
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1620

A Novel Method for Live Debugging of Production
Web Applications by Dynamic Resource

Replacement

Abstract—This paper proposes a novel methodology for enabling
debugging and tracing of production web applications without
affecting its normal flow and functionality. This method of debugging
enables developers and maintenance engineers to replace a set of
existing resources such as images, server side scripts, cascading
style sheets with another set of resources per web session. The new
resources will only be active in the debug session and other sessions
will not be affected. This methodology will help developers in tracing
defects, especially those that appear only in production environments
and in exploring the behaviour of the system. A realization of the
proposed methodology has been implemented in Java.

Keywords—Live debugging, web application, web resources,

I. INTRODUCTION

IT is inherent in the nature of software development to have
undetected bugs that pass into the production environment.

A software bug is defined as an occurrence of a system design
or program source code that does not meet a requirement [5].
The purpose of debugging is to locate the offending piece of
code and to execute and perform necessary modifications to
fix it [6]. In fact, even software testing and verification cannot
guarantee the absence of bugs, but they can guarantee their
presence [1].

Some bugs are a result of implementations based on
incomplete or inaccurate specifications [2]. Debugging is an
important and continuous activity in the maintenance phase
of the software life cycle. Knowing that software maintenance
costs about 90% of the overall system costs [3] and that the
testing and debugging activities constitute from 50% to 70%
of development costs [4], it is important to have debugging
methodologies and techniques that aid in the quick detection
and fixing of bugs.

Debugging occurs during three stages of the software
development; the actual development and coding of the
system, software testing, and finally when the system is on
production. During development, the developer may easily
perform any code changes necessary to debug. At this stage,
the developer usually runs an instance of the system on his
development machine, and there is no cost associated with
performing changes. During the testing phase, the system is
usually deployed on machines dedicated for the quality control
team to perform testing and verification.

Khaled Al-Tahat(ktahat@yahoo.com) is associated with Open Arab University and

Khaled Mahmoud(Khaledinho@yahoo.com) is associated with Middle East University.

Ahmad Al-Mughrabi(ahmad.al mughrabi@live.com) is associated with Zarqa University

Performing code changes and deploying them on test and
production servers for the purpose of debugging is alluring
because it enables developers to inspect the effects of these
changes and gain better understanding of the behaviour. This
is particularly useful in case of inconsistent bugs that appear
on one environment (production environment for example)
only. However, deploying these changes, usually, interrupt the
functionality of the application because a server restart is
required. Moreover, these changes whose effects should only
be noticed by developers become incorporated into the system
affecting all users.

In this paper, we propose a methodology that enables
software developers and maintenance engineers to replace web
resources on the production server so that these resources are
only active in their web sessions.

related work in the field of debugging and compares
our methodology to the existing methodologies.Section(3)
provides the necessary background related to request
processing and introduces the concept of web resources.
Section(4) presents the model of the proposed methodology
A simple implementation is presented in section(5). Finally,
section(6) discusses the limitations and possible future
enhancements.

II. LITERATURE REVIEW AND RELATED WORK

Software debugging has been heavily researched in the
literature and many approaches and solutions have been
developed and investigated such as static slicing, dynamic
slicing, automated debugging and relative debugging. In this
section we provide a summary of some of these works and
state the position of our proposed methodology with respect
to the literature.

Program slicing research is concerned with building
algorithms that locate all possible execution paths to a specific
statement in a program and in harnessing these algorithms
for bug fixing and re-factoring. Slicing algorithms accept a
criterion specifying a set of variables at the target statement
as their input. When the criterion is passed, all possible
execution paths that lead to that statement and that affect the
values of the variables at the criterion are included in the
resultant execution paths. Program slicing concept was first
introduced by Wiser [7]–[10]. Subsequent researches focused
on methods and techniques of finding program slices and
on utilizing program slices to quickly and efficiently solve

Khalid Al-Tahat, Khaled Zuhair Mahmoud, Ahmad Al-Mughrabi

inconsistent bugs, tracing.

Section(2) of this papers presents the literature and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1621

software bugs. The notion of program dependence graphs [11],
[12] was introduced as a structure to be adopted by the slicing
algorithms.

Program slicing techniques are also utilized by other
application domains. Examples of these applications include
component identification [13] and elimination of unnecessary
loops in the source code re-factoring domain [14].

DARWIN [15] is a promising methodology that utilizes
dynamic slicing to support automatic discovery of regression
bugs. A regression bug is introduced due to changes made in
the source code and it that did not exist in the previous version
before the changes had been made. This methodology, captures
two dynamic slices for a specific input that succeeds in the
original program and another slice for an input that follows
the same path of a successful input at the original program
but a different path in the buggy program that fails. Those
two slices are compared and possible culprit code locations
are pointed out.

RES [16] aids in debugging by synthesizing an execution
suffix leading to an input core dump for an input program.
Inspecting the execution suffix for a faulty execution in a
backward fashion helps developers to detect the root cause
quickly.

Relative Debugging [17] is a set of tools that enable
developers to issue debugging commands to compare states
(variables for example) of two versions of the same program
running at the same time. This aids in detecting bugs specially
if the defect is present on one version (production) but is
not present on the other. This research included developing
artefacts for Eclipse and .NET.

JRebel [18], [19] is a deployment tool that enables
developers to modify source code and deploy it to a web
server without the need to restart the server and thus interrupt
the service. Although it is not directly related to debugging,
JRebel is included the literature because it employs the concept
of live hot deployment of compiled Java source files.

In our proposed methodology, software maintenance
engineers deploy resources at the production server without
the need to restart the server and those resources are only
active in a specific session and upon request. Compared
to other methodologies, our methodology focuses on the
production environment where the bug was discovered by
enabling software maintenance engineers to perform changes
and inspect the effects of those changes on the flow of the web
application. Our methodology is distinguished by inflicting no
side effects on the production environment since the resources
will be only active for a specific session.

III. REQUEST PROCESSING AND WEB RESOURCES

Before presenting the live debugging proposed
methodology, it is important to have basic understanding
of how web servers respond to requests. A traditional web
server may host more than one web application with each
being distinguished by its IP address, host name or context
path. In case of having more than one application that
share the same IP address or host name, an application is
distinguished by its context path. Consider the following

Fig. 1. Request Processing Life Cycle

example URLs ”127.0.1.1/Application1/index.jsp” and
”127.0.0.1/Application2/index.html”. These URLs are for two
applications deployed at the same server. The context path for
the first URL is ”Application1” where the context path for the
second URL is”Application2”. The requested resource path
for the first URL is ”/index.jsp” and the requested resource
path for the second URL is ”/index.html”.

A web resource is either static or dynamic. Examples
of static resources include images, HTML files, CSS files
and JavaScript files. Dynamic resources represent programs
(source code) that are executed when requested and they
dynamically build responses based on parameters and inputs
from the request. Examples of dynamic resources include:
JSP(Java Service Pages), PHP, and Java Servlets.

A web application is a collection of dynamic and static
resources and a map between URL patterns and these
resources. When a request is received, the web server inspects
this map to decide which resource to invoke when a request is
issued. This map is built automatically upon the deployment
of the web application by the hosting web server.

Fig.1 illustrates the request processing lifecycle. When a
request is received(Step 1), the server determines the target
web application of the request (Step 2).Then it inspects the
resource mapping of the web application to determine which
resource to invoke(Step 3). Finally, the resource is invoked
(Step 4) and the proposed methodology operates right before
invoking the resource to determine if another debugging
version of the resource exists and invoke it instead of the
requested resource.

IV. THE LIVE DEBUGGING PROPOSED METHODOLOGY

The proposed live debugging methodology enables software
maintenance engineers to deploy another version of an existing
resource for the purpose of debugging. The debugging version
may contain extra code to better help understand a use case or
debug a defect. Examples of these changes include, printing
the values of some variables on the screen, changing specific



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1622

Fig. 2. Request Processing Life Cycle

variable values to inspect their effect on the output. The
debugging version of the resource is activated by issuing
specific commands to the web application and will only be
available to the session that issued the activation commands.
Actions that a software maintenance engineer can perform
using the proposed methodology are shown in Fig.2.

As Fig.2 illustrates, the live debugging component is
included as a module inside the web application. It provides
extra functionality to enable the developer to deploy the
resources, start an debugging session, and stop the active
debugging session. Those actions are performed through a
graphical user interface.

Live debugging has been realized by intercepting the
invocation of web resources (Step 4 of the request processing
life cycle shown in Fig.2).Fig.3 summarizes the steps involved
in invoking the debugging version of a resource. After
intercepting a request, the interceptor determines whether the
current session is a debugging session (Step 2). If it is a
debugging session, the interceptor determines whether there
is a debugging version deployed and invokes it if it exists.
Otherwise, the original version is invoked.

In the proposed methodology, software maintenance
engineers deploy a group of resources as a change set. A
change set has a unique name per web application and includes
the new versions of the resources (new resource files) .

Table I presents an example of a change set. When this
change set is deployed into the server, the new resource files
will be deployed at the locations dictated by the change
set. The interceptor inspects this mapping and determines
that the path for the resource ”/cart/pay/jsp” should be
”/cart/debug/pay.jsp” for the current session. If there is no
entry for a given resource in the change set, its original version
will always be invoked.

TABLE I
EXAMPLES OF RESOURCES DEBUGGED BY A CHANGE SET

Resource Name (Path) New Resource File Paths
/cart/pay.jsp /cart/debug/pay.jsp
/home/preferences.jsp /home/debug/preferences.jsp

Fig. 3. Invoking a debugging version of a resource

Most web application frameworks and development
languages enable developers to intercept the normal request
processing life cycle in order enabling them to perform
custom tasks (Step 4 of Fig.1).Examples of these tasks include
decryption and applying intrusion detection algorithms. In
the live debugging methodology, the request is intercepted to
invoke the new version of a resource if it exists.

Fig.4 further illustrates the interception process. The
”intercept” method has access to the data session of the
corresponding HTTP request. It determines whether the
current session is a debugging session by inspecting an
attribute in the server http data session (Line 3). If this attribute
is true, the active change set is loaded (Lines 4-5). Then,
the interceptor determines if the requested resource path is
included in the change set (Line 7). If it is included, then
the resource located at the new path is invoked (Lines 7-8).
Otherwise, the original resource is invoked (Line 9).

V. SAMPLE IMPLEMENTATION

We implemented our methodology in Java. The interceptor
mechanism in Java enables developers to intercept invocation
of web requests[20] by enabling them to provide their own
interceptor classes as part of the web application. These
interceptors are called ”filters” in Java web application



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1623

1 Inputs url: URL of the requested resource , session:
The session data of the current user
2 intercept request(requested resource path, session){
3 DEFINE do debug = is debug session(session)
4 IF do debug = TRUE THEN
5 DEFINE active change set =
get debug change set(session)
6 DEFINE path included =
does changeset include resource(active change set,
requested resource path)
7 IF path included = TRUE THEN
8 invoke(new path)
9 ELSE invoke(request resource path)
10 END IF
11 ELSE invoke(requested resource url END IF}

Fig. 4. Intercept Source Code

terminology. More than one filter for a given resource may
exist. Before the Java web container invokes a resource, it
determines if filters exist. If so, it delegates the invocation
of the resource to those filters according to the order of their
configuration. When a web filter completes its task (decryption
for example), it delegates the invocation of the resource to
the next filter. When all filters complete their work, the web
container invokes the resource.

At any time, a filter may decide to stop the invocation of a
resource and forward to the request to another resource on the
server. This is performed through the Java request dispatching
API (javax.servlet.RequestDispatcher).

Fig.5 is an implementation of the abstract functionality
described by Fig.4 .The web container passes a request object
to the filter containing all necessary information about the
HTTP request(Lines 1-3). The filter reads the URL of the
requested resource (Line 8) and checks if the current session is
a debugging session (Line 11) and if it is a debugging session
and the resource has a debugging version Line(14) it forwards
the request to that debugging version (Line 22-23). It important
to notice here, that a RequestDispatcher is used to forward
the request by passing it the URL of the new resource to
invoke. In case of no debugging, the request proceeds normally
delegating to the next filters the task of the resource invocation
(Line 20).

After creating the resource filter class, the web developer
has to tell the web container what resources to intercept and
delegate to the filter. This is performed through the web
application configure file (web.xml).

Our implementation enables replacing the following types of
static resources : cascading style sheet files, various image files
(png, jpeg, bmp, gif) and Javascript files. The implementation
also supports replacing one type of dynamic resources :script
files (JSP-s).

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed an innovative method for
live debugging. This method saves developers efforts and
time while tracing bugs. It can also be used as a learning

1 void doFilter(ServletRequest request,
2 ServletResponse response,
3 FilterChain chain)
4 throws IOException,
5 ServletException
6 HttpServletRequesthttpReq = (HttpServletRequest)
request;
7 HttpSession session = httpReq.getSession();
8 String resourcePath = httpReq.getServletPath();
9 booleanproceedNormally = true;
10 String newResourcePath = null;
11 if (session.getAttribute(Settings.ACTIVE SET) !=
null) {
12 Map changeSet = (Map) session.getAttribute
(Settings.SESSION ATTR ACTIVE SET);
14 if (changeSet.containsKey(resourcePath)) {
15 proceedNormally = false;
16 newResourcePath = changeSet.get(resourcePath);
17 }
18 }
19 if (proceedNormally) {
20 chain.doFilter(request, response);
21 } else {
22 RequestDispatcherreqDispatcher =
request.getRequestDispatcher(newResourcePath);
23 reqDispatcher.forward(request, response);
24 }

Fig. 5. The Resource Debug Filter Implementation

tool since it enables developers to perform changes and
inspect the effects of these changes without affecting the
original functionality. We strongly suggest that companies
like Microsoft, Oracle consider incorporating live debugging
features to be inherent in their languages tools.

Future enhancements include research to replace compiled
classes at runtime per request. This will enable developers to
replace any Servlet classes and their dependencies which is
not supported by our methodology and implementation.

REFERENCES

[1] E. W. Dijkstra, Notes on Structured Programming,Editors, Academic
Press, London, pp. 1-82,1972

[2] Ehud Y. Shapiro, Algorithmic Program Debugging, MIT Press,
Cam-bridge, MA, 1983.

[3] B.Hailpern, P. Santhanam, Software debugging, testing, and
verification,IBM Systems Journal, 2002, Vol.41, Issue.1.

[4] Lewish, G. Modernizing Legacy Systems: Software Technologies,
Engineering Processes, and Business Practices. Addison-Wesley,
Boston(2003).

[5] B. Hailpern, P. Santhanam, IEEE Guide to the Use of IEEE Standard
Dictionary of Measures to Produce Reliable Software, IEEE Standard
982.2-1988, IEEE, New York (1989).

[6] R.McCauleya, .Fitzgeraldb, G.Lewandowskic, L.Murphyd, B.Simone,
L.Thomasf and C.Zanderg , emphDebugging- A Review of the literature
from an educational perspective, Computer Science Education, pages
67-92,Volume 18, No. 2,June 2008

[7] F.Tip, emphA Survey of Program Slicing Techniques,Technical Report,
CWI, Amsterdam, The Netherlands, 1994.

[8] M. Weiser, emphProgram slices: formal, psychological, and practical
investigations of an automatic program abstraction method, PhD thesis,
University of Michigan, Ann Arbor, 1979.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1624

[9] M. Weiser, emphProgrammers use slices when debugging,
Communications of the ACM, pages 446-452 Volume 5, Issue 7
1982.

[10] 10- M. Weiser, Program slicing, IEEE Transactions on Software
Engineering, 352357, Volume 10, Issue 4 ,1984.

[11] J. Ferrante, K.J. Ottenstein, and J.D. Warren, The program dependence
graph and its use in optimization, ACM Transactions on Programming
Languages and Systems, pages 319-349, Volume 9, Issue , 1987.

[12] F. Bergeretti and B.A. Carre, Information-flow and data-flow analysis
of while-programs, ACM Transactions on Programming Languages and
Systems, 3761, Volume 7, Issue 1 ,1985.

[13] N.Rodrigues, emphComponent Identification Through Program Slicing,
Electronic Notes in Theoretical Computer Science, pages 291304 Volume
160, 8 August 2006.

[14] T.Amtoft, Slicing for modern program structures: a theory for
eliminating irrelevant loops, Information Processing Letters, Pages 45-51,
Volume 106, Issue 2, 15 April 2008.

[15] D.Qi, A.Roychoudhury, Z.Liang, and K.Vaswani, DARWIN: An
approach to debugging evolving programs,ACM Transactions on Software
Methodolgy Methodology, Volume 21, Issue 3 ,July 2012

[16] C.Zamfir, B.Kasikci, J.Kinder, E.Bugnion, G.Candea, Automated
debugging for arbitrarily long executions, In Proceedings of the 14th
USENIX conference on Hot Topics in Operating Systems (HotOS’13).
USENIX Association, Berkeley, CA, USA,Year:2013.

[17] D.Abramson, C.Chu, D.Kurniawan1, A.Searle, emphRelative debugging
in integrated development environment, SoftwarePractice and Experience
, pages1157–1183. Volume 39, Issue 14, Year 2009.

[18] J.Kabanov, JRebel Tool Demo, Electronic Notes in Theoretical Computer
Science Volume 264 Issue.14, Year 2011.

[19] JRebel Website, zeroturnaround.com/software/jrebel, 5/5/2014
[20] Servlet Filters, http://www.oracle.com/technetwork/java/filters-137243.html,

5/5/2014

Khalid Al-Tahat Khalid Al-Tahat holds a BSc in Computer Science from
Yarmouk University in Jordan, an MSc. in AI from the Malaysian University
for Science and Technology and a PhD in Software Engineering from the
National University of Malaysia. Dr. Al-Tahat worked at different educational
institutes in UK, Malaysia and Jordan. His research interest lies in the fields of
modern Software Engineering, AI and Teaching Computing. He is author of
about 20 papers published in international journals, conference proceedings,
and invited book chapters.

Khaled Zuhair Mahmoud Khaled Mahmoud is a senior software engineer
with more than six years of experience in Software Development. Khaled
Mahmoud worked at various companies which allowed him to gain diverse
technical and business knowledge. Technical Expertise includes developing
core applications including multi-threaded applications, web applications,
Enterprise Java Beans, JMS, CSharp, ASP.NET, Oracle PL/SQL, Grails,
Oracle ADF and JSF. Khaled Mahmoud holds a Bachelors degree in Software
Engineering with an excellent rating from the Hashemite university and a
Masters Degree in Computer Science with excellent rating from the Middle
East University.

Ahmad Al-Mughrabi Ahmad Al-Mughrabi holds a Bachelors degree in
Computer Science from Zarqa University with excellent rating. His research
interests include Software Engineering and Image processing. His great
passion for Software Engineering along with his technical skills and expertise
enable him to participate and contribute to scientific research and detect areas
where scientific research can provide an added value science.


