
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:7, 2009

805

On the Exact Solution of  Non-Uniform Torsion         
for Beams with Asymmetric Cross-Section

A.Campanile, M. Mandarino, V. Piscopo 

Abstract—This paper deals with the problem of non-uniform 
torsion in thin-walled elastic beams with asymmetric cross-section, 
removing the basic concept of a fixed center of twist, necessary in the 
Vlasov’s and Benscoter’s theories to obtain a warping stress field 
equivalent to zero. In this new torsion/flexure theory, despite of the 
classical ones, the  warping function will punctually satisfy  the first 
indefinite equilibrium equation along the beam axis and it wont’ be 
necessary to introduce the classical congruence condition, to take into 
account the effect of the beam restraints. The solution, based on the 
Fourier development of the displacement field, is obtained assuming 
that the applied external torque is constant along the beam axis and 
on both beam ends the unit twist angle and the warping axial 
displacement functions are totally restrained.  

Finally, in order to verify the feasibility of the proposed method 
and to compare it with the classical theories, two applications are 
carried out. The first one, relative to an open profile, is necessary to 
test the numerical method adopted to find the solution; the second 
one, instead, is relative to a simplified containership section, 
considered as full restrained in correspondence of two adjacent 
transverse bulkheads.  

Keywords—Non-uniform torsion, Asymmetric cross-section, 
Fourier series, Helmholtz equation, FE method.

I. INTRODUCTION

t’s well known that the classical  Saint Venant’ s theory is 
based on the uncoupling and superposition of four basic 

responses: stretching; major-axis bending, coupled with major 
shear; minor-axis bending, coupled with minor shear and pure 
torsion.  
Anyway, when the beam is subjected to a varying torque or 
the axial warping displacements are partially or totally 
restrained at one or both member ends, the torsion becomes 
non-uniform,  the twist  rate  varies  along  the  beam  and the 
displaced  centroids  describe  a  curve.  In this case  two  great 
problems arise: first of all, it is not possible to uncouple a pure 
torque loading from the bending one caused by the curvature 
of the centroidal axis; then, the centre of twist is not constant 
along the beam axis. 

So, in the following, the traditional concept of a fixed centre 
of twist is abandoned and a more general theory is developed.  
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Furthermore, despite of the classical theories, the warping 
function will fully respect the first indefinite equilibrium 
equation and the displacement field, decomposed by means of 
Fourier series, will implicitly respect also the beam ends 
boundary conditions.  

II. THEORY  DEVELOPMENT

Let us assume that the beam cross-section rotates 
undeformed through a small angle ( )xtϑ  about the centroidal 

axis x, warps out of its plane and is subjected to rigid body 
motions along the section principal axes of inertia. Let us 
define the global Cartesian frames sketched in Fig. 1, with 
origin O in correspondence of the left beam end, x axis 
defined along the beam length and passing through the section 
centroid and η, ζ  axes defined in the section plane and 
coinciding with the section principal axes of inertia. 
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G

Fig. 1 Reference Coordinate system 

In this hypothesis, denoting  by   u, v, w the three displacement 
components in the x, η, ζ  directions respectively, the 
displacement field can be assumed as follows: 
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where ( )ςη,,~ xu  is the axial displacement function, ( )xtϑ  is 

the rotation of the section about the x-axis, positive if counter-
clockwise, ( )xv0  and ( )xw0  are the centroid lateral rigid body 

motions along the η and ζ axes, respectively. 
With the previous assumptions and notations, the strain 

components (for small deformation) are then given by: 
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having defined the unit twist angle as follows: 

dx

d tϑϑ =1                  (2.3) 

Denoting by E the Young modulus, G the Coulomb modulus 
and ν  the Poisson modulus, the Navier equations can be so 
specialized: 
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As regards the (3)1 expression, it derives by assuming as 
anelastic tensions yσ  in the web, zσ  in the flanges, what 

allows to reduce the (3)1 coefficient to the ratio E
E ≅

− 21 ν
. 

As regards the indefinite equilibrium equations, which 
naturally involve all the stress components, they can be 
rewritten neglecting the body forces and the pressure loads. 
The system of the indefinite and boundary equilibrium 
equations becomes: 
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                                                                              (4)                                   

where ΣΣΣΣ  is the stress tensor and n is the unit vector normal to 
the section boundary (positive outwards).Concerning the 
indefinite equilibrium equations, it is not necessary to satisfy 
punctually the ones in the transverse directions, as the only 
relevant scalar equations, in the thin-walled beam theory, are 
the x-projections of the vectorial (4). In the further hypothesis 
of cylindrical body, assuming n⋅⋅⋅⋅i=0, the equilibrium 
conditions inside the body and on the boundary can be so 
rewritten:  
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having denoted by A the cross-section domain and by xnτ  the 

tangential stress component, normal to the boundary. 
In terms of displacements the problem (5) becomes: 
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having denoted by αny and αnz the director cosines of the unit  
normal vector, positive if outwards. 

The axial stress field, equivalent to zero, must also verify 
the following global conditions: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=

=

∫
∫
∫

A

x

A

x

A

x

dA

dA

dA

0

0

0

ςσ

ησ

σ

                                                   (7) 

The tangential stress field, instead, is related to the twist 
moment sectional force by the equation: 
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finally becoming: 
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thanks to the following position: 
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Concerning the support end conditions, denoting by L the 
beam length, let us suppose that the beam is “warping 
clamped” at both ends – by moving constraints with 3 degrees 
of freedom: the two lateral displacements and the torsional 
rotation, as for the bulkheads constraints of a hull module – so 
obtaining: 

( ) ( ) ( ) ( ) 00;0,,,,0 11 ==== LLuu ϑϑςηςη                     (11.1) 
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               (11.2) 

from which it results: 
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( ) ( ) 0,,~,,0~ == ςηςη Luu                                                  (11.3) 

In order to solve the problem, it is possible to preliminarily 
expand the axial displacement function, the unit twist angle 
and the two rigid body motion functions into appropriate 
trigonometric series, verifying the conditions (11) and reduced 
to their M-partial sums, as follows: 
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The eq. (11) are implicitly satisfied Mm ...1=∀ .The 
indefinite and boundary equations (6), thanks to the 
orthogonality of the trigonometric functions, become: 
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Expressing the unknown m-th term ( )ςη,mW  in the form: 

( ) ( ) ( ) ( ) mmmmmmm CBW ςηγςηβςηαςη ,,,, ++Ω=          (15) 

the problem (14) can be decomposed into three Neumann 
boundary problems associated to the Helmholtz equation: 
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The first of (7) implies that the three unknown functions 
( )ςηα ,m , ( )ςηβ ,m  and ( )ςηγ ,m  must also respect the 

following global conditions: 
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Concerning the unknown amplitudes mΩ , mB , mC , these 

ones can be determined thanks to the second and third of (7) 
and the eq. (9), obtaining the equation system: 
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specialized as follows, if it’s assumed ( ) .constMxM tt == : 
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The matrix [ ]S  is the following: 
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with ηςI section product of inertia and 1mα , 2mα  , 3mα
coefficients so defined (similarly for mβ  and mγ ): 
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Introducing the following function ( )ςη,mF : 
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it is possible to define the bimoment as follows: 
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Finally, the eq. (23) becomes: 
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while the stress field is the following one: 
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III. BEAM WITH MONOCONNTECTED CROSS-SECTION

In order to verify the feasibility of the applied theory and to 
compare it with the classical one, an application has been 
carried out for a beam already analyzed by C.J. Burgoyne and 
H. Brown (e.g. [6]), falling indisputably within the thin-wall 
domain. The aims of this application are: 
1. to verify the convergence of the solution when the number 

of harmonics increases; 
2. to make a comparison on the unit-twist angle and bimoment 

longitudinal distribution with the classical theory. 
In Fig. 2 the section scheme is shown (all dimensions are in 
mm), while the other data useful in the analysis are: 
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Fig. 2 Cross-section scheme 

• Poisson modulus        ν 0.3 (steel) 
• Beam length         L 3.6 m 
• Vertical moment of inertia Iη 1.990607 E-5 m4

• Horizontal moment of inertia Iζ 6.581881 E-6 m4

• Product of inertia  Iηζ 0 
• Polar moment of inertia    Ip 2.648795 E-5 m4  

In Fig. 3 and Fig. 4 the convergence behaviour of the unit 
twist angle evaluated at x=0.1 m and x=1.8 m is shown, 
verifying that in this case 200 harmonics are sufficient to 
obtain a consistent solution. 
Concerning the comparison with the classical Vlasov’s theory, 
preliminarily it is necessary to evaluate the shear center 
position, located at a distance from the origin that can be 
determined according to the formula: 
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having denoted by 03α  the following integral: 
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Fig. 3 Unit twist angle convergence x = 0.1 m 
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Fig. 4 Unit twist angle convergence x = 1.8 m 
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if ( )ςηα ,0  is solution of the equation (16.1) with m=0. 

Then, according to the classical theory, the unit twist angle for 
( ) .constMxM tt ==  can be so expressed: 
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having done the position: 
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In eq. (29) tI  is the torsional modulus, while wI  is the 

warping modulus, so defined for thin-walled beams: 
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In Fig. 6 the unit twist angle longitudinal distribution is shown 
for an applied torque assumed unitary. The continuous and 
dashed lines refer to the classical and exact theories, 
respectively. In Fig. 7 the bimoment longitudinal distribution 
is also shown: no appreciable differences are noticed between 
the two theories. 
Finally, in table I (see also Fig. 5) the warping stresses in 
some chosen points of the cross-section in correspondence of 
the left beam end have been evaluated. In this case there is a 
good agreement with the values obtained applying the 

classical theory, according to which the warping stresses can 
be explicated as follows: 
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TABLE  I 
WARPING STRESSES DISTRIBUTION 
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0.0850 0.0855 0.1817 0.1868 -2.73 

0.0214 0.0855 0.0246 0.0235 4.68 

-0.0461 0.0855 -0.1421 -0.1442 -1.46 

-0.0461 0.0405 -0.0672 -0.0645 4.19 

-0.0461 0 0 0 --- 
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Fig. 5 Warping stresses distribution  
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Fig. 6 Unit twist angle longitudinal distribution 
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Fig. 7 Bimoment longitudinal distribution
   

IV. BEAM WITH PLURICONNTECTED CROSS-SECTION

In the following application a simplified containership 
section is analyzed, in order to verify the feasibility of the 
proposed technique for the evaluation of the warping stress 
field. Particularly, the boundary conditions (11), in 
correspondence of two adjacent transverse bulkheads,  can be 
adopted, as it is currently made in the practical scantling 
procedures. The section main data are the following: 

• Poisson modulus     ν   = 0.3 (steel)  
• Beam length      L   = 40 m 
• Cross section area     A  = 2.50 m2

• Vertical pos. of G above baseline   zG  = 5.81 m 
• Vertical position of twist center    ζQ  = -11.9 m 
• Vertical moment of inertia    Iη     = 102.65 m4

• Horizontal moment of inertia Iζ      = 325.07m4

• Product of inertia  Iηζ     = 0 
• Polar moment of inertia  Ip  = 427.72 m4

• Torsional coefficient  It  = 9.57 m4

• Warping coefficient  Iw = 13917 m6

In Fig. 8 the section scheme is presented, while in table II for 
each branch the first node, the second node, the length and the 
thickness are shown. In table III, assuming a constant applied 
torque equal to 105 kNm, the warping stresses, evaluated 
applying the exact theory and the refined one of Hajdin and 
Kollbruner, are determined in correspondence of the left beam 
end section. See also Fig. 9 for the warping stress distribution 
over the cross-section, where the dashed and continuous lines 
refer to the classical and exact theories, respectively. 
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Fig. 8 Section scheme 

TABLE  II 
SECTION  GEOMETRY  DATA

Branches I node II node t ( mm ) l  ( m ) 

1 1 2 20 4.00 

2 2 3 20 4.00 

3 3 4 20 2.40 

4 4 5 20 4.60 

5 5 6 15 4.40 

6 6 7 15 15.60 

7 7 8 15 2.00 

8 8 9 15 15.60 

9 9 10 15 2.60 

10 10 11 15 2.60 

11 11 12 18 2.40 

12 12 13 18 4.00 

13 13 14 18 4.00 

14 1 14 15 1.80 

15 2 13 15 1.80 

16 3 12 15 1.80 

17 4 11 15 1.80 

18 6 9 15 2.00 

20 N/mm2

Fig. 9 Warping stresses distribution 

TABLE  III 
WARPING STRESSES AT NODES

Nodes 

Exact Classical ΔΔΔΔ    

Ex−σ  Cx−σ  100⋅
−

−

−−

Ex

ExCx
σ

σσ

N/mm2 N/mm2 % 

1 0.00 0.00 --- 

2 4.70 4.44 -5.53 

3 10.24 8.90 -13.09 

4 14.26 11.61 -18.58 

5 25.05 17.01 -32.10 

6 10.48 9.44 -9.92 

7 -17.08 -19.63 14.93 

8 -53.11 -26.44 -50.22 

9 13.47 6.75 -49.89 

10 -9.73 3.92 -140.29 

11 5.28 8.85 67.61 

12 2.16 6.83 216.20 

13 0.77 3.42 344.16 

14 0.00 0.00 --- 

From Fig. 9 it’s clear that the warping stress distribution 
over each branch isn’t linear, as some stress concentrations 
arise, especially in correspondence of the intersections 
between branches.  

Concerning the hull girder yielding check, for ships 
having large openings in the strength deck, its’ well known 
that the normal stresses induced by torque, vertical and 

horizontal bending moments have to be superimposed, by 
means of appropriate combination factors. The maximum 
warping stress values are reached in correspondence of the 
bottom-side and deck-inner side intersections, where the 
stresses induced by vertical and horizontal bending 
moments become maximum, too. From the analysis, the 
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following results have been obtained at the above 
mentioned intersections: 
- Bottom-side : Ex−σ = 25.05 N/mm2 = 1.5 Cx−σ
- Deck-inner side : Ex−σ = 53.11 N/mm2 = 2.0 Cx−σ
Denoting by Bσ  the combined vertical and horizontal 

bending moment stress, the total primary one, obtained 
adopting for the warping part the classical and the exact 
theories, respectively, can be so expressed: 

CxB −+= σσσ1                   (33) 

ExB −+= σσσ *
1          (34) 

Thanks to the positions: CxCEx −− = σβσ  and 1σασ CCx =− , 

the following percentage variation, as regards 1σ , is 

obtained: 

( ) 1001100
1

1
*
1 ⋅−=⋅

−
=Δ CC βα

σ
σσ

                   (35) 

so that for any 1>Cβ , 1σ  is underestimated as regards *
1σ , 

which is potentially higher than the admissible stress. For 
example, if 20.0=Cα , assuming at bottom-side 5.1=Cβ
and at deck-inner side 0.2=Cβ , the relative percentage 

variations, as regards 1σ , are %10=Δ  and %20=Δ , 

respectively. 

V. CONCLUSIONS

In this paper a new theory for the non-uniform torsion of  
beams with asymmetric cross-section has been adopted. 
Despite of the classical theories, it isn’t necessary to 
introduce the concept of a fixed center of twist, so regarding 
the non-uniform torsion as a combined flexure/torque 
problem. The displacement field has been developed into 
appropriate trigonometric series, so obtaining a generalized 
warping function that fully respects the first indefinite 
equilibrium equation. As the warping displacement and the 
unit twist angle functions have been developed into Fourier 
series, directly satisfying the beam boundary conditions, it 

isn’t necessary to impose the classical warping differential 
equation, too. 

Two numerical examples have been proposed, in order to 
highlight the feasibility of the proposed theory and to 
compare it with the classical one.  
Particularly, the first example, relative to an open profile, 
has been carried out in order to test the applied FE 
numerical procedure. The second one, instead, is relative to 
a simplified containership section, regarded as restrained 
against torsion in correspondence of two adjacent 
bulkheads. Particularly, it has been verified that the 
maximum warping stress values at bottom and deck are 
higher than the ones evaluated applying the classical theory, 
so that an appreciable influence on the hull girder scantling, 
arise. 

Obviously, other examples are necessary to test the 
method and verify the effective influence of the exact non-
uniform torsion theory on the scantling procedures:  these 
problems will be the subjects of future works. 
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