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Abstract—Stock portfolio selection is a classic problem in financepaper, besides the Markowitz model, we would also employ
and it involves deciding how to allocate an institution’saorindivid-  the Sharpe ratio [3] as our measurement criterion.
t‘a"s Wea'tg to i)”“mbﬁr of stocks, Withdce"aL” i”ﬂeStmé’ljem"ﬂis Basically, the classical Markowitz model can be reformu-
return and risk). In this paper, we adopt the classical Idai ’ . - .
mean-variance model and consider an additional commorstieal lated as a quadratic p_r(_)grammlng problem, and the solutions
constraint, namely, the cardinality constraint. Thuscistportfolio can be found by the Critical Line Method (CLM) [1]. However,
optimization becomes a mixed-integer quadratic programgnprob- in real operations, there are many other practical comtgai
lem and it is difficult to be solved by exact optimization aigfums. such as cardinality, transaction costs, round-lot, etcthia
Chemical Reaction Optimization (CRO), which mimics the ewollar paper, we consider the cardinality constraints togethéh wi

interactions in a chemical reaction process, is a populdiased . P o .
metaheuristic method. Two different types of CRO, namedoial the Markowitz model. Taking into account the administrativ

CRO and Super Molecule-based CRO (S-CRO), are proposediio sEosts, we USUa”y limit the total number of stocks in a pdl(bf.o
the stock portfolio selection problem. We test both canain@RO Thus, the Markowitz model with the cardinality constraints

and S-CRO on a benchmark and compare their performance unggil be reduced to a mix-integer quadratic programming prob
two criteria: Markowitz efficient frontier (Pareto frontjeand Sharpe lem. This is anNP-hard[6] problem and its optimal solution
ratio. Computational experiments suggest that S-CRO imjsiag .~ . . .
in handling the stock portfolio optimization problem. is computatlonally intractable Wher! the number of stocks is
large. Alternatively, some metaheuristic-based methduishw
can obtain approximate solutions in a reasonable time have
been applied. These metaheuristics include Genetic Alguri
(GA) [7], [8], Simulated Annealing (SA) [9], Particle Swarm
I. INTRODUCTION Optimization (PSO) [10], Ant Colony Optimization (ACO)
S a proverb said, “Do not put all your eggs into on 11], etc. I-!owever, each pf these metaheuristics has its own
, o rawbacks: (1) For GA, since many chromosomes are coded
basket”, the risk in the stock market can be reduced b|¥ L . L
to a similar portfolio or similar chromosomes have very

Keywords—Stock portfolio selection, Markowitz model, Chemical
Reaction Optimization, Sharpe ratio

holding a variety of stocks rather than owning a few or a Qng\digerent portfolios, the efficiency is quite low: (2) SA dves

one. The purpose of stock portfolio management is to selec: . : . ;

. ~with only one solution and thus will easily get stuck in a
an appropriate set of stocks and to compute the portion I8ca| optimum when the search space is large and rugged; (3)
the budget allocated to each stock so as to meet the invest P P g gged,

objectives (return and risk) and economic constraintsiidiity, or PSO, its application .to portfolio §e|ect|on 'S still lieed,
. . and only employed to find one optimal solution under the
tax treatment, and unique circumstances). o : -
Modern portfolio theory, established by Nobel Iaureatcrltenon of Sharpe ratio, rather than determining the whol
’ Pareto frontier; (4) For ACO, though it can obtain the whole

Markowitz [1], [2] in 1952, is the core of portfolio manage- . .
: i L areto frontier, points are concentrated on the upper gart o
ment and has been widely used in practice in finance. The

. . . e frontier, where both return and risk are high.
Markowitz model takes the variance as the risk and assume . . A ;

. . - . C hemical Reaction Optimization (CRO) [12] is an evolu-
that rational investors are risk averse, which means iddafs

prefer less risk to more risk. The goal of the Markowitz modé'lOnary metaheuristic approach, motivated by the molecule

; S .. . energy exchange in a chemical reaction. Despite being a
is to seek a trade-off between return and risk, i.e., maximgiz h . .
relatively new evolutionary algorithm, CRO has been shawn t

the expected return for a given level of risk or minimizingaenjoy the advantages of both GA and SA and to have a more
the risk for a certain level of expected return. Based on thﬁs

o porolo hecr. esecners ke Sharpe 3, sy 1208 21U (19, Moreoer, GO hes ey s
[4], and Stone [5], etc. developed some other schemes fs P ap

r
portfolio selection. The Sharpe ratio (also known as reward

uadratic Assignment Problem (QAP), Resource-Constiaine
variability ratio) [3], proposed by Sharpe in 1966, chagtizes Project Scheduling Problem (RCPSP), Channel Assignment
how well one will be compensated if he bears more risk.

ﬁroblem (CAP) in wireless mesh networks [12], Grid Schedul-

. : : ing Problem (GSP) [14], and Population Transition Problam i

is broadly adopted as a portfolio selection strategy by magp : ; .

financial analysts for its simple and intuitive meaning. hist eer-to-peer !'Ve streaming [15], etc. In this paper, weppse

’ a new CRO with the super molecule scheme (S-CRO), together
Jin Xu and Victor O.K. Li are with the Department of Electticand with the canonical CRO. Both of them are applied to solve the

Electronic Engineering, The University of Hong Kong, Pdafa Road, Hong  stock portfolio selection problem.

Kong, China Email:{xujin.vii} @eee.hku.nk. . 3 The remainder of this paper is organized as follows. We
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application of CRO. Section IlI firstly describes the basic ~ Return(E )
idea and framework of the canonical CRO, and then gives

a detailed illustration of our proposed S-CRO. Computation

experiments and results are shown in Section IV. Finallg, th

last section contains a summary of our work and topics for

future investigation.

Efficient Frontier

I[I. THE OPTIMIZATION MODEL Variance(O'; )

A. The Markowitz mean-variance model
i . . Fig. 1. Markowitz Efficient Frontier
According to modern portfolio theory, the investors are

rational which means they are risk-opposing. Moreover, de-

pending on their own economic conditions, people have dijrhile the stock return may be negative. Thus, we reformdlate
ferent levels of tolerance to risk. In the Markowitz modégt the problem as follows:

return on a portfolio is calculated by the expected valuéef t , —8,) 2

portfolio return, and the corresponding risk is quantifigatoe min F =yet= ") 4 (1 = y)e?r, v € [0,1] ®)
variance of the portfolio return. Markowitz assumes tha th =ye(m X wmiR) 4 (1 _ y)eX Lwimiwing Covi,g

aim of the investors is to determine a set of portfolio whiah ¢

minimize the risk while fulfilling a predetermined expected N

return. Mathematically, the standard Markowitz meanamece  subject to: Zwmi =1, (6)
model can be formulated as follows [1]: i=1

NN w; >0 i=1,2,..,N, @)
min. o2 = wiw;Cov; ; 1 N
P ;; o @) =M, ne{0,1} i=12..N, (8
=1
N where)M is the number of stocks in a portfolio, whitecan be
subject to: E, = Z“’iRi > Epre, (2) considered as the investors’ risk tolerance coefficignt 1
=1 and~ = 0 are two extreme conditions, wherein the former
N means the investor completely ignores risk and only wants
Zwi =1, (3) to maximize the return, while the latter is an absolutelk ris
i=1 averse investor who only wants to minimize the risk. Once the
w;>0 i=1,2,...,.N, (4) ~ of an investor is determined, its optimized portfolio is the
point where the indifference curve is tangent to the efficien

where N is the number of available stocks ang is the
proportion of capital assigned to StockFor eachi, R; is
its expected return in a given time peria@ov; ; represents .
the ch))variance between gstocksamdj,pand whejnz‘ epqualsj B. The Shérpe ratio . o o
in (1), Cov; ; becomes the variance afo2 and E, stand for ~ AS mentioned above, the Markowitz efficient frontier is a
the variance and expected return of the portfolio, respelgti useful tool for investors to determine their portfolios.vraver,
Constraint (2) guarantees the expected return of the piortfothe degree of an investor’s risk aversion is difficult to bewu
will not be less than a predefined valig,.. The weights tified since it also relies on many factors, such as investor’
sum to one as shown in Constraint (3), while Constraint (&g€, family situation, current cash reserves, insurangereo
implies shot selling is not allowed. age, etc. Thus, in most situations, we also need to calculate
Strictly speaking, with enough computer power, we cafie Sharpe ratio as a reference for investors. Sharpe satio i
generate the set of efficient portfolios from among all thésed to measure the risk-adjusted performance of a partfoli
possible combinations of all the stocks available. In adnjt the greater the Sharpe ratio, the better its performance. In
a portfolio is said to be efficient if no other portfolio carParticular, the portfolio with the greatest Sharpe ratis laa
render a higher expected return with the same (or |owe<:,ignificant meaning to investors, and the correspondingainod
risk or if no other portfolio offers lower risk with the same¢an be defined as:
(or higher) return. Thus, we can draw the whole Markowitz mazr SR — E, — Ry ©)
efficient frontier as shown in Fig. 1, which is helpful in our op
decision for the portfolio selection. _ _whereR; is the risk-free return (like treasury bond rate) and it
By including Constraint (2) in (1) in a Lagrangian relaxatio .o, pe regarded as a constant, apds the standard deviation

fashion [6], the Markowitz model can be regarded as a Rit the portfolio return. In order to convert it to a minimiiat
objective function. Moreover, we add the cardinality as Broblem we reconstruct it as:

constraint to the model, which can facilitate the managemen g
of the portfolio. It is important to note that the objective min S=1— E,— Ry
function value should be nonnegative when employing CRO, 9p

frontier.

(10)
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In the following sections, the proposed CRO approacheswill iv If there is enough enerdyfor the new molecule(s)
be employed to determine the generalized Markowitz efftcien to be generated, replace the original molecule(s) with
frontier as well as compute the greatest Sharpe ratio. the new one(s), and update the relevidit

v Else maintain the original molecule(s)

3) Output the global minimum solution and its correspond-

Ill. THE PROPOSEDALGORITHMS ing values.

A. The canonical CRO
B. The super molecule-based CRO

Detailed discussions of Chemical Reaction Optimization .
(CRO) can be found in [12]. Here we only give a brief One advantage of CRO over other metaheuristic methods
description of this method ' Is its flexible structure which can be easily adjusted to # th

Chemical Reaction Optimization is a new population-basé;xg;f)blem' We can reconstruct the CRO process by choosing

strategy used to approximate optimal solutions to optitioza - erent combination of elementary reactions. In our
gy bp plimal so! P syper molecule-based CRO (S-CRO) as shown in Fig. 2, the
and search problems. The underlying idea of this approac

. . . . main body of the algorithm can be divided into three stages:
arises from an analogy with the chemical reaction process.

By following the phenomenon that products are always moret) _The S'CRO_ evolve_s with .only two glementary reaqtlons,

stable than the reactants, molecules are inclined to stthyeat ~ -€- On-wall ineffective collision and inter-moleculaei

most stable energy state through a sequence of intermediate f€ctive collision. This ensures the number of molecules

changes. Similarly, solutions in CRO tend to reach the dloba €mains the same, and the goal is to make the molecules

minimum by performing predefined elementary reactions. explore as much as possible the solution space in their
Each molecule (solution) is characterized by attributes initial solutions nelghb_or_hoods.

such as potential energyPE), kinetic energy KE), num- 2) Analyze the ch_aractenstms of all the molecules reslulte

ber of hits, minimum structure. Among these attributeg, from the previous stage, and then produce a super

and KE correspond to the objective function value and the molecule based on t.hat. .

ability to accept worse solution, respectively, and theeoth ) The super molecule is added to the container, and together

are used in the selection of elementary reactions. Moreover Wltlhct:t;;eom_?lheculels f(;%m the flr'sttf]tig;, performs clano:n-
the chemical reaction is assumed to take place in a closed Ica - ['he only difierence IS that the super mojecule

container, and there are four kinds of elementary reactions f[’.v'” no_martmpate n decpr‘r':posmon ??: synthesis lreacl-
including on-wall ineffective collision, decompositiomter- lons. The main purpose Is o prevent the SuUper molecu'e

molecular ineffective collision, and synthesis. The forrveo from changing dramatically, which may destroy its good

involve only one molecule which collides with the wall of quality inherited from Stage 2.

container, while the latter two involve more than one molecu For stock portfolio selection, which is a mixed-integer
(usually two) that interact with each other. In additione thquadratic programming problem, we need not only to select a
number of molecule(s) remains constant in the two ineffecti Mixture from a huge number of stocks, but also determine the
collisions (i.e. on-wall ineffective collision and intemelecular Proportion for each chosen stock. Thus, in our algorithme, t
ineffective collision) and only the neighborhoods of omigii Vectors are used to represent the solution. The stock vector
solution are searched. For the other two elementary reegticeMployed to denote the selected stocks, while the proportio
one molecule is divided into several in the decompositioM&ctor depicts the corresponding percentage of investpd ca
while synthesis combines many molecules into one. Thdd Moreover, the schemes for the four elementary reastion
two reactions generate new solutions very different from tire listed for reference (Suppose there are 20 stocks tesehoo
original ones and they help the algorithm jump out of the loc§om. and the cardinality is set to 5).

optimums. « On-wall ineffective collision: one-weight change in the
More precisely, the steps of canonical CRO are implemented Proportion vector. One element (bold) in the vector will
as follows for the stock portfolio selection problem: be selected randomly. Then, a random real number gen-

erated in the range [-t, 1] (t is the step size) is added to it.
Finally, we normalize the vector to make all the elements
sum to 1.

1) Randomly generate a population of initial molecules
(solutions), calculate each solution’s objective fungtio
value as itsPE, and initialize each molecule’s other
attributes.

2) Until a stopping criterion is met, do:

i According to the parametevoleColl € [0.1], ran-
domly choose one molecule or two molecules from

[0.110, 0.250,0.170, 0.330, 0.140] —
[0.110, 0.280,0.170, 0.330, 0.140] —
[0.107,0.272,0.165, 0.320, 0.136]

« Decomposition: half-random in the stock vector [14].

the population. Strings before decomposition
ii Based on the decomposition criterienor synthesis w: [1,6,8,15,20]
criterion 3, select one of the four elementary reac-
tions. 1For example, on-wall ineffective collision happens whekR,, + K E,, >

i G h | | di h PE,,, where w and w’ represent the original and the new molecule’s
I Generate the new molecu e(s) according to the Corrgﬁuctures, respectively. Readers can refer to [12] foretiergy requirements

sponding reaction scheme. of other reactions.
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Initialize population

Select molecule
(one is chosen)
T
- ~.
No _—Inter- ~

Yes

~_ Collision? _—
~ -

On-wall ineffective
collision
Check for any new
min. point

A

A~
- ~

— Next step criteria ~—__

~

> -
~__ matched?

~—

Yes

Generate and add the
super molecule

Inter-molecular N
ineffective collison °

values of the risk tolerance coefficieptspaced evenly in the
range|0, 1].

IV. COMPUTATIONAL EXPERIMENTS

We test our algorithms on a public OR library maintained by
Beasley [16]. The benchmark for the stock portfolio setacti
problem includes five sets of data, which are derived from
Hang Seng Index in Hong Kong with 31 stocks, DAX 100 in
Germany with 85 stocks, FTSE 100 in UK with 89 stocks,
S&P 100 in USA with 98 stocks and Nikkei 225 in Japan
with 225 stocks. These data record the weekly prices from
March 1992 to September 1997, and the mean return and
the covariance between stocks are publicly available &t [16

A
No (ﬁe;;-l-:i-;:)e:}n?u\; Yes The parameters for canonical CRO and S-CRO are shown in
T~ Table I, and they are coded in C++ and the simulations are
" implemented on a PC with Intel Core 2 Duo-E677@2.66Hz
T~ T~ CPU and 2GB RAM. In addition, we will compare the
S S canonical CRO and S-CRO with the unconstrained efficient
T~ e ~l I e frontiers, which are also provided by the benchmark.
TABLE |
l Check for any new | | PARAMETER SETTINGS FOR THE ALGORITHMS
min. point
/@@LER\\ Algorithm  Parameter Assigned value
. matched? _— Population size 25
el « 1500
B 0.1xinitial minimal fitness
Canonical KE loss rate 0.8
Fig. 2. Flowchart of S-CRO CRO MoleColl 0.2
Initial KE initial minimal fitness
Initial Energy 0
String after decomposition lteration Number 100000
wi: [1,[4],8,[10], 20] Cardinality M 10
wé . [7 6, @7 15, } For First stage iterations 50000
S-CRO Third stage iterations 50000

« Inter-molecular ineffective collision: one-stock charige
the stock vector [14].

[1,6,8,15,20] — [1,4,8,15,20]

The graphical results of the Markowitz efficient frontier

for the canonical CRO and S-CRO are shown in Figs. 3,

« Synthesis: keep the same stocks of the two moleculgss 6 and 7. It is clear that S-CRO is much better than
in the new stock vector, and randomly generate th@nonical CRO in terms of closeness to the true Pareto &onti

remaining.
Strings before synthesis
w1 [17§7§7 157@]
wa: [37§7§7 117&]
String after synthesis
w': [2,6,8,12, 20]
In our problem, the super molecule is produced via three
steps: 1) calculate the frequency of each stock existingh@mo
the molecules left in the previous stage; 2) choose the mos
popular stocks for the stock vector of a super molecule; (3
compute the corresponding normalized proportion vector o
the super molecule. To a certain extent, the super molecul
is similar to the “elite” in genetic algorithms. Howevereth
“elite” in GA is usually generated from two chromosomes,
while the super molecule is based on all other molecules. Fur
thermore, for both canonical CRO and S-CRO, when drawing

Return

0012

0.008

0.008

0004

0002

the Markowitz efficient frontier, we will choose 100 differe Fig. 3.

without constraint. In fact, S-CRO almost coincides witle th
true Pareto frontier. This also confirms the rule of thumb

-
PRl
PeLd a

G
arn
e

«+ Without constraint
=5_CRO L

a Canonical CRO

0 0.001 0002 0003

Variance

0.004 0005 00086

Markowitz efficient frontier for Hang Seng
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0.002 A
0001
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00005 0001 00015 0.002 0.0025 0.003 0 00005 0001 00015 0002 00025 0003 00035
Variance Variance
Fig. 4. Markowitz efficient frontier for DAX 100 Fig. 6. Markowitz efficient frontier for S&P 100
0.000 00045
0.008 ey e T
: s 00035 : "
P it 5 i T
0.007 ‘P‘"'—'» n 0.003 /“ a A
/ s Lo rAENS
~ 4 A &
0008 s 00025 SR . 4
VRN , PN PN
i
g 0005 {‘. A : — " + Without constraint || g o002 " " " « Without constraint | |
H TN . R #S_CRO H ’ Aa N =5_CRO
= 0004 — aCanonical CRO H = 00015 = aCanonical CRO H
f '
. N
0001
0.003 LY R % .
- 00005
0002
o N
0
0001 08005 0.001 00015 0002 00025 odos
00005 -
0 — : — . i 0001
00005 0001 00015 0002 00025 Variance
Variance
Fig. 7. Markowitz efficient frontier for Nikkei 225

Fig. 5. Markowitz efficient frontier for FTSE 100

that outi limited b f fully ch tock time to achieve much better solutions. Thus, it is a good idea
at puting a fimited number ot careiully chosen stocks 1p, g o apply S-CRO to optimize the Sharpe ratio.
a portfolio can probably achieve better performance than

working with all the stocks when taking into account the
administrative costs. However, we should also note that the
distribution of S-CRO points along the true Pareto frontier Stock portfolio selection is one of the most challenging
is not uniform. This is due to the choice af and if we problems in finance. We formulate it as a mix-integer quaairat
evaluate enough different values of accurate Markowitz programming problem with the cardinality constraint. INB-
efficient frontier can be obtained. Thus, the S-CRO algorithhard and the optimal solution is computationally intractable.
can be used as a tool to generate the efficient frontier for tiRO is a new metaheuristic inspired by the molecular evolu-
investors. tion in a chemical reaction. This paper proposes a new CRO
In order to reduce the random impact from the algorithscheme (named S-CRO) by adding a super molecule to the
itself, we repeat 50 times to calculate the Sharpe ratio aadolutionary process. Accordingly, the structure of cdcaln
compute the average and standard deviation. The resultsCifO was tailored to fit S-CRO. Then, both S-CRO and
canonical CRO and S-CRO are listed in Table II. For all fiveanonical CRO have been tested and compared under five
sets of data, the performance of S-CRO is superior to thatdifferent scenarios in terms of the Markowitz efficient ftien
canonical CRO in terms of Sharpe ratio, expected return aadd the Sharpe ratio. Simulation results show that our Eego
variance. Specifically, when the number of stocks is huge lils-CRO performs much better than the canonical CRO and
the example of Nikkei 225, the advantage of S-CRO becomashieves the Pareto frontier, demonstrating its powerlwirsp
more significant. Moreover, another merit of S-CRO is itthe stock portfolio selection problem.
smaller standard deviation. This is quite useful in practic However, there are three things we need to note. Firstly,
since we do not need to repeat so many times to get a reliatile Markowitz model has its own limitations. It assumes
good solution, which can save us a lot of time. From Table lihe stock return follows the normal distribution while many
we can also observe that for each run, S-CRO consumes mmsearchers argue that the returns in real stock market are
CPU time than canonical CRO. This is mainly caused by tlessymmetrically distributed and other statistics (likevekess,
super molecule generation in S-CRO. However, the diffexenkurtosis) should be considered. The second problem is that
is not substantial, and it is worthwhile to spend a little morbesides the cardinality constraint, there are also mangroth

V. CONCLUSION
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[8] S. M. Wang, J. C. Chen, H. M. Wee, and K. J. Wang, “Non-lmea

stochastic optimization using genetic algorithm for palitf selection,”
International Journal of Operations Researarl. 3, no. 1, pp. 16-22,

Index canonical CRO S-CRO 2006
Hang Seng  Sharpe ratio (Avg) 0.1908629 0.2104100 [9] Y. Crama, and M. Schyns, “Simulated annealing for compsertfolio
Sharpe ratio (SD) 0.0126028 0.0000010 selection problem,European Journal of Operational Researslo). 150,
Expected return (Avg) ~ 0.0070479  0.0071060 no. 3, pp. 546-571, 2003.
i ' ' b [10] G. Kendall, and Y. Su, “A particle swarm optimization pgpach in
Variance (Avg) 0.0013814 0.0011402 the construction of optimal risky portfolios,in Proc. of the 23rd
Time(s) (Avg) 0.121 0.125 LASTED International Multi-Conference on Artificial Inigence and
- P Applications,pp. 140-145, Innsbruck, Austria, 2005.
DAX 100 Sharpe I‘aI‘IO (Avg) 02561531 0.3615554 [11] R. Armananzas, and J. A. Lozano, “A multiobjective agwh to
Sharpe ratio (SD) 0.0283834 0.0012485 the portfolio optimization problem,in Proc. of IEEE Congress on
Expected return (Avg) 0.0057178 0.0067509 Evolutionary Computation (CECpp. 1388-1395, Edinburgh, UK, 2005.
Variance (Avg) 0.0005006 0.0003488 [12] A.Y.S.Lam and V. O. K. Li, “Chemical-Reaction-InspiteMetaheuris-
) ' ) tic for Optimization,” IEEE Transactions on Evolutionary Computation,
Time(s) (Avg) 0.124 0.133 vol. 14, no. 3, pp. 381-399, June 2010.
FTSE 100  Sharpe ratio (Avg) 0.2411870 0.2936723 [13] J. Xu, A. Y.S. Lam, and V. O.K. Li, “Chemical reaction apization
Sharpe ratio (SD) 0.0140641 0.0011946 for task scheduling in grid computing/EEE Transactions on Parallel
and Distributed Systems (TPDY)8 Jan. 2011.
ExPected return (Avg) 0.0053986 0.0056605 [14] J.Xu, A.Y.S. Lam, and V. O. K. Li, “Chemical reaction a@pization for
Variance (Avg) 0.0005113 0.0003716 the grid scheduling problemjh Proc. of IEEE Intl Conf. on Commun.
Time(s) (Avg) 0.122 0.139 [15](|/E\:C$0310|)_'May322<10' 4V 6. K Li “Ch | opi
- . Y. S. Lam, J. Xu, and V. O. K. Li, “Chemical reaction apization
S&P 100 Sharpe ra.tlo (Avg) 0.2547994 0.31014p1 for population transition in peer-to-peer live streamiing, Proc. of IEEE
Sharpe ratio (SD) 0.0116441 0.0022049 Congress on Evolutionary Computatiodyly 2010.
Expected return (Avg) 0.0051833 0.0056382 [16] http://people.brunel.ac.uk/ mastjjb/jeb/orlibfpofo.html
Variance (Avg) 0.0004170 0.0003311
Time(s) (Avg) 0.123 0.134
Nikkei 225  Sharpe ratio (Avg) 0.0760307 0.1391573
Sharpe ratio (SD) 0.0309694 0.0012423
Expected return (Avg) 0.0025319 0.0034318
Variance (Avg) 0.0011628 0.0006083
Time(s) (Avg) 0.121 0.142

practical constraints, such as transaction costs, rounda®
concerns, etc. They can be quite different in different ¢oes.
Finally, the analysis of historical price for a stock doeg no

mean we can predict its future trend precisely because the
stock market is very complicated. Therefore, our futurekwor

will refine the stock portfolio selection model by consiaheri
additional market indicators.
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