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Abstract—This paper presents an approach for the design of 

fuzzy logic power system stabilizers using genetic algorithms. In the 
proposed fuzzy expert system, speed deviation and its derivative 
have been selected as fuzzy inputs. In this approach the parameters of 
the fuzzy logic controllers have been tuned using genetic algorithm.  
Incorporation of GA in the design of fuzzy logic power system 
stabilizer will add an intelligent dimension to the stabilizer and 
significantly reduces computational time in the design process. It is 
shown in this paper that the system dynamic performance can be 
improved significantly by incorporating a genetic-based searching 
mechanism. To demonstrate the robustness of the genetic based 
fuzzy logic power system stabilizer (GFLPSS), simulation studies on 
multimachine system subjected to small perturbation and three-phase 
fault have been carried out. Simulation results show the superiority 
and robustness of GA based power system stabilizer as compare to 
conventionally tuned controller to enhance system dynamic 
performance over a wide range of operating conditions. 
 

Keywords—Dynamic stability, Fuzzy logic power system 
stabilizer, Genetic Algorithms, Genetic based power system 
stabilizer.  

I. INTRODUCTION 
HE application of power system stabilizers for improving 
dynamic stability of power systems and damping out the 
low frequency oscillations due to disturbances has 

received much attention [1-3]. The conventional PSS 
comprising a cascade connected lead-lag network with rotor 
speed deviation as input has made great contribution in 
enhancing system stability [4]. However, the performance of 
the CPSS becomes sub-optimal following variations in system 
parameters and loading conditions [2]. Power system is a 
highly nonlinear system and it is difficult to obtain exact 
mathematical model of the system. In recent years, adaptive 
self tuning, variable structure, artificial neural network based 
PSS, fuzzy logic based PSS have been proposed to provide 
optimum damping to the system oscillations under wide 
variations in operating conditions and system parameters [6-
8]. 

Recently, Fuzzy logic power system stabilizers (FLPSS) 
have been proposed to overcome this problem [8,9,10]. 
Fuzzy logic makes complex and non-linear problems much 
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easier to solve by allowing a more natural representation of 
the situations being dealt with. Fuzzy Logic control appears to 
possess many advantages like lesser computational time and 
robustness. It has been shown that fuzzy logic is one of the best 
approaches for non-linear, time varying and ill-defined 
systems. Fuzzy logic based power system stabilizer has been 
applied successfully for the enhancement of dynamic stability 
of power system [9-10]. The application of fuzzy logic power 
system stabilizer improves the damping of the system 
oscillations. However, optimum tuning of the parameters of 
FLPSS further required for better performance under wide 
variation of system operating conditions. Although, fuzzy logic 
controllers showed promising results, they are subjective and 
heuristic. There is no systematic design procedure for the 
tuning of the parameters of fuzzy logic power system stabilizer. 
The generation of membership functions and the selection of 
scaling factors have been done either, by trial-and-error, 
iteratively, or by human experts. Therefore, the design of fuzzy 
logic power system stabilizer (FLPSS) becomes a time 
consuming and laborious task. 

Genetic algorithms (GA) are search algorithms based on the 
mechanics of natural selection and survival-of-the-fittest [5]. 
GAs is optimization procedures that were devised on 
population genetics. The recent approach is to integrate the use 
of GA and fuzzy logic systems in order to design power system 
stabilizer [11,-13]. GA has been applied successfully in the 
design of power system stabilizers [14,15,16]. The 
performance of FLPSS can be significantly enhanced by 
incorporating genetic-based learning mechanism. The 
advantage of the GA technique is that it is independent of the 
complexity of the performance index [17-19]. 

This paper deals with the design method for the stability 
enhancement of a multimachine power system using FLPSSs 
whose parameters are tuned using genetic algorithm. The 
proposed tuning scheme uses a GA based search that 
integrates a classical parameter optimization criterion based 
on Integral of Squared Time Squared Error (ISTSE). 

All parameters including Fuzzy logic gains centers of 
membership functions and variance of Gaussian membership 
functions. 

II. SYSTEM MODEL 
In this study a two area, 11-bus, 4-machine system is 

considered. Each synchronous machine is represented by non-
linear sixth-order model as in the [3]. It is assumed that all the 
4 generators are equipped with static excitation systems.  
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All the four generators are provided with IEEE Type ST1A 
model of excitation system and turbine governors. The 
nominal system parameters and data are given in Appendix. 
The system used in the analysis is a two area system .The 
generators 1 and 2 are considered to form one area and 
generators 3 and 4 are considered to form second area. 

III. DESIGN ALGORITHM 

A. Selection of Input Signals 
The first step in designing a fuzzy logic power system 

stabilizer (FLPSS) is to decide which state variables 
representing system dynamic performance must be taken as 
the input signal to FLPSS. However, selection of proper 
linguistic variables formulating the fuzzy control rules is very 
important factor in the performance of fuzzy controllers. For 
the present investigations generator speed deviation Δω  and 

acceleration Δ
⋅

ω are chosen as input signals to FLPSS.  In 
practice, only shaft speed deviation Δω is readily available. 
The acceleration signal can be derived from speed signals 
measured at two sampling instant by the following expression: 

T
1)T]Δω(k(kT)[(kT)ωΔ −−Δ

=
ω

&                                                      (1) 

B. Membership Functions 
After choosing proper variables for input and output of 

fuzzy controllers, it is important to decide on the linguistic 
variables. The linguistic variables transform the numerical 
values of the input of the fuzzy controllers to fuzzy values. 
The number of these linguistic variables specifies the quality 
of control, which can be achieved using fuzzy controller. As 
the number of linguistic variables increases, the quality of 
control increases at the cost of increased computer memory 
and computational time. Therefore, a compromise between the 
quality of control and computational time is needed to choose 
the number of variables.  

After choosing proper variables for input and output of 
fuzzy controllers, it is important to decide on the linguistic 
variables. The linguistic variables transform the numerical 
values of the input of the fuzzy controllers to fuzzy values. 
The number of these linguistic variables specifies the quality 
of control, which can be achieved using fuzzy controller. As 
the number of linguistic variables increases, the quality of 
control increases at the cost of increased computer memory 
and computational time. Therefore, a compromise between the 
quality of control and computational time is needed to choose 
the number of variables.  

For the power system under study, five linguistic variables 
for each of the input and output variables are used. The 
linguistic variables are labeled as shown in Table I. 

All the investigations are carried out considering Gaussian 
membership functions. 

A Gaussian membership is defined as: 

       2
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where, ic  is the center of the Gaussian membership function 

and 
2

iσ is the variance. where i = 1,2…n and n is the number 
of membership function. In the present investigations, the 
optimum value of σ and c are determined using GA.  

The structure of all four FLPSS installed on each of the 
machine is same. 

C. Rule Base 
The fuzzy rules play a major role in the design of FLPSS. 

The rules can be generated using knowledge and operating 
experience with the system or understanding of the system 
dynamics. The two inputs, speed deviation and acceleration, 
generate 25 rules for each of the machine. The rules are 
applied to generate FLPSS output. 

Table II shows the results of 25 rules, where a positive 
control signal is for the deceleration control and a negative 
signal is for the acceleration control. 

The stabilizer output is determined by applying a particular 
rule expressed in the form of membership function. Different 
methods have been used for finding the output in which 
Minimum-Maximum and Maximum Product Methods are 
generally used. For present study, Min- Max method is used. 
Finally, the output membership function of the rule has been 
calculated. This is carried out for all the rules and for every 
rule an output membership function is obtained. In this study, 
Mamdani Inference engine is used. 

D. Defuzzification 
To obtain a deterministic control action, a defuzzification 

strategy is required. Defuzzification is a mapping from a space 
TABLE II 

RULE BASE WITH FIVE MEMBERSHIP FUNCTIONS 

   

   
          Δω

NB NS ZO PS PB 
Δ ω&   

NB NB NB NB NS ZO 

NS NB NS NS ZO NS 

ZO NB NS ZO PS PB 

PS NS ZO PS PS PB 

PB ZO PS PB PB PB 
  

TABLE I 
MEMBERSHIP FUNCTIONS 

Symbol Membership Functions  

NB negative big  
NS negative small  

ZO zero  
PS positive small  
PB positive big  
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of fuzzy control actions defined over an output universe of 
discourse into a space of non-fuzzy (crisp) control actions. 
There are different techniques for defuzzification of fuzzy 
quantities such as Maximum Method, Height Method, and 
Centroid Method. Here, COA Method has been used for 
defuzzification.  

E. Selection of Fuzzy Variables for Optimization 
The input signals are normalized using normalization 

factors to obtain a wide range to cover the complete universe 
of discourse. Similarly, a de-normalization factor is used to 
provide an adequate stabilizing signal. In the proposed design 
algorithm for FLPSS, the inner parameters of the fuzzy 
structure i.e., centers of membership functions and variance of 
the membership function are also optimized using genetic 
algorithm in addition to normalization and de-normalization 
factors for input and output signals. 

IV. OPTIMIZATION TECHNIQUE 
In this design, a genetic algorithm (GA) based search is 

used for the optimization of parameters of FLPSS [20]. The 
GA based design integrates the parameter optimization 
criterion based on Integral of Squared Time Squared Error 
(ISTSE). 

An objective function that reflects small steady state error, 
small overshoots and oscillations has been selected for the 
optimization. The performance index J is defined as: 

∫ Δ=
st

dttISTSEJ
0

22)( ω
                                                (3) 

where Δω(t) is speed deviation of the generator following 5% 
step increase in mechanical input torque i.e., Δ Tm = 0.05 p.u. 

V. DESIGN ALGORITHM 
The sequential steps of the proposed design algorithm are 

presented by considering Gaussian membership functions for 
input and output variables. A universe of discourse, -1 to 1 is 
chosen and center of gravity (COG) defuzzification technique 
is used. The design algorithm consists of the following steps: 

 
1) Population representation and Initialization 

Genetic algorithm operates on a number of potential 
solutions, called a population, consisting of some encoding of 
the parameters set simultaneously. The chromosomes are 
represented in single-level binary string. In this algorithm a set 
of 100 individuals is generated randomly. The sizes of the 
individuals are dynamically reduced to the 30 individuals in the 
later stage of generation. This increases the convergence rate.  
Also, the computational time reduces since, the probability of 
the occurrence of good individuals increases in the first 
generation. 

2) Objective function evaluation 
The parameters of the FLPSS are tuned such that the system 

damping is enhanced. An ISTSE technique is used be 
minimize an objective function having the constraints on the 

parameter of the FLPSS. The objective function is defined as 
in equation (3). 

3) Fitness functions assignment 
The fitness function is used to transform the objective 

function value into a measure of relative fitness. The fitness 
function transforms the value of objective function to a non-
negative. The mapping is required whenever the objective 
function is to be minimized as the lower objective function 
values correspond to fitter individuals. In this study, fitness 
function transformation is linear. The transformation offsets 
the objective function, which is susceptible to rapid 
convergence. 

4) Selection 
Selection is the process of determining the number of trials 

for a particular individual for reproduction and, thus, the 
number of offspring that an individual will produce. The 
roulette wheel selection method is used in this study. 

5) Recombination 
This is a basic operator for producing new chromosomes in 

the genetic programming. Crossover, produces new 
individuals that have some parts of both parent’s genetic 
properties. The uniform single-point crossover is used in this 
study. 

6) Mutation 
In natural evolution, mutation is a process where one allele 

of a gene is replaced by another to produce a new genetic 
structure. A mutation probability of 0.001 is considered. 

7) Reinsertion 
After the operation of selection and recombination of 

individuals from the old population, the fitness of the 
individuals in the new population may be determined.  The 
new individuals are inserted to maintain the size of the 
original population. 

8) Termination of GA 
The GA is a stochastic search method; it is difficult to 

specify the convergence criteria. As the fitness of a population 
may remain static for a number of generations before a 
superior individual is found, the application of termination 
criteria becomes problematic. The termination of the GA has 
been done after prespecified number of generation is reached. 
The process iterates till the termination criteria has not met. 

The performance index J of the GA based ISTSE 
optimization method in different stages of the genetic search 
process is shown in Fig.1. 

VI. PERFORMANCE ANALYSIS 
The dynamic performance of four -machine system has 

been analyzed with the proposed GA based fuzzy logic power 
system stabilizer (GFLPSS), conventional PSS (CPSS) and 
without PSS under various disturbances. The performance of 
the proposed GA based fuzzy logic power system stabilizers 
(GFLPSSs) have been examined under small perturbation and 
three-phase fault at different system loading conditions. Power 
system toolbox (PST), MATLAB has been used for the 
analysis [21]. In order to test the robustness of GA based 
fuzzy logic power system stabilizer (GFLPSS) to enhance 
system damping over a wide range of operating conditions, 
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three loading conditions were considered: a light load, a 
nominal load, a heavy load. 

A. Small perturbation Test 
A 5% step decrease in Vref1 i.e. Δ Vref1 = -0.05 p.u. and 5% 

step increase in Vref3 = 0.05 p.u. was applied at different 
loading conditions. The dynamic responses of the GA based 
FLPSS (GFLPSS) are compared with the conventionally 
tuned CPSS and No PSS in the system. It is clear from the 
results that the damping to the system oscillations improves 
with the proposed GFLPSS as compare to CPSS and No PSS. 
Simulation results reveal that without any PSS in the system, 
the system oscillations are sustained, where as with GA based 
FLPSS oscillations are damped very quickly. The GFLPSS 
has a lower peak off-shoot and smaller oscillations. It is 
clearly shown in Fig. 2 & 3 that GFLPSS effectively and 
efficiently damp oscillations in the local as well as inter-area 
mode under small disturbance. The dynamic responses for Δ 
ω12 , Δ ω34 , Δ ω13  and  Δ ω1,  Δ ω2,  Δ ω3, Δ ω4 considering 
small perturbation of  Vref1 = -0.05 p.u. and Vref3 = 0.05 p.u. 
for heavy loading conditions in Figs 4-5 respectively. The 
dynamic responses for Δ ω12 , Δ ω34 , Δ ω13 and  Δ ω1,  Δ ω2,  
 Δ ω3, Δ ω4 considering small perturbation of   Vref1 = -0.05 
p.u. and Vref3 = 0.05 p.u. for light loading conditions in Figs 6-
7 respectively.  

B. Large Disturbance Test 
To investigate the effectiveness of the GPSS under more 

severe conditions, A 3-cycle, three phase fault was applied at 
bus 7 at t = 0.5 sec for nominal, light and heavy system 
loading conditions. The fault is cleared by tripping the faulty 
line. It can be clearly seen from Figs.8-12 that the proposed 
GFLPSS minimize the oscillations in speed deviation and 
improve the settling time and peak offshoot following a three-
phase fault at different loadings. The GFLPSS provide 
superior performance as compare to conventional power 
system stabilizer in terms of settling time. The system 
oscillations are increasing in magnitude without any PSS in 
the system. 

 

 
 

 
 
 

 
 
 

 
 

 
 

 
 

Fig. 1 Variation of performance index J of best individual 

 

 

 
 

 
 

 
 
 
 
 
 

Fig. 2 Dynamic response for Δω34 considering ΔVref 1 = - 0.05 
p.u.and ΔVref 3 = 0.05 p.u. for nominal load (local mode) 

 

 

 

 

 
 
 
 
 
 

 
 

Fig. 3  Dynamic response for Δω13 considering ΔVref - 0.05 p.u.and 
ΔVref 3 = 0.05 p.u. for nominal load (Interarea mode) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Dynamic response for Δω12 , Δ ω34 , Δ ω13 
considering ΔVref 1 = - 0.05 p.u.and ΔVref 3 = 0.05 p.u. 

for heavy load conditions with GFLPSS 
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Fig. 5 Dynamic response for Δ ω1 , Δ ω2  , Δ ω3  and 
Δ ω4 considering Vref1 = -0.05 p.u. and Vref3 = 0.05 p.u. 

for heavy loading conditions 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Dynamic response for Δω12 , Δ ω34 , Δ ω13  considering Vref 
1 = - 0.05 p.u.and Vref 3 = 0.05 p.u. for light load conditions with 

GFLPSS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Dynamic response for Δ ω1 , Δ ω2  , Δ ω3  and Δ ω4  
considering Vref1 = -0.05 p.u. and Vref3 = 0.05 p.u. for light loading 

conditions with GFLPSS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Dynamic response for Δω12 following three phase, 3-cycle 
fault at bus-7 of for nominal loading conditions (local mode) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Dynamic response for Δω13 following three phase, 3-cycle 
fault at bus-7 of for nominal loading conditions (Interarea mode) 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Dynamic response for Δω12 , Δ ω34 , Δ ω13  considering 
transitory 3-phase fault at bus-7 of three cycles duration for heavy 

loading conditions with GFLPSS 
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Fig. 11 Dynamic response for Δ ω1 , Δ ω2  , Δ ω3  and Δ ω4  
considering transitory 3-phase fault at bus-7 of three cycles duration 

for heavy loading conditions with GFLPSS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Dynamic response for Δω12 , Δ ω34 , Δ ω13  considering 
Vref 1 = - 0.05 p.u.and Vref 3 = 0.05 p.u. for light load conditions 

with GFLPSS 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Stabilizing signal under small perturbation with CPSS 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 14 Stabilizing signal under small perturbation with GFLPSS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 Stabilizing signal under three-phase fault with CPSS 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16  Stabilizing signal under three-phase fault with GFLPSS 
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The stabilizing signals under small perturbation for nominal 
loading condition with conventional PSS and GA based 
FLPSS are shown in Fig.13 and Fig. 14 respectively.  

The stabilizing signal considering transitory 3-phase fault at 
bus-7 of three cycles duration for nominal loading conditions 
with conventional PSS and GA based FLPSS are shown in 
Fig.15 and Fig. 16 respectively. 

The results shown clearly indicate that GFLPSS provide 
effective stabilizing signal than CPSS under small 
disturbance. 

Simulation results reveal that the performance of the fuzzy 
logic power system stabilizers can be significantly improved 
by incorporating the genetic-based learning mechanism for 
tuning all parameters including FLPSS gains centers of 
membership functions and variance of Gaussian membership 
functions. 

VII. CONCLUSIONS 
This paper presents a method for the design of fuzzy logic 

power system stabilizers in a multimachine power system 
using genetic algorithm. A systematic approach for tuning the 
parameters of fuzzy logic power system stabilizer using 
ISTSE technique has been presented. The design algorithm for 
simultaneous tuning of fuzzy logic power system stabilizers 
has been tested for multimachine model. The performance of 
the FLPSS can be significantly improved by incorporating the 
genetic-based learning mechanism for tuning of parameters of 
fuzzy logic power system stabilizer. Simulation results reveal 
that the dynamic performance of the system enhances with 
genetic based fuzzy logic power system stabilizer. 
Investigations reveal the performance of simultaneously tuned 
genetic algorithm based fuzzy power system stabilizers in a 
multi-machine system is quite robust under wide variations in 
loading conditions both for small and large disturbance for 
local as well as interarea mode. 

APPENDIX I 

Non-linear model of Multi-machine power system:  

ith machine model : 

   ρωi   =   (   Tmi − Tei ) / 2H 

   δi     =   ωo ( ωi − 1) 

 ρΕ'q i  =  [Efd i - (Ε'qi + (Xd i - X'di) Idi) / T'doi 

 ρΕfd i  =   [ΚAi (Vref i − Vt i) + vs i) − Efd i] / Tai  
   Te  = E'di Idi  + E'qi Iqi – (X'qi - X'di ) Idi Iqi      

  E = Ε'qi  - ( Xd - X'd ) Idi 

  δij     =   δi - δj 

APPENDIX II 
The generation and terminal voltage of generator buses are as 
follows: 
G1: Pe=700 MW   Qe=185 MVA    Vt=1.03 ∠20.2o 

G2: Pe=700 MW   Qe=235 MVA     Vt=1.01 ∠10.5o 

G3:  Pe=719 MW   Qe=176 MVA    Vt=1.03 ∠-6.8o 

G4: Pe=700 MW    Qe=202 MVA  Vt=1.03 ∠-17.0o 

The loads and reactive power supplied (QC) by the shunt 
capacitors at buses 7 and 9. 
 
Bus 7: PL=967MW QL=100 MVAr, QC =200  MVAr 
Bus 9: PL=1767 MW   QL=100 MVAr, QC = 350  MVAr 
Excitation system KA=50   TR=0.01 sec. 
Turbine-governor system   Kg =25    Tg=0.5 
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