
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2776

A New High Speed Neural Model for Fast Character
Recognition Using Cross Correlation and Matrix

Decomposition

Hazem M. El-Bakry

Abstract—Neural processors have shown good results for

detecting a certain character in a given input matrix. In this paper, a
new idead to speed up the operation of neural processors for character
detection is presented. Such processors are designed based on cross
correlation in the frequency domain between the input matrix and the
weights of neural networks. This approach is developed to reduce the
computation steps required by these faster neural networks for the
searching process. The principle of divide and conquer strategy is
applied through image decomposition. Each image is divided into
small in size sub-images and then each one is tested separately by
using a single faster neural processor. Furthermore, faster character
detection is obtained by using parallel processing techniques to test the
resulting sub-images at the same time using the same number of faster
neural networks. In contrast to using only faster neural processors, the
speed up ratio is increased with the size of the input image when using
faster neural processors and image decomposition. Moreover, the
problem of local subimage normalization in the frequency domain is
solved. The effect of image normalization on the speed up ratio of
character detection is discussed. Simulation results show that local
subimage normalization through weight normalization is faster than
subimage normalization in the spatial domain. The overall speed up
ratio of the detection process is increased as the normalization of
weights is done off line.

Keywords—Fast Character Detection, Neural Processors, Cross
Correlation, Image Normalization, Parallel Processing.

I. INTRODUCTION
HARACTER detection is a fundamental step before
character recognition. Its reliability and performance have

a major influence in a whole character recognition system.
Nowadays, neural networks have shown very good results for
detecting a certain pattern in a given image [2,4,6,8,9,10,12].
Among other techniques [3,5,7], neural networks are efficient
pattern detectors [2,4,6,9].

But the problem with neural networks is that the
computational complexity is very high because the networks
have to process many small local windows in the images [5,7].

Manuscript received December 1, 2004.
H. M. El-Bakry is assistant lecturer with Faculty of Computer Science and

Information Systems – Mansoura University – Egypt. Now, he is PhD student
in University of Aizu, Aizu Wakamatsu City, Japan 965-8580 (phone:
+81-242-37-2760, fax: +81-242-37-2743, e-mail: d8071106@u-aizu.ac.jp).

The main objective of this paper is to reduce the detection
time using neural networks. Our idea is to fast the operation of
neural networks by performing the testing process in the
frequency domain instead of spatial domain. Then, cross
correlation between the input image and the weights of neural
networks is performed in the frequency domain. This model is
called faster neural networks. Compared to conventional
neural networks, faster neural networks show a significant
reduction in the number of computation steps required to
detect a certain character in a given image under test.
Furthermore, another idea to increase the speed of these faster
neural networks through image decomposition is presented.
Moreover, the problem of subimage (local) normalization in
the Fourier space which presented in [4] is solved. The
number of computation steps required for weight
normalization is proved to be less than that needed for image
normalization. Also, the effect of weight normalization on the
speed up ratio is theoretically and practically discussed.
Mathematical calculations prove that the new idea of weight
normalization, instead of image normalization, provides good
results and increases the speed up ratio. This is because weight
normalization requires fewer computation steps than subimage
normalization. Moreover, for neural networks, normalization
of weights can be easily done off line before starting the
search process.
 In section II, faster neural networks for character detection
are described. The details of conventional neural networks,
faster neural networks, and the speed up ratio of character
detection are given. A faster searching algorithm for character
detection which reduces the number of the required
computation steps through image decomposition is presented
in section III. Accelerating the new approach using parallel
processing techniques is also introduced. Subimage
normalization in the frequency domain through normalization
of weights is introduced in section IV. The effect of weight
normalization on the speed up ratio is presented in section V.

II. FAST CHARACTER DETECTION USING MLP AND FFT
 Here, we are interested only in increasing the speed of
neural networks during the test phase. By the words “Faster
Neural Networks” we mean reducing the number of
computation steps required by neural networks in the detection
phase. First neural networks are trained to classify face from
non face examples and this is done in the spatial domain. In

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2777

the test phase, each sub-image in the input image (under test)
is tested for the presence or absence of the required character .
At each pixel position in the input image each sub-image is
multiplied by a window of weights, which has the same size as
the sub-image. This multiplication is done in the spatial
domain. The outputs of neurons in the hidden layer are
multiplied by the weights of the output layer. When the final
output is high this means that the sub-image under test
contains the required character and vice versa. Thus, we may
conclude that this searching problem is cross correlation in
the spatial domain between the image under test and the input
weights of neural networks.

 In this section, a fast algorithm for character detection
based on two dimensional cross correlations that take place
between the tested image and the sliding window (20x20
pixels) is described. Such window is represented by the neural
network weights situated between the input unit and the
hidden layer. The convolution theorem in mathematical
analysis says that a convolution of f with h is identical to the
result of the following steps: let F and H be the results of the
Fourier transformation of f and h in the frequency domain.
Multiply F and H* (conjugate of H) in the frequency domain
point by point and then transform this product into spatial
domain via the inverse Fourier transform [1]. As a result, these
cross correlations can be represented by a product in the
frequency domain. Thus, by using cross correlation in the
frequency domain a speed up in an order of magnitude can be
achieved during the detection process
[6,8,9,10,11,12,13,14,15,16].

 In the detection phase, a subimage X of size mxn (sliding
window) is extracted from the tested image, which has a size
PxT, and fed to the neural network. Let Wi be the vector of
weights between the input subimage and the hidden layer.
This vector has a size of mxz and can be represented as mxn
matrix. The output of hidden neurons h(i) can be calculated as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+∑
=

=
m

1j ibk)k)X(j,(j,
1k iWgih

z
 (1)

where g is the activation function and b(i) is the bias of each
hidden neuron (i). Eq.1 represents the output of each hidden
neuron for a particular subimage I. It can be computed for the
whole image Ψ as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

∑
−=

+++=
m/2

m/2j

z/2

z/2k i bk)vj,(uΨ k)(j,iWgv)(u,ih (2)

Eq. (2) represents a cross correlation operation. Given any two
functions f and g, their cross correlation can be obtained by
[1]:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
∑
∞

∞−=
++

=⊗

m z
z)z)g(m,ym,f(x

y)f(x,y)g(x,
 (3)

Therefore, Eq. (2) can be written as follows:

()ibΨiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v) is
the activity of the hidden unit (i) when the sliding window is
located at position (u,v) in the input image Ψ and (u,v)
∈[P-m+1,T-n+1].

Now, the above cross correlation can be expressed in terms of
the Fourier Transform:

() ()()iW*FF1FΨiW Ψ •−=⊗ (5)

(*) means the conjugate of the FFT for the weight matrix.
Hence, by evaluating this cross correlation, a speed up ratio
can be obtained comparable to conventional neural networks.
Also, the final output of the neural network can be evaluated
as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

+=
q

1i
obv)(u,ih (i)oWgv)O(u, (6)

where q is the number of neurons in the hidden layer. O(u,v)
is the output of the neural network when the sliding window
located at the position (u,v) in the input image Ψ. Wo is the
weight matrix between hidden and output layer.

 The complexity of cross correlation in the frequency
domain can be analyzed as follows:

1. For a tested image of NxN pixels, the 2D-FFT requires a
number equal to N2log2N2 of complex computation steps.
Also, the same number of complex computation steps is
required for computing the 2D-FFT of the weight matrix for
each neuron in the hidden layer.

2. At each neuron in the hidden layer, the inverse 2D-FFT is
computed. So, q backward and (1+q) forward transforms have
to be computed. Therefore, for an image under test, the total
number of the 2D-FFT to compute is (2q+1)N2log2N2.

3. The input image and the weights should be multiplied in the
frequency domain. Therefore, a number of complex
computation steps equal to qN2 should be added.

4. The number of computation steps required by the faster
neural networks is complex and must be converted into a real
version. It is known that the two dimensions Fast Fourier
Transform requires (N2/2)log2N2 complex multiplications and
N2log2N2 complex additions [20,21]. Every complex
multiplication is realized by six real floating point operations
and every complex addition is implemented by two real
floating point operations. So, the total number of computation
steps required to obtain the 2D-FFT of an NxN image is:

ρ=6((N2/2)log2N2) + 2(N2log2N2) (7)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2778

which may be simplified to:

ρ=5N2log2N2 (8)

Performing complex dot product in the frequency domain also
requires 6qN2 real operations.

5. In order to perform cross correlation in the frequency
domain, the weight matrix must have the same size as the
input image. Assume that the input object/face has a size of
(nxn) dimensions. So, the search process will be done over
subimages of (nxn) dimensions and the weight matrix will
have the same size. Therefore, a number of zeros = (N2-n2)
must be added to the weight matrix. This requires a total real
number of computation steps = q(N2-n2) for all neurons.
Moreover, after computing the 2D-FFT for the weight matrix,
the conjugate of this matrix must be obtained. So, a real
number of computation steps =qN2 should be added in order to
obtain the conjugate of the weight matrix for all neurons.
Also, a number of real computation steps equal to N is
required to create butterflies complex numbers (e-jk(2Πn/N)),
where 0<K<L. These (N/2) complex numbers are multiplied
by the elements of the input image or by previous complex
numbers during the computation of the 2D-FFT. To create a
complex number requires two real floating point operations.
So, the total number of computation steps required for the
faster neural networks becomes:

σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9)

which can be reformulated as:

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10)

6. Using a sliding window of size nxn for the same image of
NxN pixels, q(2n2-1)(N-n+1)2 computation steps are required
when using traditional neural networks for character detection
process. The theoretical speed up factor η can be evaluated as
follows:

 N)2n-2q(8N)2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
= (11)

The theoretical speed up ratio (Eq. 11) with different sizes of
the input image and different in size weight matrices is listed
in Table I. Practical speed up ratio for manipulating images of
different sizes and different in size weight matrices is listed in
Table II using 700 MHz processor and MATLAB ver 5.3. An
interesting property with faster neural networks is that the
number of computation steps does not depend on eith the size
of the input subimage or the size of the weighth matrix (n).
The effect of (n) on the the number of computation steps is
very small and can be ignored. This is incontrast to
conventional networks networks in which the number of
computation steps is increased with the size of both the input
subimage and the weight matrix (n).

In practical implementation, the multiplication process
consumes more time than the addition one. The effect of the
number of multiplications required for conventional neural
networks in the speed up ratio (Eq. 11) is more than the
number of of multiplication steps required by the faster neural
networks. In order to clear this, the following equation (ηm)
describes relation between the number of multiplication steps
required by conventional and faster neural networks:

22
2

2

22

6qN)Nlog1)(3N(2q
1)n(Nqn

mη ++

+−
= (12)

The results listed in Table III prove that the effect of the
number of multiplication steps in case of conventional neural
networks is more than faster neural networks and this the
reason why practical speed up ratio is larger than theoretical
speed up ratio.

For general fast cross correlation the speed up ratio (ηg) is in
the following form:

τ)(N)2n-2τ)q(8(N)2τ)(N2log2τ)1)(5(N(2q

21)N2q(2n

gη

+++++++

−

=

 (13)

where τ is a small number depends on the size of the weight
matrix. General cross correlation means that the process starts
from the first element in the input matrix. The theoretical
speed up ratio for general fast cross correlation (ηg) defined
by Eq. (13) is shown in Table IV. Compared with MATLAB
cross correlation function (xcorr2), experimental results show
that the proposed algorithm is faster than this function as
shown in Table V.
 The authors in [17-19] have proposed a multilayer
perceptron (MLP) algorithm for fast face/object detection. The
same authors claimed incorrect equation for cross correlation
between the input image and the weights of the neural
networks. They introduced formulas for the number of
computation steps needed by conventional and faster neural
networks. Then, they established an equation for the speed up
ratio. Unfortunately, these formulas contain many errors
which lead to invalid speed up ratio. Other authors developed
their work based on these incorrect equations [22-42]. So, the
fact that these equations are not valid must be cleared to all
researchers. It is not only very important but also urgent to
notify other researchers not to do research based on wrong
equations.

 The authors in [17-19] analyzed their proposed fast neural
network as follows: For a tested image of NxN pixels, the
2D-FFT requires O(N2(log2N)2) computation steps. For the
weight matrix Wi, the 2D-FFT can be computed off line since
these are constant parameters of the network independent of
the tested image. The 2D-FFT of the tested image must be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2779

computed. As a result, q backward and one forward transforms
have to be computed. Therefore, for a tested image, the total
number of the 2D-FFT to compute is (q+1)N2(log2N)2 [17,19].
In addition, the input image and the weights should be
multiplied in the frequency domain. Therefore, computation
steps of (qN2) should be added. This yields a total of
O((q+1)N2(log2N)2+qN2) computation steps for the fast neural
network [17,18].

 Using sliding window of size nxn, for the same image of
NxN pixels, qN2n2 computation steps are required when using
traditional neural networks for the face detection process.
They evaluated theoretical speed up factor η as follows [17]:

N21)log(q

2qn
η

+
= (14)

 The speed up factor introduced in [17] and given by Eq.14
is not correct for the following reasons:

a) The number of computation steps required for the 2D-FFT
is O(N2log2N2) and not O(N2log2N) as presented in [17,18].
Also, this is not a typing error as the curve in Fig.2 in [17]
realizes Eq.7, and the curves in Fig.15 in [18] realizes
Eq.31 and Eq.32 in [18].

b) Also, the speed up ratio presented in [17] not only contains
an error but also is not precise. This is because for faster
neural networks, the term (6qN2) corresponds to complex
dot product in the frequency domain must be added. Such
term has a great effect on the speed up ratio. Adding only
qN2 as stated in [18] is not correct since a one complex
multiplication requires six real computation steps.

c) For conventional neural networks, the number of operations
is (q(2n2-1)(N-n+1)2) and not (qN2n2). The term n2 is
required for multiplication of n2 elements (in the input
window) by n2 weights which results in another new n2

elements. Adding these n2 elements, requires another (n2-1)
steps. So, the total computation steps needed for each
window is (2n2-1). The search operation for a face in the
input image uses a window with nxn weights. This
operation is done at each pixel in the input image.
Therefore, such process is repeated (N-n+1)2 times and not
N 2 as stated in [17,19].

d) Before applying cross correlation, the 2D-FFT of the
weight matrix must be computed. Because of the dot
product, which is done in the frequency domain, the size of
weight matrix should be increased to be the same as the
size of the input image. Computing the 2D-FFT of the
weight matrix off line as stated in [17-19] is not practical.
In this case, all of the input images must have the same
size. As a result, the input image will have only a one fixed
size. This means that, the testing time for an image of size
50x50 pixels will be the same as that image of size
1000x1000 pixels and of course, this is unreliable.

e) It is not valid to compare number of complex computation
steps by another of real computation steps directly. The

number of computation steps given by pervious authors
[17-19] for conventional neural networks is for real
operations while that is required by the faster neural
networks is for complex operations. To obtain the speed up
ratio, the authors in [17-19] have divided the two formulas
directly without converting the number of computation
steps required by the faster neural networks into a real
version.

f) Furthermore, there is critical error in the activity of hidden
neurons given in section 3.1 in [19] and also by Eq.(2) in
[17]. Such activity given by those authors in [17,19] as
follows:

 ()ibiWΨgih +⊗= (15)

 is not correct and should be written as Eq.(4) given here in
this paper. This is because the fact that the operation of
cross correlation is not commutative (W⊗Ψ ≠ Ψ⊗W). A
practical example is shown in appendix ("A"). As a result,
Eq.(15) (Eq.(2) in their paper [17]) does not give the same
correct results as conventional neural networks. This error
leads the researchers who consider the references [17,19]
to think about how to modify the operation of cross
correlation so that Eq.(15) (Eq.(2) in their paper [17]) can
give the same correct results as conventional neural
networks. Therefore, errors in these equations must be
cleared to all the researchers. In [23-29], the authors
proved that a symmetry condition must be found in input
matrices (images and the weights of neural networks) so
that fast neural networks can give the same results as
conventional neural networks. In case of symmetry
W⊗Ψ=Ψ⊗W, the cross correlation becomes commutative
and this is a valuable achievement. In this case, the cross
correlation is performed without any constrains on the
arrangement of matrices. A practical proof for this
achievement is explained by examples shown in appendix
"A". As presented in [23-29], this symmetry condition is
useful for reducing the number of patterns that neural
networks will learn. This is because the image is converted
into symmetric shape by rotating it down and then the up
image and its rotated down version are tested together as
one (symmetric) image. If a pattern is detected in the
rotated down image, then, this means that this pattern is
found at the relative position in the up image. So, if
conventional neural networks are trained for up and rotated
down examples of the pattern, faster neural networks will
be trained only to up examples. As the number of trained
examples is reduced, the number of neurons in the hidden
layer will be reduced and the neural network will be faster
in the test phase compared with conventional neural
networks.

g) Moreover, the authors in [17-19] stated that the activity of
each neuron in the hidden layer Eq. 16 (Eq.4 in their paper
[17]) can be expressed in terms of convolution between a
bank of filter (weights) and the input image. This is not
correct because the activity of the hidden neuron is a cross
correlation between the input image and the weight matrix.
It is known that the result of cross correlation between any
two functions is different from their convolution. As we

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2780

proved in [23-29] the two results will be the same, only
when the two matrices are symmetric or at least the weight
matrix is symmetric. A practical example which proves
that for any two matrices the result of their cross
correlation is different from their convolution unless that
they are symmetric or at least the second matrix is
symmetric as shown in appendix "B".

h) Images are tested for the presence of a face (object) at
different scales by building a pyramid of the input image
which generates a set of images at different resolutions.
The face detector is then applied at each resolution and this
process takes much more time as the number of processing
steps will be increased. In [17-19], the authors stated that
the Fourier transforms of the new scales do not need to be
computed. This is due to a property of the Fourier
transform. If z(x,y) is the original and a(x,y) is the sub-
sampled by a factor of 2 in each direction image then:

z(2x,2y)y)a(x, = (16)

y))FT(z(x,v)Z(u, = (17)

⎟
⎠
⎞

⎜
⎝
⎛==

2
v,

2
uZ

4
1v)A(u,y))FT(a(x, (18)

 This implies that we do not need to recompute the Fourier
transform of the sub-sampled images, as it can be directly
obtained from the original Fourier transform. But
experimental results have shown that Eq.18 is valid only
for images shown in the form presented in Eq. 19. In
which each block of pixels consists of 4 pixels located
beside each other and have the same value as shown in Eq.
19. Certainly, there no guarantee that the input image will
be in that form. Of course, it may have another form
different from that one presented in Eq. 19.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

............Y.........YXXSS

............Y.........YXXSS
.
.
.
.

....................CCBBAA

....................CCBBAA

Ψ (19)

 In [17], the author claimed that the processing needs
O((q+2)N2log2N) additional number of computation steps.
Thus the speed up ratio will be [17]:

N2)log(q
qn

2

2
η

+
= (20)

 Of course this is not correct, because the inverse of the
Fourier transform is required to be computed at each
neuron in the hidden layer (for the resulted matrix from the
dot product between the Fourier matrix in two dimensions
of the input image and the Fourier matrix in two
dimensions of the weights, the inverse of the Fourier
transform must be computed). So, the term (q+2) in Eq.20
should be (2q+1) because the inverse 2D-FFT in two
dimensions must be done at each neuron in the hidden
layer. In this case, the number of computation steps
required to perform 2D-FFT for the faster neural networks
will be:

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2 (21)

 In addition, a number of computation steps equal to
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the
number of computation steps required by the faster neural
networks.

III. A NEW FASTER ALGORITHM FOR CHARACTER DETECTION
BASED ON IMAGE DECOMPOSITION

 In this section, a new faster algorithm for character
detection is presented. The number of computation steps
required for faster neural networks with different image sizes
is listed in Tables VI and VII. From these tables, we may
notice that as the image size is increased, the number of
computation steps required by faster neural networks is much
increased. For example, the number of computation steps
required for an image of size (50x50 pixels) is much less than
that needed for an image of size (100x100 pixels). Also, the
number of computation steps required for an image of size
(500x500 pixels) is much less than that needed for an image of
size (1000x1000 pixels). As a result, for example, if an image
of size (100x100 pixels) is decomposed into 4 sub-images of
size (50x50 pixels) and each sub-image is tested separately,
then a speed up factor for character detection can be achieved.
The number of computation steps required by faster neural
networks to test an image after decomposition can be
calculated as follows:

1. Assume that the size of the image under test is (NxN
pixels).
2. Such image is decomposed into α (LxL pixels) sub-images.
So, α can be computed as:

α=(N/L)2 (22)

3. Assume that, the number of computation steps required for
testing one (LxL pixels) sub-image is β. So, the total number
of computation steps (T) required for testing these sub-images
resulting after the decomposition process is:

T = α β (23)

The speed up ratio in this case (ηd) can be computed as
follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2781

ΔsN)2n-2
sαq(8N)2

sN2log2
sα)(5N1)(q(α

21)n1)(N2q(2n

dη

+++++

+−−

=

(24)

where,
 Ns: is the size of each small sub-image.
 Δ: is a small number of computation steps required to

obtain the results at the boundaries between subimages and
depends on the size of the subimage.

 To detect a character of size 20x20 pixels in an image of
any size by using faster neural networks after image
decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table VI, we may conclude
that, the most suitable size for the sub-image which requires
the smallest number of computation steps is 25x25 pixels.
Also, the fastest speed up ratio can be achieved using this sub-
image size (25x25) as shown in Figure 1. It is clear that the
speed up ratio is reduced when the size of the sub-image (L) is
increased. A comparison between the speed up ratio for faster
neural networks and faster neural networks after image
decomposition with different sizes of the tested images is
listed in Tables VIII and IX. It is clear that the speed up ratio
is increased with the size of the input image when using faster
neural networks and image decomposition. This is in contrast
to using only faster neural networks. As shown in Figure 2, the
number of computation steps required by faster neural
networks is increased rapidly with the size of the input image.
Therefore the speed up ratio is decreased with the size of the
input image. While in case of using faster neural networks and
image decomposition, the number of computation steps
required by faster neural networks is increased smoothly.
Thus, the linearity of the computation steps required by faster
neural networks in this case is better. As a result, the speed up
ratio is increased. Increasing the speed up ratio with the size of
the input image is considered an important achievement.
Furthermore, for very large size matrices, while the speed up
ratio for faster neural networks is decreased, the speed up ratio
still increase in case of using faster neural networks and matrix
decomposition as listed in Table X. Moreover, as shown in
Figure 3, the speed up ratio in case of faster neural networks
and image decomposition is increased with the size of the
weight matrix which has the same size (n) as the input
window. For example, it is clear that the speed up ratio is for
window size of 30x30 is larger than that of size 20x20.
Simulation results for the speed up ratio in case of using fast
neural networks and image decomposition is listed in Table
XI. It is clear that simulation results confirm the theoretical
computations and the practical speed up ratio after image
decomposition is faster than using only fast neural networks.
In addition, the practical speed up ratio is increased with the
size of the input image.

 Also, to detect small in size matrices such as 5x5 or 10x10
using only faster neural networks, the speed ratio becomes less
than one as shown in Tables XII,XIII,XIV, and XV. On the

other hand, from the same tables it is clear that using fast
neural and image decomposition, the speed up ratio becomes
higher than one and increased with the dimensions of the input
image. The dimensions of the new subimage after image
decomposition (L) must not be less than the dimensions of the
character which is required to be detected and has the same
size as the weight matrix. Therefore, the following equation
controls the relation between the subimage and the size of
weight matrix (character to be detected) in order not to loss
any information in the input image.

nL ≥ (25)

For example, in case of detecting 5x5 characters, the image
must be decomposed into subimages of size not less than 5x5.

 To further reduce the running time as well as increase the
speed up ratio of the detection process, a parallel processing
technique is used. Each sub-image is tested using a faster
neural network simulated on a single processor or a separated
node in a clustered system. The number of operations (ω)
performed by each processor / node (sub-images tested by one
processor/node) =

nodes/ProcessorsofNumber
imagessubofnumbertotalThe

ω
−

= (26)

Pr
αω = (27)

where, Pr is the number of processors or nodes.

The total number of computation steps (γ) required to test an
image by using this approach can be calculated as:

 γ=ωβ (28)

 By using this algorithm, the speed up ratio in this case (ηdp)
can be computed as follows:

)/pr)sN)2n-2
sαq(8N)2

sN2log2
sα)(5N1)ceil(((q(α

21)n1)(N2q(2n

dpη

++++

+−−

=

(29)

where, ceil(x) is a MATLAB function rounds the elements of x
to the nearest integers towards infinity.

 As shown in Tables XVI and XVII, using a symmetric
multiprocessing system with 16 parallel processors or 16
nodes in either a massively parallel processing system or a
clustered system, the speed up ratio (with respect to
conventional neural networks) for character detection is
increased. A further reduction in the computation steps can be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2782

obtained by dividing each sub-image into groups. For each
group, the neural operation (multiplication by weights and
summation) is performed for each group by using a single
processor. This operation is done for all of these groups as
well as other groups in all of the sub-images at the same time.
The best case is achieved when each group consists of only
one element. In this case, one operation is needed for
multiplication of the one element by its weight and also a
small number of operations (ε) is required to obtain the over
all summation for each sub-image. If the sub-image has n2

elements, then the required number of processors will be n2.
As a result, the number of computation steps will be αq(1+ε),
where ε is a small number depending on the value of n. For
example, when n=20, then ε=6 and if n=25, then ε=7. The
speed up ratio can be calculated as:

η=(2n2-1)(N-n+1)2/α(1+ε) (30)

 Moreover, if the number of processors = αn2, then the
number of computation steps will be q(1+ε), and the speed up
ratio becomes:

η=(2n2-1)(N-n+1)2/ (1+ε) (31)

 Furthermore, if the number of processors = qαn2, then the
number of computation steps will be (1+ε), and the speed up
ratio can be calculated as:

η=q(2n2-1)(N-n+1)2/ (1+ε) (32)

 In this case, as the length of each group is very small, then
there is no need to apply cross correlation between the input
image and the weights of the neural network in frequency
domain.

IV. SUBIMAGE CENTERING AND NORMALIZATION IN THE
FREQUENCY DOMAIN

 In [4], the authors stated that image normalization to avoid
weak or strong illumination could not be done in the
frequency space. This is because the image normalization is
local and not easily computed in the Fourier space of the
whole image. Here, a simple method for image normalization
is presented. In [17-19], the authors stated that centering and
normalizing the image can be obtained by centering and
normalizing the weights as follows [17-19]:
Let rcX be the zero-mean centered sub-image located at (r,c)
in the input image ψ:

rcxrcXrcX −= (33)

where, rcX is the mean value of the sub-image located at
(r,c). We are interested in computing the cross correlation
between the sub-image rcX and the weights Wi that is:

iWrcxiWrcXiWrcX ⊗−⊗=⊗ (34)

where,

2n

rcX
rcx = (35)

Combining (34) and (35), the following expression can be
obtained:

iW2n
rcX

iWrcXiWrcX ⊗−⊗=⊗ (36)

which is the same as:

2n

i
W

rcXiWrcXiWrcX ⊗−⊗=⊗ (37)

The centered zero mean weights are given by:

2n

i
W

iWiW −= (38)

Also, Eq. (37) can be written as:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⊗=⊗

2n

i
W

i
WrcXiWrcX (39)

So, it can be concluded that:

iWrcXiWrcX ⊗=⊗ (40)

which means that cross-correlating a normalized sub-image
with the weight matrix is equal to the cross-correlation of the
non – normalized sub-image with the normalized weight
matrix [17-19]. However, this proof which presented in [17-
19] is not correct at all because it is proved here
mathematically and practically that cross-correlating a
normalized sub-image with the weight matrix is not equal to
the cross-correlation of the non – centered image with the
normalized weight matrix

 During the test phase, each sub-image in the input image is
multiplied (dot multiplication) by the weight matrix and this
operation is repeated for all possible sub-images in the input
image. Repeating this process for all sub-images in the input
image is equivalent to the cross correlation operation.
Therefore, there is no cross correlation between each sub-
image and the weight matrix. The cross correlation is done
between the weight matrix and the whole input image. Thus,
this proves that there is no need to the proof of Eq.(40)
(presented in [17-19]) which is mathematically wrong. The
result of Eq.(40) is correct only for the center value which
equals to the dot product between the two matrices (sub-image
and weight matrices). For all other values except the center
value:

iWrcXiWrcX ⊗≠⊗ (41)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2783

 This fact is true for all types and values of matrices except
symmetric matrices and our new technique of image
decomposition presented in last section III. A practical
example is given in appendix "C".

 Furthermore, the definition of the mean value, Eq. (35)
presented in [17-19] is not correct and must be :

2n

n

1ji,
j)(i,

rc
X

rcx

∑
=

= (42)

which makes the proof of Eq.(40) (presented in [17-19]) not
correct.
 Moreover, the operation performed between the weight
matrix and each sub-image is dot multiplication. Our new idea
is to normalize each sub-image in the frequency domain by
normalizing the weight matrix. The dot product of two
matrices is defined as follows:

∑
=

=•
2n

1ji, ijWijXWX
 (43)

The result of dot product is only one value. We have also the
following definitions:

∑
=

=•=•
2n

1ji, ijXnxn1XXnxn1 (44)

Where, 1nxn is a nxn matrix where every element is 1.

∑
=

=•=•
2n

1ji, ijWnxn1WWnxn1 (45)

Lemma : Wnxn1xXnxn1w •=•

Proof:

From Eqs. 42,43,44,and 45, we can conclude that:

∑
=

•∑
=

∑
=

==•
2n

1ji, ijX
2n

1ji, ijW
2n

1ji, 2n

1
ijXwXnxn1w (46)

Which can be reformulated as:

∑
=

•∑
=

=•
2n

1ji, ijX
2n

1ji, ijW
2n

1Xnxn1w (47)

Also,

∑
=

•∑
=

∑
=

==•
2n

1ji, ijW
2n

1ji, ijX
2n

1ji, 2n

1
ijWxWnxn1x (48)

Which is the same as:

∑
=

•∑
=

=•
2n

1ji, ijW
2n

1ji, ijX
2n

1Wnxn1x (49)

It is clear that Eq.(47) is the same as Eq.(49), which means:

Wnxn1xXnxn1w •=•∴ (50)

Theorem:

 XW WX •=•

Proof:

W)nxn1x-(XWX •=•

Wnxn1x-WX ••=

wnxn1X-WX ••=

)nxn1w-X(W •=

WX •=

So, we may conclude that:

iWrcXiWrcX •=• (51)

which means that multiplying a normalized sub-image with a
non-normalized weight matrix dot multiplication is equal to
the dot multiplication between the non – normalized sub-
image and the normalized weight matrix. The validation of Eq.
(51) and a practical example is given in appendix "D".

 As proved in our previous paper [8], the relation defined by
Eq. (40) is true only for the resulting middle value. This is
under two conditions. The first is to apply the technique of
faster neural networks and image decomposition. In this case,
the cross correlation is performed between each input sub-
image and the weight matrix which has the same size as the
resulting sub-image after image decomposition. The resulting
middle value equals to the dot product between the input sub-
image and the weight matrix (the value which we interested
in). The second is that the required face/object is completely
located in one of these sub-images (not between two sub-
images). However applying cross correlation consumes more
computation steps than applying dot product which makes Eq.
(40) useful less.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2784

V. EFFECT OF WEIGHT NORMALIZATION ON THE SPEED UP
RATIO

 Normalization of subimages in the spatial domain (in case
of using traditional neural networks) requires 2n2(N-n+1)2
computation steps. On the other hand, normalization of
subimages in the frequency domain through normalizing the
weights of the neural networks requires 2qn2 operations. This
proves that local image normalization in the frequency domain
is faster than that in the spatial one. By using weight
normalization, the speed up ratio for image normalization Γ
can be calculated as:

q
1)n(N

Γ
2+−

= (52)

 The speed up ratio of the normalization process for images
of different sizes is listed in Table XVIII. As a result, we may
conclude that:

1. Using this technique, normalization in the frequency
domain can be done through normalizing the weights in
spatial domain.

2. Normalization of an image through normalization of
weights is faster than normalization of each subimage.

3. Normalization of weights can be done off line. So, the
speed up ratio in the case of weight normalization can be
calculated as follows:

a) For Conventional Neural Networks:

 The speed up ratio equals the number of computation steps
required by conventional neural networks with image
normalization divided by the number of computation steps
needed by conventional neural networks with weight
normalization, which is done off line. The speed up ratio ηc in
this case can be given by:

22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2n
η

+−−

+−++−−
= (53)

which can be simplified to:

1)q(2n
2n1η 2

2

c −
+= (54)

b) For Fasr neural networks:

 The over all speed up ratio equals the number of
computation steps required by conventional neural networks
with image normalization divided by the number of
computation steps needed by fast neural networks with weight
normalization, which is done off line. The over all speed up
ratio ηo can be given by:

 N)n-q(8N)Nlog1)(5N(2q
1)n-(N2n1)n1)(Nq(2n η 222

2
2

2222

o
+++
+++−−

= (55)

which can be simplified to:

 N)n-q(8N)Nlog1)(5N(2q
)2n1)q(2n (1)n(N

η
222

2
2

222

o
+++

+−+−
= (56)

The relation between the speed up ratio before (η) and after
(ηo) the normalization process can be summed up as:

 N)n-q(8N)Nlog1)(5N(2q
1)n(N2nηη 222

2
2

22

o +++
+−

+= (57)

 The overall speed up ratio (Eq. 57) with images of different
sizes and different sizes of windows is listed in Table XIX.
We can easily note that the speed up ratio in case of image
normalization through weight normalization is larger than the
speed up ratio (without normalization) listed in Table I. This
means that the search process with normalized fast neural
networks is done faster than conventional neural networks
with or without normalization of the input image. The overall
practical speed up ratio (Eq. 57) after normalization of weights
off line is listed in Table XX.

VI. CONCLUSION
A novel high speed neural model for fast character

detection in a given image have been presented. It has been
proved mathematically and practically that the speed of the
detection process becomes faster than conventional neural
networks. This has been accomplished by applying cross
correlation in the frequency domain between the input image
and the normalized input weights of the neural networks. A
new general formulas for fast cross correlation as well as the
speed up ratio have been given. A faster neural network
approach for character detection has been introduced. Such
approach has decomposed the input image under test into
many small in size sub-images. Furthermore, a simple
algorithm for fast character detection based on cross
correlations in the frequency domain between the sub-images
and the weights of the neural net has been presented in order
to speed up the execution time. Simulation results have shown
that, using a parallel processing technique, large values of
speed up ratio could be achieved. Moreover, by using faster
neural networks and image decomposition, the speed up ratio
has been increased with the size of the input image. Also, the
problem of local subimage normalization in the frequency
space has been solved. It has been generally proved that the
speed up ratio in the case of image normalization through
normalization of weights is faster than subimage
normalization in the spatial domain. This speed up ratio is
faster than the one obtained without normalization. Simulation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2785

results have confirmed theoretical computations by using
MATLAB. The proposed approach can be applied to detect
the presence/absence of any other object in an image.

APPENDIX “A”

AN EXAMPLE PROVES THAT THE CROSS CORRELATION
BETWEEN ANY TWO MATRICES IS NOT COMMUTATIVE

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and ,Let

Then, the cross correlation between X and W can be obtained
as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73
15

89
56

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635
7916783915563855

19591858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315
6911849
95340

On the other hand, the cross correlation the cross correlation
between W and X can be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
56

73
15

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85819591
8355879351659761

53576367

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40539
4911869
155342

which proves that X⊗W ≠ W⊗X.

Also, when one of the two matrices is symmetric the cross
correlation between the two matrices is non commutative as
shown in the following example:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
53
35

X and,Let

Then, the cross correlation between X and W can be obtained
as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

89
56

53
35

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85839593
8355859353659563

53556365

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
4911263
154330

On the other hand, the cross correlation the cross correlation
between W and X can be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
56

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

56553635
5936583935563855

39593858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

304315
6311249
276940

which proves that X⊗W ≠ W⊗X.

The cross correlation between any two matrices is
commutative only when the two matrices are symmetric as
shown in the following example.

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
98

W
53
35

X and,Let

Then, the cross correlation between X and W can be obtained
as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
98

53
35

WX

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2786

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58593839
5938583939583859

39385985

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

On the other hand, the cross correlation between W and X can
be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
98

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58839539
3859583939583859

39385958

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

which proves that the cross correlation is commutative
(X⊗W = W⊗X) only under the condition when the two
matrices X and W are symmetric.

APPENDIX “B”

AN EXAMPLE PROVES THAT THE CROSS CORRELATION
BETWEEN ANY TWO MATRICES IS DIFFERENT FROM THEIR

CONVOLUTION

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

Wand ,XLet
73
15

,

the result of their cross correlation can be computed as
illustrated from the previous example (first result) in appendix
"A". The convolution between W and X can be obtained as
follows:

⎥
⎦

⎤
⎢
⎣

⎡
◊⎥
⎦

⎤
⎢
⎣

⎡
=◊

73
15

65
98

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
7518763519583659

15165556

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

677
3063

130

582
416
53

 which proves that W⊗X ≠ W◊X.

When the second matrix W is symmetric, the cross correlation
between W and X can be computed as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

565345
711067

8740

78793839
9718781939583859

1918598

73
15

89
98

XW

9
9

5

while the convolution can be between W and X can be
obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
◊⎥
⎦

⎤
⎢
⎣

⎡
=◊

73
15

89
98

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
9718781939583859

1918598 5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

565345
711067

8740
9

9

which proves that under the condition that the second matrix is
symmetric (or the two matrices are symmetric) the cross
correlation between any the two matrices equals to their
convolution.

APPENDIX “C”

A CROSS CORRELATION EXAMPLE BETWEEN A NORMALIZED
MATRIX AND OTHER NON-NORMALIZED ONE AND VISE VERSA

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and,Let

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2787

⎥
⎦

⎤
⎢
⎣

⎡ −−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

−−

−−

12
21

Wand,
31
31

X

WX :ascomputedebcanand,matricesnormalizedtheThen

 Now, the cross correlation between a normalized matrix
and the other non-normalized one can be computed as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⊗

−

81527
3
59

69
18

89
56

31
31

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−−−

=⎥
⎦

⎤
⎢
⎣

⎡ −−
⎥
⎦

⎤
⎢
⎣

⎡
=⊗

−

5112
713
6177

6
12
21

73
15

WX

which means that WXWX ⊗≠⊗ .

 However, the two results are equal only at the center
element which equals to the dot product between the two
matrices. The value of the center element (2,2) =6 as shown
above and also in appendix "D".

APPENDIX “D”

A DOT PRODUCT EXAMPLE BETWEEN A NORMALIZED MATRIX
AND OTHER NON-NORMALIZED ONE AND VISE VERSA

 This is to validate the correctness of Eq. (51). The left hand
side of Eq. 51 can be expresseded as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

−−

−−

=•

nn,.W....................n,1W
.
.
.
.
..

n1,.W....................1,1W

Xnn,.....X..........Xn,1X
.
.
.
.

Xn1,...X............X1,1X

WX

(58)

and also the right hand side of the same can be repressented
as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

•=•

_
W

nn,
.....W..........

_
W

n,1
W

.

.

.

.

_
W

n1,
...W............

_
W

1,1
W

nn,
.X....................

n,1
X

.

.

.

.

..
n1,

.X....................
1,1

X

_
WX

(59)

2
nn,1,21,1

2
nn,1,21,1

n
W.................................WW

W

n
X.................................XX

X

WX

+++
=

+++
=

−

−

−−
:followsasdefinedareand

(60)

 By substituting from Eq.(60) in Eq.(58) and Eq.(59), then
simplifying the results we can easily conclude that

iWrcXiWrcX •=• .

 Here is also a practical example:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and,Let

⎥
⎦

⎤
⎢
⎣

⎡ −−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

−−

−−

12
21

Wand,
31
31

X

WX :ascomputedebcanand,matricesnormalizedtheThen

 Now, the dot product between a normalized matrix and the
other non-normalized one can be performed as follows:

6249156
89
56

31
31

WX =+−−=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=•

−

67625
12
21

73
15

WX =++−−=⎥
⎦

⎤
⎢
⎣

⎡ −−
⎥
⎦

⎤
⎢
⎣

⎡
=•

−

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2788

which means generally that the dot product between a
normalized matrix X and non-normalized matrix W equals to
the dot product between the normalized matrix W and
non-normalized matrix X. On the other hand, the cross
correlation results are different as proved in appendix "C".

REFERENCES
[1] R. Klette, and Zamperon, Handbook of image processing operators, John

Wiley & Sonsltd, 1996.
[2] H. A. Rowley, S. Baluja, and T. Kanade, “ Neural Network - Based Face

Detection,“ IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 1, pp. 23-38, 1998.

[3] H. Schneiderman and T. Kanade, "Probabilistic modeling of local
appearance and spatial relationships for object recognition, " In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
45-51, SantaBarbara, CA, 1998.

[4] R. Feraud, O. Bernier, J. E. Viallet, and M. Collobert, "A Fast and
Accurate Face Detector for Indexation of Face Images," Proceedings of
the Fourth IEEE International Conference on Automatic Face and
Gesture Recognition, Grenoble, France, 28-30 March, 2000.

[5] Y. Zhu, S. Schwartz, and M. Orchard, "Fast Face Detection Using
Subspace Discriminate Wavelet Features," Proc. of IEEE Computer
Society International Conference on Computer Vision and Pattern
Recognition (CVPR'00), South Carolina, June 13 - 15, 2000, Vol.1, pp.
1636-1643.

[6] H. M. El-Bakry, "Automatic Human Face Recognition Using Modular
Neural Networks," Machine Graphics & Vision Journal (MG&V), Vol.
10, No. 1, 2001, pp. 47-73.

[7] S. Srisuk and W. Kurutach, "A New Robust Face Detection in Color
Images," Proc. of IEEE Computer Society International Conference on
Automatic Face and Gesture Recognition, Washington D.C., USA, May
20-21, 2002, pp. 306-311.

[8] H. M. El-Bakry, "Face detection using fast neural networks and image
decomposition," Neurocomputing Journal, Vol. 48, 2002, pp. 1039-
1046.

[9] H. M. El-Bakry, "Human Iris Detection Using Fast Cooperative Modular
Neural Networks and Image Decomposition," Machine Graphics &
Vision Journal (MG&V), Vol. 11, No. 4, 2002, pp. 498-512.

[10] Hazem M. El-Bakry, and Qiangfu Zhao, "Fast Object/Face Detection
Using Neural Networks and Fast Fourier Transform," International
Journal of Signal Processing, Vol.1, No.3, pp. 182-187, 2004.

[11] Hazem M. El-Bakry, and Qiangfu Zhao, "A Modified Cross Correlation
in the Frequency Domain for Fast Pattern Detection Using Neural
Networks," International Journal of Signal Processing, Vol.1, No.3, pp.
188-194, 2004.

[12] Hazem M. El-Bakry, and Qiangfu Zhao, "Face Detection Using Fast
Neural Processors and Image Decomposition," International Journal of
Computational Intelligence, Vol.1, No.4, pp. 313-316, 2004.

[13] Hazem M. El-Bakry, and Qiangfu Zhao, "Fast Complex Valued Time
Delay Neural Networks," International Journal of Computational
Intelligence, Vol.2, No.1, pp. 16-26, 2005.

[14] Hazem M. El-Bakry, and Qiangfu Zhao, "A Fast Neural Algorithm for
Serial Code Detection in a Stream of Sequential Data," International
Journal of Information Technology, Vol.2, No.1, pp. 71-90, 2005.

[15] H. M. El-Bakry, and Q. Zhao, "Speeding-up Normalized Neural
Networks For Face/Object Detection," Machine Graphics & Vision
Journal (MG&V), Vol. 14, No.1, 2005, pp. 29-59.

[16] H. M. El-Bakry, and Q. Zhao, "Fast Pattern Detection using Normalized
Neural Networks and Cross Correlation in the Frequency Domain,"
EURASIP Journal on Applied Signal Processing,. Special Issue on
Advances in Intelligent Vision Systems: Methods and Applications—
Part I, Vol. 2005, No. 13, 1 August 2005, pp. 2054-2060.

[17] S. Ben-Yacoub, B. Fasel, and J. Luettin, “Fast Face Detection using MLP
and FFT,” Proc. of the Second International Conference on Audio and
Video-based Biometric Person Authentication (AVBPA'99), 1999.

[18] B. Fasel, “Fast Multi-Scale Face Detection,” IDIAP-Com 98-04, 1998.
[19] S. Ben-Yacoub, “Fast Object Detection using MLP and FFT,” IDIAP-RR

11, IDIAP, 1997.

[20] James W. Cooley and John W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Math. Comput. 19, 297–301
(1965).

[21] J. P. Lewis, “Fast Normalized Cross Csorrelation”, Available
from:<http://www.idiom.com/~zilla/ Papers/nvisionInterface/nip.html >

[22] H. M. El-Bakry, "Comments on Using MLP and FFT for Fast
Object/Face Detection," Proc. of IEEE IJCNN’03, Portland, Oregon, pp.
1284-1288, July, 20-24, 2003.

[23] H. M. El-Bakry, and H. Stoyan, "Fast Neural Networks for Object/Face
Detection," Proc. of the 30th Anniversary SOFSEM Conference on
Current Trends in Theory and Practice of Computer Science, 24-30
January, 2004, Hotel VZ MERIN, Czech Republic.

[24] H. M. El-Bakry, and H. Stoyan, "Fast Neural Networks for Sub-Matrix
(Object/Face) Detection," Proc. of IEEE International Symposium on
Circuits and Systems, Vancouver, Canada, 23-26 May, 2004.

[25] H. M. El-Bakry, "Fast Sub-Image Detection Using Neural Networks and
Cross Correlation in Frequency Domain," Proc. of IS 2004: 14th Annual
Canadian Conference on Intelligent Systems, Ottawa, Ontario, 6-8 June,
2004.

[26] H. M. El-Bakry, and H. Stoyan, "Fast Neural Networks for Code
Detection in a Stream of Sequential Data," Proc. of CIC 2004
International Conference on Communications in Computing, Las Vegas,
Nevada, USA, 21-24 June, 2004.

[27] H. M. El-Bakry, "Fast Neural Networks for Object/Face Detection,"
Proc. of 5th International Symposium on Soft Computing for Industry
with Applications of Financial Engineering, June 28 - July 4, 2004,
Sevilla, Andalucia, Spain.

[28] H. M. El-Bakry, and H. Stoyan, "A Fast Searching Algorithm for Sub-
Image (Object/Face) Detection Using Neural Networks," Proc. of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics, 18-
21 July, 2004, Orlando, USA.

[29] H. M. El-Bakry, and H. Stoyan, "Fast Neural Networks for Code
Detection in Sequential Data Using Neural Networks for
Communication Applications," Proc. of the First International
Conference on Cybernetics and Information Technologies, Systems and
Applications: CITSA 2004, 21-25 July, 2004. Orlando, Florida, USA,
Vol. IV, pp. 150-153.

[30] H. M. El-bakry, M. A. Abo-elsoud, and M. S. Kamel, "Fast Modular
Neural Networks for Human Face Detection," Proc. of IEEE-INNS-
ENNS International Joint Conference on Neural Networks, Como, Italy,
Vol. III, pp. 320-324, 24-27 July, 2000.

[31] H. M. El-bakry, "Fast Iris Detection using Cooperative Modular Neural
Nets," Proc. of the 6th International Conference on Soft Computing, 1-4
Oct., 2000, Japan.

[32] H. M. El-Bakry, "Automatic Human Face Recognition Using Modular
Neural Networks," Machine Graphics & Vision Journal (MG&V), Vol.
10, No. 1, 2001, pp. 47-73.

[33] H. M. El-bakry, "Fast Iris Detection Using Cooperative Modular Neural
Networks," Proc. of the 5th International Conference on Artificial Neural
Nets and Genetic Algorithms, pp. 201-204, 22-25 April, 2001, Prague,
Czech Republic.

[34] H. M. El-bakry, "Fast Iris Detection Using Neural Nets," Proc. of the
14th Canadian Conference on Electrical and Computer Engineering,
pp.1409-1415, 13-16 May, 2001, Canada.

[35] H. M. El-bakry, "Human Iris Detection Using Fast Cooperative Modular
Neural Nets," Proc. of INNS-IEEE International Joint Conference on
Neural Networks, pp. 577-582, 14-19 July, 2001, Washington, DC,
USA.

[36] H. M. El-bakry, "Human Iris Detection for Information Security Using
Fast Neural Nets," Proc. of the 5th World Multi-Conference on
Systemics, Cybernetics and Informatics, 22-25 July, 2001, Orlando,
Florida, USA.

[37] H. M. El-bakry, "Human Iris Detection for Personal Identification Using
Fast Modular Neural Nets," Proc. of the 2001 International Conference
on Mathematics and Engineering Techniques in Medicine and
Biological Sciences, pp. 112-118, 25-28 July, 2001, Monte Carlo Resort,
Las Vegas, Nevada, USA.

[38] H. M. El-bakry, "Human Face Detection Using Fast Neural Networks
and Image Decomposition," Proc. the fifth International Conference on
Knowledge-Based Intelligent Information & Engineering Systems, 6-8
September 2001, Osaka-kyoiku University, Kashiwara City, Japan, pp.
1330-1334.

[39] H. M. El-Bakry, "Fast Iris Detection for Personal Verification Using
Modular Neural Networks," Proc. of the International Conference on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2789

Computational Intelligence, 1-3 Oct., 2001, Dortmund, Germany, pp.-
269-283.

[40] H. M. El-bakry, "Fast Cooperative Modular Neural Nets for Human Face
Detection," Proc. of IEEE International Conference on Image
Processing, 7-10 Oct., 2001, Thessaloniki, Greece.

[41] H. M. El-Bakry, "Fast Face Detection Using Neural Networks and Image
Decomposition," Proc. of the 6th International Computer Science
Conference, Active Media Technology, Dec. 18-20, 2001, Hong Kong –
China, pp. 205-215, 2001.

[42] H. M. El-Bakry, "Face Detection Using Fast Neural Networks and Image
Decomposition," Proc. of INNS-IEEE International Joint Conference on
Neural Networks, 14-19 May, 2002, Honolulu, Hawaii, USA.

Eng. Hazem Mokhtar El-Bakry
(Mansoura, EGYPT 20-9-1970) received
B.Sc. degree in Electronics Engineering,
and M.Sc. in Electrical Communication
Engineering from the Faculty of
Engineering, Mansoura University –

Egypt, in 1992 and 1995 respectively. Since 1997, he has been an assistant
lecturer at the Faculty of Computer Science and Information Systems –
Mansoura University – Egypt. Currently, he is a doctoral student at the
Multimedia device laboratory, University of Aizu - Japan. In 2004, he got a
Research Scholarship from Japanese Government based on a recommendation
from University of Aizu.
 His research interests include neural networks, pattern recognition, image
processing, biometrics, cooperative intelligent systems and electronic circuits.
In these areas, he has published more than 44 papers as a single author in
major international journals and conferences. He is the first author in 31
refereed international journal papers and more than 72 refereed international
conference papers.
 Eng. El-Bakry has the patent No. 2003E 19442 DE HOL / NUR, Magnetic
Resonance, SIEMENS Company, Erlangen, Germany, 2003. Furthermore, he
is associate editor for journal of computer science and network security
(IJCSNS). In addition, he is a referee for IEEE Transactions on Signal
Processing, Journal of Applied Soft Computing, the International Journal of
Machine Graphics & Vision, the International Journal of Computer Science
and Network Security, WASET Journals, WSEAS Journals and many
different international conferences organized by IEEE. Moreover, he has been
awarded the Japanese Computer & Communication prize in April 2006.

0
2
4
6
8

10
12
14
16

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

Sp
ee

d
up

 R
at

io

L=25 L=50
L=100

Fig. 1 The speed up ratio for images decomposed into different in size sub-images (L)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2790

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

3.00E+10

100 300 500 700 900 1100 1300 1500 1700 1900
N Pixels

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s Number of Computation Steps
Required by FNN after Image
Decomposition
Number of Computation Steps
Required by FNN Before
Image Decomposition

Fig. 2 A comparison between the number of computation steps required by FNN before and after Image decomposition

0
5

10
15
20
25
30
35

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

Sp
ee

d
up

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

Fig. 3 The speed up ratio in case of image decomposition and different window size (n), (L=25x25)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2791

TABLE I
 THE THEORETICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES

Image size Speed up
ratio (n=20)

Speed up
ratio (n=25)

Speed up
ratio (n=30)

100x100 3.67 5.04 6.34
200x200 4.01 5.92 8.05
300x300 4.00 6.03 8.37
400x400 3.95 6.01 8.42
500x500 3.89 5.95 8.39
600x600 3.83 5.88 8.33
700x700 3.78 5.82 8.26
800x800 3.73 5.76 8.19
900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05
1100x1100 3.62 5.60 7.99
1200x1200 3.58 5.55 7.93
1300x1300 3.55 5.51 7.93
1400x1400 3.53 5.47 7.82
1500x1500 3.50 5.43 7.77
1600x1600 3.48 5.43 7.72
1700x1700 3.45 5.37 7.68
1800x1800 3.43 5.34 7.64
1900x1900 3.41 5.31 7.60
2000x2000 3.40 5.28 7.56

TABLE II
PRACTICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES USING

MATLAB VER 5.3

Image size Speed up
ratio (n=20)

Speed up
ratio (n=25)

Speed up
ratio (n=30)

100x100 7.88 10.75 14.69
200x200 6.21 9.19 13.17
300x300 5.54 8.43 12.21
400x400 4.78 7.45 11.41
500x500 4.68 7.13 10.79
600x600 4.46 6.97 10.28
700x700 4.34 6.83 9.81
800x800 4.27 6.68 9.60
900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46
1100x1100 4.24 6.66 9.62
1200x1200 4.20 6.62 9.57
1300x1300 4.17 6.57 9.53
1400x1400 4.13 6.53 9.49
1500x1500 4.10 6.49 9.45
1600x1600 4.07 6.45 9.41
1700x1700 4.03 6.41 9.37
1800x1800 4.00 6.38 9.32
1900x1900 3.97 6.35 9.28
2000x2000 3.94 6.31 9.25

TABLE III
A COMPARISON BETWEEN THE NUMBER OF MULTIPLICATION STEPS

REQUIRED FOR CONVENTIONAL AND FASTER NEURAL NETS TO
MANIPULATE IMAGES WITH DIFFERENT SIZES (n=20, q=30)

.Image size Conventional
Neural Nets

Faster Neural
Nets

Speed up
ratio (ηm)

100x100 7.8732e+007 2.6117e+007 3.0146
200x200 3.9313e+008 1.1911e+008 3.3007
300x300 9.4753e+008 2.8726e+008 3.2985
400x400 1.7419e+009 5.3498e+008 3.2560
500x500 2.7763e+009 8.6537e+008 3.2083
600x600 4.0507e+009 1.2808e+009 3.1627
700x700 5.5651e+009 1.7832e+009 3.1209
800x800 7.3195e+009 2.3742e+009 3.0830
900x900 9.3139e+009 3.0552e+009 3.0486

1000x1000 1.1548e+010 3.8275e+009 3.0172
1100x1100 1.4023e+010 4.6921e+009 2.9886
1200x1200 1.6737e+010 5.6502e+009 2.9622
1300x1300 1.9692e+010 6.7026e+009 2.9379
1400x1400 2.2886e+010 7.8501e+009 2.9154
1500x1500 2.6320e+010 9.0935e+009 2.8944
1600x1600 2.9995e+010 1.0434e+010 2.8748
1700x1700 3.3909e+010 1.1871e+010 2.8564
1800x1800 3.8064e+010 1.3407e+010 2.8392
1900x1900 4.2458e+010 1.5041e+010 2.8229
2000x2000 7.8732e+007 2.6117e+007 3.0146

TABLE IV
THE THEORETICAL SPEED UP RATIO FOR THE GENERAL FASTER CROSS

CORRELATION ALGORITHM

Image size Speed up
ratio (n=20)

Speed up
ratio (n=25)

Speed up
ratio (n=30)

100x100 5.59 8.73 12.58
200x200 4.89 7.64 11.01
300x300 4.56 7.12 10.26
400x400 4.35 6.80 9.79
500x500 4.20 6.56 9.45
600x600 4.08 6.38 9.20
700x700 3.99 6.24 8.99
800x800 3.91 6.12 8.81
900x900 3.85 6.02 8.67

1000x1000 3.79 5.93 8.54
1100x1100 3.74 5.85 8.43
1200x1200 3.70 5.78 8.33
1300x1300 3.66 5.72 8.24
1400x1400 3.62 5.66 8.16
1500x1500 3.59 5.61 8.08
1600x1600 3.56 5.57 8.02
1700x1700 3.53 5.52 7.95
1800x1800 3.50 5.48 7.89
1900x1900 3.48 5.44 7.84
2000x2000 3.46 5.41 7.79

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2792

TABLE V
SIMULATION RESULTS OF THE SPEED UP RATIO FOR THE GENERAL FASTER

CROSS CORRELATION COMPARED WITH THE MATLAB CROSS
CORRELATION FUNCTION (XCORR2)

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 10.14 13.05 16.49
200x200 9.17 11.92 14.33
300x300 8.25 10.83 13.41
400x400 7.91 9.62 12.65
500x500 6.77 9.24 11.77
600x600 6.46 8.89 11.19
700x700 5.99 8.47 10.96
800x800 5.48 8.74 10.32
900x900 5.31 8.43 10.66

1000x1000 5.91 8.66 10.51
1100x1100 5.77 8.61 10.46
1200x1200 5.68 8.56 10.40
1300x1300 5.62 8.52 10.35
1400x1400 5.58 8.47 10.31
1500x1500 5.54 8.43 10.26
1600x1600 5.50 8.39 10.22
1700x1700 5.46 8.33 10.18
1800x1800 5.42 8.28 10.14
1900x1900 5.38 8.24 10.10
2000x2000 5.34 8.20 10.06

TABLE VI
 THE NUMBER OF COMPUTATION STEPS REQUIRED BY FASTER NEURAL
NETWORKS (FNN) FOR IMAGES OF SIZES (25X25 - 1000X1000 PIXELS),

q=30, n=20

Image size No. of computation steps in case
of using FNN

25x25 1.9085e+006
50x50 9.1949e+006

100x100 4.2916e+007
150x150 1.0460e+008
200x200 1.9610e+008
250x250 3.1868e+008
300x300 4.7335e+008
350x350 6.6091e+008
400x400 8.8203e+008
450x450 1.1373e+009
500x500 1.4273e+009
550x550 1.7524e+009
600x600 2.1130e+009
650x650 2.5096e+009
700x700 2.9426e+009
750x750 3.4121e+009
800x800 3.9186e+009
850x850 4.4622e+009
900x900 5.0434e+009
950x950 5.6623e+009

1000x1000 6.3191e+009

TABLE VII
THE NUMBER OF COMPUTATION STEPS REQUIRED BY FNN FOR IMAGES OF

SIZES (1050X1050 - 2000X2000 PIXELS), q=30, n=20

Image size No. of computation steps in case
of using FNN

1050x1050 7.0142e+009
1100x1100 7.7476e+009
1150x1150 8.5197e+009
1200x1200 9.3306e+009
1250x1250 1.0180e+010
1300x1300 1.1070e+010
1350x1350 1.1998e+010
1400x1400 1.2966e+010
1450x1450 1.3973e+010
1500x1500 1.5021e+010
1550x1550 1.6108e+010
1600x1600 1.7236e+010
1650x1650 1.8404e+010
1700x1700 1.9612e+010
1750x1750 2.0861e+010
1800x1800 2.2150e+010
1850x1850 2.3480e+010
1900x1900 2.4851e+010
1950x1950 2.6263e+010
2000x2000 2.7716e+010
2050x2050 2.9211e+010

TABLE VIII
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE
DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF

DIFFERENT SIZES (FROM N=50 TO N=1000, n=25, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
50x50 2.7568 5.0713

100x100 5.0439 12.4622
150x150 5.6873 15.6601
200x200 5.9190 17.3611
250x250 6.0055 18.4073
300x300 6.0301 19.1136
350x350 6.0254 19.6218
400x400 6.0059 20.0047
450x450 5.9790 20.3034
500x500 5.9483 20.5430
550x550 5.9160 20.7394
600x600 5.8833 20.9032
650x650 5.8509 21.0419
700x700 5.8191 21.1610
750x750 5.7881 21.2642
800x800 5.7581 21.3546
850x850 5.7292 21.4344
900x900 5.7013 21.5054
950x950 5.6744 21.5689

1000x1000 5.6484 21.6260

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2793

TABLE IX
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE

DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF
DIFFERENT SIZES (FROM N=1050 TO N=2000, n=25, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
1050x1050 5.6234 21.6778
1100x1100 5.5994 21.7248
1150x1150 5.5762 21.7678
1200x1200 5.5538 21.8072
1250x1250 5.5322 21.8434
1300x1300 5.5113 21.8769
1350x1350 5.4912 21.9079
1400x1400 5.4717 21.9366
1450x1450 5.4528 21.9634
1500x1500 5.4345 21.9884
1550x1550 5.4168 22.0118
1600x1600 5.3996 22.0338
1650x1650 5.3830 22.0544
1700x1700 5.3668 22.0738
1750x1750 5.3511 22.0921
1800x1800 5.3358 22.1094
1850x1850 5.3209 22.1257
1900x1900 5.3064 22.1412
1950x1950 5.2923 22.1559
2000x2000 5.2786 22.1699

TABLE X
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER MATRIX

DECOMPOSITION INTO SUB-MATRICES (25X25 ELEMENTS) FOR VERY LARGE
MATRICES (FROM N=100000 TO N=2000000, n=25, q=30)

Matrix size

Speed up ratio
in case of

using FNN

Speed up ratio in case
of using FNN after

matrix decomposition
100000x100000 3.6109 22.7038
200000x200000 3.4112 22.7092
300000x300000 3.3041 22.7110
400000x400000 3.2320 22.7119
500000x500000 3.1783 22.7125
600000x600000 3.1357 22.7128
700000x700000 3.1005 22.7131
800000x800000 3.0707 22.7133
900000x900000 3.0448 22.7134

1000000x1000000 3.0221 22.7136
1100000x1100000 3.0018 22.7137
1200000x1200000 2.9835 22.7138
1300000x1300000 2.9668 22.7138
1400000x1400000 2.9516 22.7139
1500000x1500000 2.9376 22.7139
1600000x1600000 2.9245 22.7140
1700000x1700000 2.9124 22.7140
1800000x1800000 2.9011 22.7141
1900000x1900000 2.8904 22.7141
2000000x2000000 2.8804 22.7141

TABLE XI
THE PRACTICAL SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER
IMAGE DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF

DIFFERENT SIZES (FROM N=100 TO N=2000, n=25, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
100x100 10.75 34.55
200x200 9.19 35.65
300x300 8.43 36.73
400x400 7.45 37.70
500x500 7.13 38.66
600x600 6.97 39.61
700x700 6.83 40.56
800x800 6.68 41.47
900x900 6.79 42.39

1000x1000 6.59 43.28
1100x1100 6.66 44.14
1200x1200 6.62 44.95
1300x1300 6.57 45.71
1400x1400 6.53 46.44
1500x1500 6.49 47.13
1600x1600 6.45 47.70
1700x1700 6.41 48.19
1800x1800 6.38 48.68
1900x1900 6.35 49.09
2000x2000 6.31 49.45

TABLE XII
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF DIFFERENT
SIZES (FROM N=50 TO N=1000, n=5, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
50x50 0.3361 1.3282

100x100 0.3141 1.4543
150x150 0.2985 1.4965
200x200 0.2872 1.5177
250x250 0.2785 1.5303
300x300 0.2716 1.5388
350x350 0.2658 1.5448
400x400 0.2610 1.5493
450x450 0.2568 1.5529
500x500 0.2531 1.5557
550x550 0.2498 1.5580
600x600 0.2469 1.5599
650x650 0.2442 1.5615
700x700 0.2418 1.5629
750x750 0.2396 1.5641
800x800 0.2375 1.5652
850x850 0.2356 1.5661
900x900 0.2339 1.5669
950x950 0.2322 1.5677

1000x1000 0.2306 1.5683

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2794

TABLE XIII
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF DIFFERENT
SIZES (FROM N=1050 TO N=2000, n=5, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
1050x1050 0.2292 1.5689
1100x1100 0.2278 1.5695
1150x1150 0.2265 1.5700
1200x1200 0.2253 1.5704
1250x1250 0.2241 1.5709
1300x1300 0.2230 1.5713
1350x1350 0.2219 1.5716
1400x1400 0.2209 1.5720
1450x1450 0.2199 1.5723
1500x1500 0.2189 1.5726
1550x1550 0.2180 1.5728
1600x1600 0.2172 1.5731
1650x1650 0.2163 1.5733
1700x1700 0.2155 1.5735
1750x1750 0.2148 1.5738
1800x1800 0.2140 1.5740
1850x1850 0.2133 1.5742
1900x1900 0.2126 1.5743
1950x1950 0.2119 1.5745
2000x2000 0.2112 1.5747

TABLE XIV
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF
DIFFERENT SIZES (FROM N=50 TO N=1000, n=10, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
50x50 1.1202 3.1369

100x100 1.1503 3.9558
150x150 1.1303 4.2397
200x200 1.1063 4.3829
250x250 1.0842 4.4691
300x300 1.0647 4.5267
350x350 1.0474 4.5678
400x400 1.0321 4.5987
450x450 1.0185 4.6228
500x500 1.0063 4.6420
550x550 0.9952 4.6578
600x600 0.9851 4.6709
650x650 0.9758 4.6820
700x700 0.9672 4.6915
750x750 0.9593 4.6998
800x800 0.9519 4.7070
850x850 0.9451 4.7133
900x900 0.9386 4.7190
950x950 0.9325 4.7241

1000x1000 0.9268 4.7286

TABLE XV

THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE
DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF

DIFFERENT SIZES (FROM N=1050 TO N=2000, n=10, q=30)

Image size Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after image

decomposition
1050x1050 0.9214 4.7328
1100x1100 0.9163 4.7365
1150x1150 0.9114 4.7399
1200x1200 0.9068 4.7431
1250x1250 0.9023 4.7460
1300x1300 0.8981 4.7486
1350x1350 0.8941 4.7511
1400x1400 0.8902 4.7534
1450x1450 0.8865 4.7555
1500x1500 0.8829 4.7575
1550x1550 0.8795 4.7594
1600x1600 0.8762 4.7611
1650x1650 0.8730 4.7628
1700x1700 0.8699 4.7643
1750x1750 0.8669 4.7658
1800x1800 0.8640 4.7672
1850x1850 0.8613 4.7685
1900x1900 0.8586 4.7697
1950x1950 0.8559 4.7709
2000x2000 0.8534 4.7720

TABLE XVI

THE SPEED UP RATIO IN CASE OF USING FNN AFTER IMAGE DECOMPOSITION
INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF DIFFERENT SIZES (FROM

N=50 TO N=1000, n=25, q=30) USING 16 PARALLEL PROCESSORS OR 16
NODES

Image size Speed up ratio

50x50 81.1403
100x100 199.3946
150x150 250.5611
200x200 277.7780
250x250 294.5171
300x300 305.8174
350x350 313.9482
400x400 320.0748
450x450 324.8552
500x500 328.6882
550x550 331.8296
600x600 334.4509
650x650 336.6712
700x700 338.5758
750x750 340.2276
800x800 341.6738
850x850 342.9504
900x900 344.0856
950x950 345.1017

1000x1000 346.0164

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2795

TABLE XVII
THE SPEED UP RATIO IN CASE OF USING FNN AFTER IMAGE DECOMPOSITION
INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF DIFFERENT SIZES (FROM
N=1050 TO N=2000, n=25, q=30) USING 16 PARALLEL PROCESSORS OR 16

NODES

Image size Speed up ratio

1050x1050 346.8442
1100x1100 347.5970
1150x1150 348.2844
1200x1200 348.9147
1250x1250 349.4946
1300x1300 350.0300
1350x1350 350.5258
1400x1400 350.9862
1450x1450 351.4150
1500x1500 351.8152
1550x1550 352.1896
1600x1600 352.5406
1650x1650 352.8704
1700x1700 353.1808
1750x1750 353.4735
1800x1800 353.7500
1850x1850 354.0115
1900x1900 354.2593
1950x1950 354.4943
2000x2000 354.7177

TABLE XVIII
THE SPEED UP RATIO OF THE NORMALIZATION PROCESS FOR IMAGES OF

DIFFERENT SIZES (n =20, q =100)

Image size Speed up ratio

100x100 62
200x200 328
300x300 790
400x400 1452
500x500 2314
600x600 3376
700x700 4638
800x800 6100
900x900 7762

1000x1000 9624
1100x1100 11686
1200x1200 13948
1300x1300 16410
1400x1400 19072
1500x1500 21934
1600x1600 24996
1700x1700 28258
1800x1800 31720
1900x1900 35382
2000x2000 39244

TABLE XIX

THEORETICAL RESULTS FOR THE SPEED UP RATIO IN CASE OF IMAGE
NORMALIZATION BY NORMALIZING THE INPUT WEIGHTS

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.7869 5.2121 6.5532
200x200 4.1382 6.1165 8.3167
300x300 4.1320 6.2313 8.6531
400x400 4.0766 6.2063 8.7031
500x500 4.0152 6.1467 8.6684
600x600 3.9570 6.0796 8.6054
700x700 3.9039 6.0132 8.5334
800x800 3.8557 5.9502 8.4603
900x900 3.8120 5.8915 8.3891

1000x1000 3.7723 5.8369 8.3212
1100x1100 3.7360 5.7862 8.2568
1200x1200 3.7027 5.7391 8.1961
1300x1300 3.6719 5.6952 8.1389
1400x1400 3.6434 5.6542 8.0849
1500x1500 3.6169 5.6158 8.0340
1600x1600 3.5922 5.5798 7.9858
1700x1700 3.5690 5.5458 7.9403
1800x1800 3.5472 5.5138 7.8971
1900x1900 3.5266 5.4835 7.8560
2000x2000 3.5072 5.4547 7.8169

TABLE XX
 THE THEORETICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES

Image size Speed up
ratio (n=20)

Speed up
ratio (n=25)

Speed up
ratio (n=30)

100x100 8.91 12.03 16.74
200x200 7.43 10.42 15.39
300x300 6.72 9.72 14.45
400x400 5.99 8.61 13.59
500x500 5.75 8.32 12.94
600x600 5.61 8.09 11.52
700x700 5.49 7.97 11.04
800x800 5.41 7.83 10.74
900x900 5.32 7.71 10.56

1000x1000 5.29 7.58 10.45
1100x1100 5.41 7.83 10.81
1200x1200 5.36 7.77 10.76
1300x1300 5.32 7.71 10.71
1400x1400 5.28 7.65 10.66
1500x1500 5.24 7.60 10.62
1600x1600 5.21 7.56 10.58
1700x1700 5.18 7.52 10.52
1800x1800 5.14 7.48 10.47
1900x1900 5.11 7.44 10.43
2000x2000 5.08 7.41 10.38

