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Abstract—Stock portfolio selection is a classic problem in finance,
and it involves deciding how to allocate an institution’s oran individ-
ual’s wealth to a number of stocks, with certain investment objectives
(return and risk). In this paper, we adopt the classical Markowitz
mean-variance model and consider an additional common realistic
constraint, namely, the cardinality constraint. Thus, stock portfolio
optimization becomes a mixed-integer quadratic programming prob-
lem and it is difficult to be solved by exact optimization algorithms.
Chemical Reaction Optimization (CRO), which mimics the molecular
interactions in a chemical reaction process, is a population-based
metaheuristic method. Two different types of CRO, named canonical
CRO and Super Molecule-based CRO (S-CRO), are proposed to solve
the stock portfolio selection problem. We test both canonical CRO
and S-CRO on a benchmark and compare their performance under
two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe
ratio. Computational experiments suggest that S-CRO is promising
in handling the stock portfolio optimization problem.

Keywords—Stock portfolio selection, Markowitz model, Chemical
Reaction Optimization, Sharpe ratio

I. I NTRODUCTION

AS a proverb said, “Do not put all your eggs into one
basket”, the risk in the stock market can be reduced by

holding a variety of stocks rather than owning a few or a single
one. The purpose of stock portfolio management is to select
an appropriate set of stocks and to compute the portion of
the budget allocated to each stock so as to meet the investors’
objectives (return and risk) and economic constraints (liquidity,
tax treatment, and unique circumstances).

Modern portfolio theory, established by Nobel laureate
Markowitz [1], [2] in 1952, is the core of portfolio manage-
ment and has been widely used in practice in finance. The
Markowitz model takes the variance as the risk and assumes
that rational investors are risk averse, which means individuals
prefer less risk to more risk. The goal of the Markowitz model
is to seek a trade-off between return and risk, i.e., maximizing
the expected return for a given level of risk or minimizing
the risk for a certain level of expected return. Based on this
modern portfolio theory, researchers like Sharpe [3], Sengupta
[4], and Stone [5], etc. developed some other schemes for
portfolio selection. The Sharpe ratio (also known as reward-to-
variability ratio) [3], proposed by Sharpe in 1966, characterizes
how well one will be compensated if he bears more risk. It
is broadly adopted as a portfolio selection strategy by many
financial analysts for its simple and intuitive meaning. In this
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paper, besides the Markowitz model, we would also employ
the Sharpe ratio [3] as our measurement criterion.

Basically, the classical Markowitz model can be reformu-
lated as a quadratic programming problem, and the solutions
can be found by the Critical Line Method (CLM) [1]. However,
in real operations, there are many other practical constraints,
such as cardinality, transaction costs, round-lot, etc. Inthis
paper, we consider the cardinality constraints together with
the Markowitz model. Taking into account the administrative
costs, we usually limit the total number of stocks in a portfolio.
Thus, the Markowitz model with the cardinality constraints
will be reduced to a mix-integer quadratic programming prob-
lem. This is anNP-hard [6] problem and its optimal solution
is computationally intractable when the number of stocks is
large. Alternatively, some metaheuristic-based methods which
can obtain approximate solutions in a reasonable time have
been applied. These metaheuristics include Genetic Algorithm
(GA) [7], [8], Simulated Annealing (SA) [9], Particle Swarm
Optimization (PSO) [10], Ant Colony Optimization (ACO)
[11], etc. However, each of these metaheuristics has its own
drawbacks: (1) For GA, since many chromosomes are coded
into a similar portfolio or similar chromosomes have very
different portfolios, the efficiency is quite low; (2) SA evolves
with only one solution and thus will easily get stuck in a
local optimum when the search space is large and rugged; (3)
For PSO, its application to portfolio selection is still limited,
and only employed to find one optimal solution under the
criterion of Sharpe ratio, rather than determining the whole
Pareto frontier; (4) For ACO, though it can obtain the whole
Pareto frontier, points are concentrated on the upper part of
the frontier, where both return and risk are high.

Chemical Reaction Optimization (CRO) [12] is an evolu-
tionary metaheuristic approach, motivated by the molecules’
energy exchange in a chemical reaction. Despite being a
relatively new evolutionary algorithm, CRO has been shown to
enjoy the advantages of both GA and SA and to have a more
flexible structure [13]. Moreover, CRO has already demon-
strated its excellent performance in handling problems like
Quadratic Assignment Problem (QAP), Resource-Constrained
Project Scheduling Problem (RCPSP), Channel Assignment
Problem (CAP) in wireless mesh networks [12], Grid Schedul-
ing Problem (GSP) [14], and Population Transition Problem in
Peer-to-Peer live streaming [15], etc. In this paper, we propose
a new CRO with the super molecule scheme (S-CRO), together
with the canonical CRO. Both of them are applied to solve the
stock portfolio selection problem.

The remainder of this paper is organized as follows. We
introduce both the Markowitz model and the Sharpe ratio
in Section II, and both of them are adjusted to fit the
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application of CRO. Section III firstly describes the basic
idea and framework of the canonical CRO, and then gives
a detailed illustration of our proposed S-CRO. Computational
experiments and results are shown in Section IV. Finally, the
last section contains a summary of our work and topics for
future investigation.

II. T HE OPTIMIZATION MODEL

A. The Markowitz mean-variance model

According to modern portfolio theory, the investors are
rational which means they are risk-opposing. Moreover, de-
pending on their own economic conditions, people have dif-
ferent levels of tolerance to risk. In the Markowitz model, the
return on a portfolio is calculated by the expected value of the
portfolio return, and the corresponding risk is quantified by the
variance of the portfolio return. Markowitz assumes that the
aim of the investors is to determine a set of portfolio which can
minimize the risk while fulfilling a predetermined expected
return. Mathematically, the standard Markowitz mean-variance
model can be formulated as follows [1]:

min. σ2
p =

N∑
i=1

N∑
j=1

ωiωjCovi,j (1)

subject to : Ep =

N∑
i=1

ωiRi ≥ Epre, (2)

N∑
i=1

ωi = 1, (3)

ωi ≥ 0 i = 1, 2, ..., N, (4)

where N is the number of available stocks andωi is the
proportion of capital assigned to Stocki. For eachi, Ri is
its expected return in a given time period.Covi,j represents
the covariance between stocksi and j, and wheni equalsj
in (1), Covi,j becomes the variance ofi. σ2

p andEp stand for
the variance and expected return of the portfolio, respectively.
Constraint (2) guarantees the expected return of the portfolio
will not be less than a predefined valueEpre. The weights
sum to one as shown in Constraint (3), while Constraint (4)
implies shot selling is not allowed.

Strictly speaking, with enough computer power, we can
generate the set of efficient portfolios from among all the
possible combinations of all the stocks available. In addition,
a portfolio is said to be efficient if no other portfolio can
render a higher expected return with the same (or lower)
risk or if no other portfolio offers lower risk with the same
(or higher) return. Thus, we can draw the whole Markowitz
efficient frontier as shown in Fig. 1, which is helpful in our
decision for the portfolio selection.

By including Constraint (2) in (1) in a Lagrangian relaxation
fashion [6], the Markowitz model can be regarded as a bi-
objective function. Moreover, we add the cardinality as a
constraint to the model, which can facilitate the management
of the portfolio. It is important to note that the objective
function value should be nonnegative when employing CRO,

Fig. 1. Markowitz Efficient Frontier

while the stock return may be negative. Thus, we reformulated
the problem as follows:

min F =γe(−Ep) + (1− γ)eσ
2
p , γ ∈ [0, 1] (5)

=γe(−
∑

ωiηiRi) + (1 − γ)e
∑∑

ωiηiωjηjCovi,j

subject to :

N∑
i=1

ωiηi = 1, (6)

ωi ≥ 0 i = 1, 2, ..., N, (7)
N∑
i=1

ηi = M, ηi ∈ {0, 1} i = 1, 2, ..., N, (8)

whereM is the number of stocks in a portfolio, whileγ can be
considered as the investors’ risk tolerance coefficient.γ = 1
and γ = 0 are two extreme conditions, wherein the former
means the investor completely ignores risk and only wants
to maximize the return, while the latter is an absolutely risk
averse investor who only wants to minimize the risk. Once the
γ of an investor is determined, its optimized portfolio is the
point where the indifference curve is tangent to the efficient
frontier.

B. The Sharpe ratio

As mentioned above, the Markowitz efficient frontier is a
useful tool for investors to determine their portfolios. However,
the degree of an investor’s risk aversion is difficult to be quan-
tified since it also relies on many factors, such as investor’s
age, family situation, current cash reserves, insurance cover-
age, etc. Thus, in most situations, we also need to calculate
the Sharpe ratio as a reference for investors. Sharpe ratio is
used to measure the risk-adjusted performance of a portfolio:
the greater the Sharpe ratio, the better its performance. In
particular, the portfolio with the greatest Sharpe ratio has a
significant meaning to investors, and the corresponding model
can be defined as:

max SR =
Ep −Rf

σp

, (9)

whereRf is the risk-free return (like treasury bond rate) and it
can be regarded as a constant, andσp is the standard deviation
of the portfolio return. In order to convert it to a minimization
problem, we reconstruct it as:

min S = 1−
Ep −Rf

σp

(10)
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In the following sections, the proposed CRO approaches will
be employed to determine the generalized Markowitz efficient
frontier as well as compute the greatest Sharpe ratio.

III. T HE PROPOSEDALGORITHMS

A. The canonical CRO

Detailed discussions of Chemical Reaction Optimization
(CRO) can be found in [12]. Here we only give a brief
description of this method.

Chemical Reaction Optimization is a new population-based
strategy used to approximate optimal solutions to optimization
and search problems. The underlying idea of this approach
arises from an analogy with the chemical reaction process.
By following the phenomenon that products are always more
stable than the reactants, molecules are inclined to stay atthe
most stable energy state through a sequence of intermediate
changes. Similarly, solutions in CRO tend to reach the global
minimum by performing predefined elementary reactions.

Each molecule (solution) is characterized by attributes,
such as potential energy (PE), kinetic energy (KE), num-
ber of hits, minimum structure. Among these attributes,PE
and KE correspond to the objective function value and the
ability to accept worse solution, respectively, and the others
are used in the selection of elementary reactions. Moreover,
the chemical reaction is assumed to take place in a closed
container, and there are four kinds of elementary reactions
including on-wall ineffective collision, decomposition,inter-
molecular ineffective collision, and synthesis. The former two
involve only one molecule which collides with the wall of
container, while the latter two involve more than one molecule
(usually two) that interact with each other. In addition, the
number of molecule(s) remains constant in the two ineffective
collisions (i.e. on-wall ineffective collision and inter-molecular
ineffective collision) and only the neighborhoods of original
solution are searched. For the other two elementary reactions,
one molecule is divided into several in the decomposition,
while synthesis combines many molecules into one. These
two reactions generate new solutions very different from the
original ones and they help the algorithm jump out of the local
optimums.

More precisely, the steps of canonical CRO are implemented
as follows for the stock portfolio selection problem:

1) Randomly generate a population of initial molecules
(solutions), calculate each solution’s objective function
value as itsPE, and initialize each molecule’s other
attributes.

2) Until a stopping criterion is met, do:

i According to the parameterMoleColl ∈ [0.1], ran-
domly choose one molecule or two molecules from
the population.

ii Based on the decomposition criterionα or synthesis
criterion β, select one of the four elementary reac-
tions.

iii Generate the new molecule(s) according to the corre-
sponding reaction scheme.

iv If there is enough energy1 for the new molecule(s)
to be generated, replace the original molecule(s) with
the new one(s), and update the relevantKE.

v Else maintain the original molecule(s)

3) Output the global minimum solution and its correspond-
ing values.

B. The super molecule-based CRO

One advantage of CRO over other metaheuristic methods
is its flexible structure which can be easily adjusted to fit the
problem. We can reconstruct the CRO process by choosing
different combination of elementary reactions. In our proposed
super molecule-based CRO (S-CRO) as shown in Fig. 2, the
main body of the algorithm can be divided into three stages:

1) The S-CRO evolves with only two elementary reactions,
i.e. on-wall ineffective collision and inter-molecular inef-
fective collision. This ensures the number of molecules
remains the same, and the goal is to make the molecules
explore as much as possible the solution space in their
initial solutions’ neighborhoods.

2) Analyze the characteristics of all the molecules resulted
from the previous stage, and then produce a super
molecule based on that.

3) The super molecule is added to the container, and together
with the molecules from the first stage, performs canon-
ical CRO. The only difference is that the super molecule
will not participate in decomposition and synthesis reac-
tions. The main purpose is to prevent the super molecule
from changing dramatically, which may destroy its good
quality inherited from Stage 2.

For stock portfolio selection, which is a mixed-integer
quadratic programming problem, we need not only to select a
mixture from a huge number of stocks, but also determine the
proportion for each chosen stock. Thus, in our algorithms, two
vectors are used to represent the solution. The stock vectoris
employed to denote the selected stocks, while the proportion
vector depicts the corresponding percentage of invested capi-
tal. Moreover, the schemes for the four elementary reactions
are listed for reference (Suppose there are 20 stocks to choose
from, and the cardinality is set to 5).

• On-wall ineffective collision: one-weight change in the
proportion vector. One element (bold) in the vector will
be selected randomly. Then, a random real number gen-
erated in the range [-t, t] (t is the step size) is added to it.
Finally, we normalize the vector to make all the elements
sum to 1.

[0.110, 0.250, 0.170, 0.330, 0.140]→
[0.110, 0.280, 0.170, 0.330, 0.140]→
[0.107, 0.272, 0.165, 0.320, 0.136]

• Decomposition: half-random in the stock vector [14].

Strings before decomposition

ω: [1, 6, 8, 15, 20]

1For example, on-wall ineffective collision happens whenPEω+KEω ≥
PE

ω
′ , where ω and ω′ represent the original and the new molecule’s

structures, respectively. Readers can refer to [12] for theenergy requirements
of other reactions.
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Fig. 2. Flowchart of S-CRO

String after decomposition

ω′

1: [1, 4 , 8, 10 , 20]

ω′

2: [ 2 , 6, 9 , 15, 17 ]

• Inter-molecular ineffective collision: one-stock changein
the stock vector [14].

[1, 6, 8, 15, 20]→ [1, 4, 8, 15, 20]

• Synthesis: keep the same stocks of the two molecules
in the new stock vector, and randomly generate the
remaining.

Strings before synthesis

ω1: [1, 6, 8, 15, 20]

ω2: [3, 6, 8, 11, 20]

String after synthesis

ω′: [2, 6, 8, 12, 20]

In our problem, the super molecule is produced via three
steps: 1) calculate the frequency of each stock existing among
the molecules left in the previous stage; 2) choose the most
popular stocks for the stock vector of a super molecule; (3)
compute the corresponding normalized proportion vector of
the super molecule. To a certain extent, the super molecule
is similar to the “elite” in genetic algorithms. However, the
“elite” in GA is usually generated from two chromosomes,
while the super molecule is based on all other molecules. Fur-
thermore, for both canonical CRO and S-CRO, when drawing
the Markowitz efficient frontier, we will choose 100 different

values of the risk tolerance coefficientγ spaced evenly in the
range[0, 1].

IV. COMPUTATIONAL EXPERIMENTS

We test our algorithms on a public OR library maintained by
Beasley [16]. The benchmark for the stock portfolio selection
problem includes five sets of data, which are derived from
Hang Seng Index in Hong Kong with 31 stocks, DAX 100 in
Germany with 85 stocks, FTSE 100 in UK with 89 stocks,
S&P 100 in USA with 98 stocks and Nikkei 225 in Japan
with 225 stocks. These data record the weekly prices from
March 1992 to September 1997, and the mean return and
the covariance between stocks are publicly available at [16].
The parameters for canonical CRO and S-CRO are shown in
Table I, and they are coded in C++ and the simulations are
implemented on a PC with Intel Core 2 Duo-E677@2.66Hz
CPU and 2GB RAM. In addition, we will compare the
canonical CRO and S-CRO with the unconstrained efficient
frontiers, which are also provided by the benchmark.

TABLE I
PARAMETER SETTINGS FOR THE ALGORITHMS

Algorithm Parameter Assigned value

Population size 25

α 1500

β 0.1×initial minimal fitness

Canonical KE loss rate 0.8

CRO MoleColl 0.2

Initial KE initial minimal fitness

Initial Energy 0

Iteration Number 100000

Cardinality M 10

For First stage iterations 50000

S-CRO Third stage iterations 50000

The graphical results of the Markowitz efficient frontier
for the canonical CRO and S-CRO are shown in Figs. 3,
4, 5, 6, and 7. It is clear that S-CRO is much better than
canonical CRO in terms of closeness to the true Pareto frontier
without constraint. In fact, S-CRO almost coincides with the
true Pareto frontier. This also confirms the rule of thumb

Fig. 3. Markowitz efficient frontier for Hang Seng
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Fig. 4. Markowitz efficient frontier for DAX 100

Fig. 5. Markowitz efficient frontier for FTSE 100

that putting a limited number of carefully chosen stocks in
a portfolio can probably achieve better performance than
working with all the stocks when taking into account the
administrative costs. However, we should also note that the
distribution of S-CRO points along the true Pareto frontier
is not uniform. This is due to the choice ofγ, and if we
evaluate enough different values ofγ, accurate Markowitz
efficient frontier can be obtained. Thus, the S-CRO algorithm
can be used as a tool to generate the efficient frontier for the
investors.

In order to reduce the random impact from the algorithm
itself, we repeat 50 times to calculate the Sharpe ratio and
compute the average and standard deviation. The results of
canonical CRO and S-CRO are listed in Table II. For all five
sets of data, the performance of S-CRO is superior to that of
canonical CRO in terms of Sharpe ratio, expected return and
variance. Specifically, when the number of stocks is huge like
the example of Nikkei 225, the advantage of S-CRO becomes
more significant. Moreover, another merit of S-CRO is its
smaller standard deviation. This is quite useful in practice
since we do not need to repeat so many times to get a reliable
good solution, which can save us a lot of time. From Table II,
we can also observe that for each run, S-CRO consumes more
CPU time than canonical CRO. This is mainly caused by the
super molecule generation in S-CRO. However, the difference
is not substantial, and it is worthwhile to spend a little more

Fig. 6. Markowitz efficient frontier for S&P 100

Fig. 7. Markowitz efficient frontier for Nikkei 225

time to achieve much better solutions. Thus, it is a good idea
for us to apply S-CRO to optimize the Sharpe ratio.

V. CONCLUSION

Stock portfolio selection is one of the most challenging
problems in finance. We formulate it as a mix-integer quadratic
programming problem with the cardinality constraint. It isNP-
hard and the optimal solution is computationally intractable.
CRO is a new metaheuristic inspired by the molecular evolu-
tion in a chemical reaction. This paper proposes a new CRO
scheme (named S-CRO) by adding a super molecule to the
evolutionary process. Accordingly, the structure of canonical
CRO was tailored to fit S-CRO. Then, both S-CRO and
canonical CRO have been tested and compared under five
different scenarios in terms of the Markowitz efficient frontier
and the Sharpe ratio. Simulation results show that our proposed
S-CRO performs much better than the canonical CRO and
achieves the Pareto frontier, demonstrating its power in solving
the stock portfolio selection problem.

However, there are three things we need to note. Firstly,
the Markowitz model has its own limitations. It assumes
the stock return follows the normal distribution while many
researchers argue that the returns in real stock market are
asymmetrically distributed and other statistics (like skewness,
kurtosis) should be considered. The second problem is that
besides the cardinality constraint, there are also many other
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TABLE II
SHARPE RATIO RESULTS

Index canonical CRO S-CRO

Hang Seng Sharpe ratio (Avg) 0.1908629 0.2104100

Sharpe ratio (SD) 0.0126028 0.0000010

Expected return (Avg) 0.0070479 0.0071060

Variance (Avg) 0.0013814 0.0011402

Time(s) (Avg) 0.121 0.125

DAX 100 Sharpe ratio (Avg) 0.2561531 0.3615554

Sharpe ratio (SD) 0.0283834 0.0012485

Expected return (Avg) 0.0057178 0.0067509

Variance (Avg) 0.0005006 0.0003488

Time(s) (Avg) 0.124 0.133

FTSE 100 Sharpe ratio (Avg) 0.2411870 0.2936723

Sharpe ratio (SD) 0.0140641 0.0011946

Expected return (Avg) 0.0053986 0.0056605

Variance (Avg) 0.0005113 0.0003716

Time(s) (Avg) 0.122 0.139

S&P 100 Sharpe ratio (Avg) 0.2547994 0.3101401

Sharpe ratio (SD) 0.0116441 0.0022049

Expected return (Avg) 0.0051833 0.0056382

Variance (Avg) 0.0004170 0.0003311

Time(s) (Avg) 0.123 0.134

Nikkei 225 Sharpe ratio (Avg) 0.0760307 0.1391573

Sharpe ratio (SD) 0.0309694 0.0012423

Expected return (Avg) 0.0025319 0.0034318

Variance (Avg) 0.0011628 0.0006083

Time(s) (Avg) 0.121 0.142

practical constraints, such as transaction costs, round lot, tax
concerns, etc. They can be quite different in different countries.
Finally, the analysis of historical price for a stock does not
mean we can predict its future trend precisely because the
stock market is very complicated. Therefore, our future work
will refine the stock portfolio selection model by considering
additional market indicators.
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