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Abstract—The problem of robust fuzzy control for a class of 

nonlinear fuzzy impulsive singular perturbed systems with 
time-varying delay is investigated by employing Lyapunov functions. 
The nonlinear delay system is built based on the well-known T–S 
fuzzy model. The so-called parallel distributed compensation idea is 
employed to design the state feedback controller. Sufficient conditions 
for global exponential stability of the closed-loop system are derived 
in terms of linear matrix inequalities (LMIs), which can be easily 
solved by LMI technique. Some simulations illustrate the effectiveness 
of the proposed method. 
 

Keywords—T–S fuzzy model, singular perturbed systems, 
time-varying delay,  robust control.  

I. INTRODUCTION 

VER the past few decades, fuzzy logic control of nonlinear 
systems has received considerable attentions because this 

approach is effective to obtain nonlinear control systems, 
especially in the incomplete knowledge of the plant or even of 
the precise control action appropriate to a given situation. 
Among various kinds of fuzzy methods, fuzzy model- based 
control is widely used because the design and analysis of the 
overall fuzzy system can be systematically performed using the 
well-established classical linear systems theory [1–4]. The 
stability analysis and controller design for nonlinear systems 
based on T–S fuzzy model are discussed in [1–3]. On the other 
hand, time delay is commonly encountered and is often the 
sources of instability. Recently, the robust stability analysis 
problems for fuzzy time-delay systems have received 
considerable attentions [5–7].In modern science and 
technology, there are natural phenomena in real world which are 
characterized by the fact that some systems have a lot of states, 
some are quick but the others are slow. It is known, for example, 
that many fields involving complex circuit, soft robot and 
communication networks. During the past few years, control of 
singular perturbed systems has been extensively studied due to 
the fact that they better describe physical systems than regular 
ones [8-12]. In [8],  Controller design and stability analysis for 
fuzzy singular perturbed systems are studied.  
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H∞ and H2 control are investigated in [9-12]. Time-delay 

singular perturbed systems have been investigated in [12].  
Very recently, there have been growing attentions on the 

study of T–S fuzzy systems with impulse [13-16]. In [13], a 
class of nonlinear fuzzy impulsive systems is defined by 
extending the ordinary T–S fuzzy model and sufficient 
conditions for global exponential stability of the closed loop 
systems are derived. In [14], some criteria of uniform stability 
and uniform asymptotic stability for T–S fuzzy delay systems 
with impulse have been presented. On the other hand, there are 
some interesting applications on impulsive control or 
synchronization of chaotic systems based on T–S fuzzy model 
[15, 16]. In the design of controller systems, one is not only 
interested in global stability, but also in some other 
performances. Particularly, it is often desirable to have systems 
that converge fast enough in order to achieve fast response. 
Considering this, many researchers have studied the exponential 
stability analysis problem for impulsive systems [17], singular 
perturbed systems [18] and so on. To the best of our knowledge, 
so far, the problem of global exponential stabilization for fuzzy 
impulsive singular perturbed systems with time-varying delay 
has not been addressed in the literature, which is still open and 
remains unsolved. Motivated by the aforementioned 
discussions, we investigate the problem of robust fuzzy control 
for a class of singular perturbed systems with time-varying 
delay. The nonlinear delay system is represented by the 
well-known T–S fuzzy model. The so-called parallel distributed 
compensation (PDC) idea is employed to design the state 
feedback controller. Sufficient conditions for global 
exponential stability of the closed-loop system are derived by 
employing Lyapunov functions. The conditions are in terms of 
linear matrix inequalities (LMIs), which can be easily solved by 
LMI technique.The remainder of this paper is organized as 
follows. In Section 2, the problem to be investigated is given 
and some necessary definitions and useful lemmas are also 
presented. In Section 3, some criteria are derived to ensure the 
global exponential stability of the closed-loop system. In 
Section 4, an example is given to demonstrate the effectiveness 
of the proposed method. Finally, conclusions are drawn in 
Section 5. 

II. PROBLEM STATEMENT AND BASIC ASSUMPTIONS  

Consider the following nonlinear system with time-varying 
delay represented by T–S fuzzy model. 
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Remark 1: In (1), if 0)( =tu , then the nonlinear system 
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,,,2,1,0,)(
],[),()(

,1,2,  ),(
~

              
, , ))(()()(THEN

is)(and,,andis)(IF

000

000

11

qitxtx
tttttx
ktxGx

ttttBtxAtxE
MtzMtz

kki

kii

i
gg

i

⋯

⋯

ɺ

⋯

=≥=
−∈=

==∆
≠−+=

+

−

τφ

τ
                 (2) 

which is called the unforced fuzzy impulsive system with 
time-varying delay. 

In (1), if 0)( =tτ , 0
~ =kiG , i =1, 2, . . ., k=1, 2, . . ., then the 

nonlinear system reduces to 
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which is a typical continuous T–S fuzzy model. Stability of this 
T–S fuzzy model has been extensively investigated [8–10]. 

In (1), if 0
~ =kiG , k=1, 2, . . ., then the nonlinear system 

reduces to 

,,,2,1
],[),()(              

 , )())(()()(THEN
is)(and,,andis)(IF

000

11

qi
tttttx

tuCttBtxAtxE
MtzMtz

iii

i
gg

i

⋯

ɺ

⋯

=
−∈=

+−+=
τφ

τ  

which is a typical continuous T–S fuzzy time-delay model. 
Stability of this T–S fuzzy model has been extensively 

investigated [11-12]. 
By using the fuzzy inference method with a singleton 

fuzzification, product inference and centre average 
defuzzification, the overall fuzzy model is of the following form 
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The control objective is to design a state feedback fuzzy 
controller such that the closed-loop system is exponential 
stable, that is to say, there exist 0>N , 0>γ  such that 

0||||||)(|| )( 0 →≤ −− tteNtx γφ  , +∞→t                     (4) 

where )(sup||||
000

tttt φφ τ ≤≤−= . 

Based on the so-called PDC idea, the state feedback fuzzy 
controller is designed as follows 
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where pm
i RF ×∈  are constant control gains to be 

determined later. 
By using the fuzzy inference method with a singleton 

fuzzification, product inference and centre average 
defuzzification, the overall fuzzy regulator is represented by 
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The closed-loop system of (1) and (5) is 
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Before proceeding, we recall some preliminaries which will 
be used throughout the proofs of our main results. 

Definition 1 [14]: For n
kk Rttxt ×∈ − ],(),( 1 , we define 
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Lemma 1 [18]: Suppose those matrices YX ,  with proper 

dimensions, and a positive definite matrixS , then the following 
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condition holds 

SYYXSXXYYX TTTT +≤+ −1
 

Lemma 2 (Halanay Lemma, [19]): Let m(t) be a scalar 
positive function and assume that the following condition holds 
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III.  DESIGN OF CONTROLLER AND STABILITY ANALYSIS  

Now, we present the design of controller and stability 
analysis for the nonlinear fuzzy impulsive system (1) with 
timevarying delay. 

Theorem 1: If there exist symmetric and positive definite 
matrix X , and some matricesiY , such that the following LMIs 

hold 
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qi ,,2,1 …= , …,2,1=k , 
Where 0>> ba  and 0>α  is the unique positive root of 

the following equation 

00 =+− ατα bea  

The parameters kλ  are specified by the designer, where 
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T–S fuzzy system (1) with time-varying delay is global 
exponential stable via the state feedback fuzzy controller (5). In 

this case, the control feedback gains are 1−= XYF ii . 

Proof: Consider the Lyapunov function candidate 
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Let φλλ )(/)( minmax PEPEM TT=  and LL /)1( −= αγ ,   

It is easy to see that  

0
)( ,)( 0 tteMtx tt ≥≤ −−γφ  

Therefore the T-S fuzzy singular perturbed system (1) with 
time-varying delay is global exponential stable via the state 
feedback fuzzy controller (5). 

Remark 2: Theorem 1 provides sufficient conditions for the 
global exponential stability of the T–S fuzzy singular perturbed 
system (1) with time-varying delay. The conditions in Theorem 
1 are all in terms of LMIs, which can be efficiently verified via 
solving the LMIs numerically by interior point. And the 
feedback gains can also be obtained via solving the LMIs. 

Corollary 1: If there exist symmetric and positive definite 
matrixP , such that the following LMIs hold 
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where 0>> ba  and 0>α  is the unique positive root of the 
following equation 
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The parameters kλ  are specified by the designer, where 
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singular perturbed system (1) with time-varying delay is global 
exponential stable when 0)( =tu . 
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IV. SIMULATIONS  

Consider a continuous stirred tank reactor nonlinear system 
[17]. As in [17], the system model is given by the following 
equations 
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Where 8.0,072.0,8,200 ==== λγ σDH  and 3.0=β . 

The state )(1 tx corresponds to the conversion rate of the 

reactor 1)(0 1 ≤≤ tx  and )(2 tx is the dimensionless 

temperature. Assume that only the temperature can be measured 

on line, that is [ ]Ttxtxtx )(),()( 21= . 

Considering the impulsive effect and the different variance 
ratio of the system states (27) and using the T-S modeling 
approach developed in [17], we can obtain the following T-S 
fuzzy model with impulse to represent system (27). 
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The membership functions are selected as follows 
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The time delay is chosen to be ).3/(sin7.0)( 2 πτ += tt The 

impulsive matrices are as follows:  
for ,3,2,1, =∈ iNm  

if mk 4= , then ;}1.0,1.0{
~

diagGki =   

if 14 += mk , then ;}1.0,1.0{
~ −−= diagGki   

if 24 += mk  then ;}1.0,1.0{
~ −= diagGki  

 if 34 += mk  then }1.0,1.0{
~ −= diagGki . 

The design parameters are chosen as follows:  

,1.1,8.0;,2,1,1 01 ====−=∆ − Lkttt kkk τ⋯
34242962.0,5.0,1 === αba is the unique positive root of 

the equation 

;00 =+− ατα bea

,3610.1 /9.00 Lt
k

keee ∆≤==≤ ααατ λ ⋯,2,1=k  

Using MATLAB LMI toolbox, when [ ]432432/1∈ε ，
The LMIs (8)-(10) hold.  

A. Let 8.0=ε , we obtain that 

[ ] ]5588.48,3831.3[,9239.44,7530.3 21 −−=−−= FF  

and [ ]2840.47,7792.03 −−=F , Simulation results are shown 

in Fig.1 and Fig.2 under initial condition: 

[ ] [ ]0,32)()( 0τφ −∈−== tttx T
. 

 
Fig.1 Responses of system states 

 
Fig. 2 Control input u 

B.  Let 08.0=ε , we  obtain that 

[ ] ]3895.30,4825.2[,3952.26,8225.2 21 −−=−−= FF  
and [ ]2972.34,1772.13 −−=F , Simulation results are shown 

in Fig.3 and Fig.4 under initial condition: 

[ ] [ ]0,32)()( 0τφ −∈−== tttx T . 
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Fig. 3 Responses of system states 

 
Fig. 4 Control input u 

V. CONCLUSIONS 

We have investigated the problem of robust fuzzy control for 
a class of nonlinear systems with time-varying delay. Based on 
Lyapunov method and LMI technique, some criteria have been 
proposed to guarantee the global exponential stability of the 
closed-loop system. Numerical simulations have been included 
to demonstrate the effectiveness of the proposed controller. 
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