As we can see, depending on the decision process the [9] J.M. Merig6,New Extensions to the OWA Operators and its apfptina

ordgr_lng of the |n_vestments V_V'" be different. thmt eaph in business decision makingrhesis (in Spanish), Dept. Business
decision maker will select a different process aejgey on its Administration, Univ. Barcelona, Barcelona, Sp&i007.
own characteristics and interests. [10] J.M. Merigdé, and M. Casanovas, “Geometric Operatarecision
Making with Minimization of Regret”,Int. J. Computer Systems
Science and Engineeringubmitted for publication.
VI. CONCLUSION [11] Z.S. Xu, “An Overview of Methods for Determining CMWeights”,
In this paper we have developed a new approach for nt J.Intelligent Systemsol. 20, pp. 843-865, 2005.

decision making under ignorance. We have introdubeduse [12] 2.5. Xu, "An approach based on the uncertain LOWG@ &duced
9 g ’ uncertain LOWG operators to group decision makirith wincertain

of geometric aggregation operators in decision ngkiith multiplicative linguistic preference relations”Decision Support
maximization of negret. We have seen that the negearix Systemsvol. 41, pp. 488-499, 2006.

. s . [13] Z.S. Xu, and Q.L. Da, “The Ordered Weighted GeoimeAveraging
cannot be constructed in the same way as with ritiensetic Operators™int. J. Intelligent Systemsol. 17, pp. 709-716, 2002.

version because the OWG operator cannot aggreg@@ive [14] R.R. Yager, “On generalized measures of realizationuncertain
numbers. Therefore, a new scheme has been suggested  environments"Theory and Decisianvol. 33, pp. 41-69, 1992.

constructing the negret matrix. With this new methee have 15 SRéRb;af;; l'zagmgigeg;f OWA operatofzzy Sets and Systers|.
been able to transform the negative numbers ofirftal [16] R.R. Yager, “On weighted median aggregatiohit. J. Uncertainty

negret matrix in positive numbers that can be usild the Fuzziness Knowledge-Based Systemk 2, pp. 101-113, 1994.
OWG operator. From a general point of view, thisthod is [17] R.R. Yager, and D.P. Filev, “Parameterized “andlilead “orlike”

. . . . . . OWA operators”nt. J. General Systemeol. 22, pp. 297-316, 1994.
very practical in the sense that it permits to deigh negative [18] R.R. Yager, “Quantifier Guided Aggregation Using @Vdperators”,
numbers when using the OWG operator because of the Int. J. Intelligent Systemsol. 11, pp. 49-73, 1996.

transformation done in the negret matrix. [19] R.R. Yager, “E-Z OWA weights”, inProc. 10th IFSA World Congress
, Istanbul, Turkey, 2003, pp. 39-42.
Furthermore, we have extended Yagers method abo[%)] R.R. Yager, “Decision making using minimization m&fgret”, Int. J.

mixing valuation and negret methods in the samesibec Approximate Reasoningol. 36, pp. 109-128, 2004.
process for the case when using geometric aggoegati2l] R.R. Yager, “Centered OWA operatorsSSpft Computingvol. 11, pp.

: . 631-639, 2007.
operators. We have seen that this method permitsitathe [22] RR. Yager, and J. KacprzycRhe Ordered Weighted Averaging

payoffs with the regrets. Unfortunately, this metti® not able Operators: Theory and Applicationdluwer Academic Publishers,
to deal with negative numbers because the valuatsnlts Norwell, MA, 1997.
can be either positive or negative. [23] R.R. Yager, an_d Z.S. X_u, ‘fThe contlngc_)us orderemghted geometric
. . . . operator and its application to decision makin§uzzy Sets and
Finally, an illustrative example has been givenutibe use Systemsvol. 157, pp. 1393-1402, 2006.
of the new approaches suggested in the paper. We hg4] z.S. Xu, and R.R. Yager, “Some geometric aggregatizerators based
focused in an investment selection problem wherehaee on intuitionistic fuzzy sets”Int. J. General Systemsol. 35, pp. 417-
. . . 433, 2006.
seen the different results obtained depending enntithod [25] L.J. Savage, “The theory of statistical decisiah’American Statistical
used. Associationvol. 46, pp. 55-67, 1951.
[26] L.J. SavageThe foundations of statisticdohn Wiley & Sons, New
York, 1954.
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