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Abstract—Neural processors have shown good results for 

detecting a certain character in a given input matrix. In this paper, a 
new idead to speed up the operation of neural processors for character 
detection is presented. Such processors are designed based on cross 
correlation in the frequency domain between the input matrix and the 
weights of neural networks. This approach is developed to reduce the 
computation steps required by these faster neural networks for the 
searching process. The principle of divide and conquer strategy is 
applied through image decomposition. Each image is divided into 
small in size sub-images and then each one is tested separately by 
using a single faster neural processor. Furthermore, faster character 
detection is obtained by using parallel processing techniques to test the 
resulting sub-images at the same time using the same number of faster 
neural networks. In contrast to using only faster neural processors, the 
speed up ratio is increased with the size of the input image when using 
faster neural processors and image decomposition. Moreover, the 
problem of local subimage normalization in the frequency domain is 
solved. The effect of image normalization on the speed up ratio of 
character detection is discussed. Simulation results show that local 
subimage normalization through weight normalization is faster than 
subimage normalization in the spatial domain. The overall speed up 
ratio of the detection process is increased as the normalization of 
weights is done off line.   

Keywords—Fast Character Detection, Neural Processors, Cross 
Correlation, Image Normalization, Parallel Processing. 

I.  INTRODUCTION 
HARACTER detection is a fundamental step before 
character recognition. Its reliability and performance have 

a major influence in a whole character recognition system. 
Nowadays, neural networks have shown very good results for 
detecting a certain pattern in a given image [2,4,6,8,9,10,12]. 
Among other techniques [3,5,7], neural networks are efficient 
pattern detectors [2,4,6,9].  

But the problem with neural networks is that the 
computational complexity is very high because the networks 
have to process many small local windows in the images [5,7]. 
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The main objective of this paper is to reduce the detection 
time using neural networks. Our idea is to fast the operation of 
neural networks by performing the testing process in the 
frequency domain instead of spatial domain. Then, cross 
correlation between the input image and the weights of neural 
networks is performed in the frequency domain. This model is 
called faster neural networks. Compared to conventional 
neural networks, faster neural networks show a significant 
reduction in the number of computation steps required to 
detect a certain character in a given image under test.  
Furthermore, another idea to increase the speed of these faster 
neural networks through image decomposition is presented. 
Moreover, the problem of subimage (local) normalization in 
the Fourier space which presented in [4] is solved. The 
number of computation steps required for weight 
normalization is proved to be less than that needed for image 
normalization. Also, the effect of weight normalization on the 
speed up ratio is theoretically and practically discussed. 
Mathematical calculations prove that the new idea of weight 
normalization, instead of image normalization, provides good 
results and increases the speed up ratio. This is because weight 
normalization requires fewer computation steps than subimage 
normalization. Moreover, for neural networks, normalization 
of weights can be easily done off line before starting the 
search process.  
     In section II, faster neural networks for character detection 
are described. The details of conventional neural networks, 
faster neural networks, and the speed up ratio of character 
detection are given. A faster searching algorithm for character 
detection which reduces the number of the required 
computation steps through image decomposition is presented 
in section III. Accelerating the new approach using parallel 
processing techniques is also introduced. Subimage 
normalization in the frequency domain through normalization 
of weights is introduced in section IV. The effect of weight 
normalization on the speed up ratio is presented in section V. 

II.  FAST CHARACTER DETECTION USING MLP AND FFT 
     Here, we are interested only in increasing the speed of 
neural networks during the test phase. By the words “Faster 
Neural Networks” we mean reducing the number of 
computation steps required by neural networks in the detection 
phase. First neural networks are trained to classify face from 
non face examples and this is done in the spatial domain. In 
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the test phase, each sub-image in the input image (under test) 
is tested for the presence or absence of the required character . 
At each pixel position in the input image each sub-image is 
multiplied by a window of weights, which has the same size as 
the sub-image. This multiplication is done in the spatial 
domain. The outputs of neurons in the hidden layer are 
multiplied by the weights of the output layer. When the final 
output is high this means that the sub-image under test 
contains the required character  and vice versa. Thus, we may 
conclude that this  searching problem is cross correlation in 
the spatial domain between the image under test and the input 
weights of neural networks.   

      In this section, a fast algorithm for character  detection 
based on two dimensional cross correlations that take place 
between the tested image and the sliding window (20x20 
pixels) is described. Such window is represented by the neural 
network weights situated between the input unit and the 
hidden layer. The convolution theorem in mathematical 
analysis says that a convolution of f with h is identical to the 
result of the following steps: let F and H be the results of the 
Fourier transformation of f and h in the frequency domain. 
Multiply F and H* (conjugate of H) in the frequency domain 
point by point and then transform this product into spatial 
domain via the inverse Fourier transform [1]. As a result, these 
cross correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
frequency domain a speed up in an order of magnitude can be 
achieved during the detection process 
[6,8,9,10,11,12,13,14,15,16].      

     In the detection phase, a subimage X of size mxn (sliding 
window) is extracted from the tested image, which has a size 
PxT, and fed to the neural network. Let Wi be the vector of 
weights between the input subimage and the hidden layer. 
This vector has a size of mxz and can be represented as mxn 
matrix. The output of hidden neurons h(i) can be calculated as 
follows:  
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where g is the activation function and b(i) is the bias of each 
hidden neuron (i). Eq.1 represents the output of each hidden 
neuron for a particular subimage I. It can be computed for the 
whole image Ψ as follows: 
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Eq. (2) represents a cross correlation operation. Given any two 
functions f and g, their cross correlation can be obtained by 
[1]: 
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Therefore, Eq. (2) can be written as follows: 

( )ibΨiWgih +⊗=                       (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is 
the activity of the hidden unit (i) when the sliding window is 
located at position (u,v) in the input image Ψ and (u,v)       
∈[P-m+1,T-n+1].  

Now, the above cross correlation can be expressed in terms of 
the Fourier Transform: 

( ) ( )( )iW*FF1FΨiW Ψ •−=⊗          (5) 

(*) means the conjugate of the FFT for the weight matrix. 
Hence, by evaluating this cross correlation, a speed up ratio 
can be obtained comparable to conventional neural networks. 
Also, the final output of the neural network can be evaluated 
as follows:  
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where q is the number of neurons in  the hidden layer. O(u,v) 
is the output of the neural network when the sliding window 
located at the position (u,v) in the input image Ψ. Wo is the 
weight matrix between hidden and output layer. 

     The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 

1. For a tested image of NxN pixels, the 2D-FFT requires a 
number equal to N2log2N2 of complex computation steps. 
Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the weight matrix for 
each neuron in the hidden layer.  

2. At each neuron in the hidden layer, the inverse 2D-FFT is 
computed. So, q backward and (1+q) forward transforms have 
to be computed. Therefore, for an image under test, the total 
number of the 2D-FFT to compute is (2q+1)N2log2N2. 

3. The input image and the weights should be multiplied in the 
frequency domain. Therefore, a number of complex 
computation steps equal to qN2 should be added.  

4. The number of computation steps required by the faster 
neural networks is complex and must be converted into a real 
version. It is known that the two dimensions Fast Fourier 
Transform requires (N2/2)log2N2 complex multiplications and 
N2log2N2 complex additions [20,21]. Every complex 
multiplication is realized by six real floating point operations 
and every complex addition is implemented by two real 
floating point operations. So, the total number of computation 
steps required to obtain the 2D-FFT of an NxN image is: 

ρ=6((N2/2)log2N2) + 2(N2log2N2)             (7) 
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which may be simplified to: 

ρ=5N2log2N2                        (8) 

Performing complex dot product in the frequency domain also 
requires 6qN2 real operations. 

5. In order to perform cross correlation in the frequency 
domain, the weight matrix must have the same size as the 
input image. Assume that the input object/face has a size of 
(nxn) dimensions. So, the search process will be done over 
subimages of (nxn) dimensions and the weight matrix will 
have the same size. Therefore, a number of zeros = (N2-n2) 
must be added to the weight matrix. This requires a total real 
number of computation steps = q(N2-n2) for all neurons. 
Moreover, after computing the 2D-FFT for the weight matrix, 
the conjugate of this matrix must be obtained. So, a real 
number of computation steps =qN2 should be added in order to 
obtain the conjugate of the weight matrix for all neurons.  
Also, a number of real computation steps equal to N is 
required to create butterflies complex numbers (e-jk(2Πn/N)), 
where 0<K<L. These (N/2) complex numbers are multiplied 
by the elements of the input image or by previous complex 
numbers during the computation of the 2D-FFT. To create a 
complex number requires two real floating point operations. 
So, the total number of computation steps required for the 
faster neural networks becomes: 

σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N        (9) 

which can be reformulated as: 

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N            (10) 

6. Using a sliding window of size nxn for the same image of 
NxN pixels, q(2n2-1)(N-n+1)2 computation steps are required 
when using traditional neural networks for character  detection 
process. The theoretical speed up factor η can be evaluated as 
follows: 

   N )2n-2q(8N )2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
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The theoretical speed up ratio (Eq. 11) with different sizes of 
the input image and different in size weight matrices is listed 
in Table I. Practical speed up ratio for manipulating images of 
different sizes and different in size weight matrices is listed in 
Table II using 700 MHz processor and MATLAB ver 5.3. An 
interesting property with faster neural networks is that the 
number of computation steps does not depend on eith the size 
of the input subimage or the size of the weighth matrix (n). 
The effect of (n) on the the number of computation steps is 
very small and can be ignored. This is incontrast to 
conventional networks networks in which the number of 
computation steps is increased with the size of both the input 
subimage and the weight matrix (n). 

In practical implementation, the multiplication process 
consumes more time than the addition one. The effect of the 
number of multiplications required for conventional neural 
networks in the speed up ratio (Eq. 11) is more than the 
number of of multiplication steps required by the faster neural 
networks. In order to clear this, the following equation (ηm) 
describes relation between the number of multiplication steps 
required by conventional and faster neural networks: 
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The results listed in Table III prove that the effect of the 
number of multiplication steps in case of conventional neural 
networks is more than faster neural networks and this the 
reason why practical speed up ratio is larger than theoretical 
speed up ratio. 

For general fast cross correlation the speed up ratio (ηg) is in 
the following form: 
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where τ is a small number depends on the size of the weight 
matrix. General cross correlation means that the process starts 
from the first element in the input matrix. The theoretical 
speed up ratio for general fast cross correlation (ηg) defined 
by Eq. (13) is shown in Table IV. Compared with MATLAB 
cross correlation function (xcorr2), experimental results show 
that the proposed algorithm is faster than this function as 
shown in Table V. 
      The authors in [17-19] have proposed a multilayer 
perceptron (MLP) algorithm for fast face/object detection. The 
same authors claimed incorrect equation for cross correlation 
between the input image and the weights of the neural 
networks. They introduced formulas for the number of 
computation steps needed by conventional and faster neural 
networks. Then, they established an equation for the speed up 
ratio. Unfortunately, these formulas contain many errors 
which lead to invalid speed up ratio. Other authors developed 
their work based on these incorrect equations [22-42]. So, the 
fact that these equations are not valid must be cleared to all 
researchers. It is not only very important but also urgent to 
notify other researchers not to do research based on wrong 
equations.  

     The authors in [17-19] analyzed their proposed fast neural 
network as follows: For a tested image of NxN pixels, the    
2D-FFT requires O(N2(log2N)2) computation steps. For the 
weight matrix Wi, the 2D-FFT can be computed off line since 
these are constant parameters of the network independent of 
the tested image. The 2D-FFT of the tested image must be 
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computed. As a result, q backward and one forward transforms 
have to be computed. Therefore, for a tested image, the total 
number of the 2D-FFT to compute is (q+1)N2(log2N)2 [17,19]. 
In addition, the input image and the weights should be 
multiplied in the frequency domain. Therefore, computation 
steps of (qN2) should be added. This yields a total of 
O((q+1)N2(log2N)2+qN2) computation steps for the fast neural 
network [17,18]. 

     Using sliding window of size nxn, for the same image of 
NxN pixels, qN2n2 computation steps are required when using 
traditional neural networks for the face detection process. 
They evaluated theoretical speed up factor η as follows [17]: 

N21)log(q

2qn
η

+
=                      (14) 

     The speed up factor introduced in [17] and given by Eq.14 
is not correct for the following reasons: 

a) The number of computation steps required for the 2D-FFT 
is O(N2log2N2) and not O(N2log2N) as presented in [17,18].  
Also, this is not a typing error as the curve in Fig.2 in [17] 
realizes Eq.7, and the curves in Fig.15 in [18] realizes 
Eq.31 and Eq.32 in [18]. 

b) Also, the speed up ratio presented in [17] not only contains 
an error but also is not precise. This is because for faster 
neural networks, the term (6qN2) corresponds to complex 
dot product in the frequency domain must be added. Such 
term has a great effect on the speed up ratio. Adding only 
qN2 as stated in [18] is not correct since a one complex 
multiplication requires six real computation steps. 

c) For conventional neural networks, the number of operations 
is (q(2n2-1)(N-n+1)2) and not (qN2n2). The term n2 is 
required for multiplication of n2 elements (in the input 
window) by n2 weights which results in another new n2 

elements. Adding these n2 elements, requires another (n2-1) 
steps. So, the total computation steps needed for each 
window is (2n2-1). The search operation for a face in the 
input image uses a window with nxn weights. This 
operation is done at each pixel in the input image. 
Therefore, such process is repeated (N-n+1)2 times and not 
N 2 as stated in [17,19]. 

d) Before applying cross correlation, the 2D-FFT of the 
weight matrix must be computed. Because of the dot 
product, which is done in the frequency domain, the size of 
weight matrix should be increased to be the same as the 
size of the input image. Computing the 2D-FFT of the 
weight matrix off line as stated in [17-19] is not practical. 
In this case, all of the input images must have the same 
size. As a result, the input image will have only a one fixed 
size. This means that, the testing time for an image of size 
50x50 pixels will be the same as that image of size 
1000x1000 pixels and of course, this is unreliable. 

e) It is not valid to compare number of complex computation 
steps by another of real computation steps directly. The 

number of computation steps given by pervious authors 
[17-19] for conventional neural networks is for real 
operations while that is required by the faster neural 
networks is for complex operations. To obtain the speed up 
ratio, the authors in [17-19] have divided the two formulas 
directly without converting the number of computation 
steps required by the faster neural networks into a real 
version.  

f) Furthermore, there is critical error in the activity of hidden 
neurons given in section 3.1 in [19] and also by Eq.(2) in 
[17]. Such activity given by those authors in [17,19] as 
follows: 

 ( )ibiWΨgih +⊗=                   (15) 

      is not correct and should be written as Eq.(4) given here in 
this paper. This is because the fact that the operation of 
cross correlation is not commutative (W⊗Ψ ≠ Ψ⊗W). A 
practical example is shown in appendix ("A"). As a result, 
Eq.(15)  (Eq.(2) in their paper [17]) does not give the same 
correct results as conventional neural networks. This error 
leads the researchers who consider the references [17,19] 
to think about how to modify the operation of cross 
correlation so that Eq.(15) (Eq.(2) in their paper [17]) can 
give the same correct results as conventional neural 
networks. Therefore, errors in these equations must be 
cleared to all the researchers. In [23-29], the authors 
proved that a symmetry condition must be found in input 
matrices (images and the weights of neural networks) so 
that fast neural networks can give the same results as 
conventional neural networks. In case of symmetry 
W⊗Ψ=Ψ⊗W, the cross correlation becomes commutative 
and this is a valuable achievement. In this case, the cross 
correlation is performed without any constrains on the 
arrangement of matrices. A practical proof for this 
achievement is explained by examples shown in appendix 
"A". As presented in [23-29], this symmetry condition is 
useful for reducing the number of patterns that neural 
networks will learn. This is because the image is converted 
into symmetric shape by rotating it down and then the up 
image and its rotated down version are tested together as 
one (symmetric) image. If a pattern is detected in the 
rotated down image, then, this means that this pattern is 
found at the relative position in the up image. So, if 
conventional neural networks are trained for up and rotated 
down examples of the pattern, faster neural networks will 
be trained only to up examples. As the number of trained 
examples is reduced, the number of neurons in the hidden 
layer will be reduced and the neural network will be faster 
in the test phase compared with conventional neural 
networks.  

g) Moreover, the authors in [17-19] stated that the activity of 
each neuron in the hidden layer Eq. 16 (Eq.4 in their paper 
[17]) can be expressed in terms of convolution between a 
bank of filter (weights) and the input image. This is not 
correct because the activity of the hidden neuron is a cross 
correlation between the input image and the weight matrix. 
It is known that the result of cross correlation between any 
two functions is different from their convolution. As we 
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proved in [23-29] the two results will be the same, only 
when the two matrices are symmetric or at least the weight 
matrix is symmetric. A practical example which proves 
that for any two matrices the result of their cross 
correlation is different from their convolution unless that 
they are symmetric or at least the second matrix is 
symmetric as shown in appendix "B". 

h) Images are tested for the presence of a face (object) at 
different scales by building a pyramid of the input image 
which generates a set of images at different resolutions. 
The face detector is then applied at each resolution and this 
process takes much more time as the number of processing 
steps will be increased. In [17-19], the authors stated that 
the Fourier transforms of the new scales do not need to be 
computed. This is due to a property of the Fourier 
transform. If z(x,y) is the original and a(x,y) is the sub-
sampled by a factor of 2 in each direction image then: 

z(2x,2y)y)a(x, =                           (16) 

y))FT(z(x,v)Z(u, =                      (17)  
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      This implies that we do not need to recompute the Fourier 
transform of the sub-sampled images, as it can be directly 
obtained from the original Fourier transform. But 
experimental results have shown that Eq.18 is valid only 
for images shown in the form presented in Eq. 19. In 
which each block of pixels consists of 4 pixels located 
beside each other and have the same value as shown in Eq. 
19. Certainly, there no guarantee that the input image will 
be in that form. Of course, it may have another form 
different from that one presented in Eq. 19.   
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      In [17], the author claimed that the processing needs 
O((q+2)N2log2N) additional number of computation steps. 
Thus the speed up ratio will be [17]: 

N2)log(q
qn

2

2
η

+
=                     (20) 

      Of course this is not correct, because the inverse of the 
Fourier transform is required to be computed at each 
neuron in the hidden layer (for the resulted matrix from the 
dot product between the Fourier matrix in two dimensions 
of the input image and the Fourier matrix in two 
dimensions of the weights, the inverse of the Fourier 
transform must be computed). So, the term (q+2) in Eq.20 
should be (2q+1) because the inverse 2D-FFT in two 
dimensions must be done at each neuron in the hidden 
layer. In this case, the number of computation steps 
required to perform 2D-FFT for the faster neural networks 
will be: 

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2       (21) 

     In addition, a number of computation steps equal to 
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the 
number of computation steps required by the faster neural 
networks. 

III.  A NEW FASTER ALGORITHM FOR CHARACTER DETECTION 
BASED ON IMAGE DECOMPOSITION 

     In this section, a new faster algorithm for character 
detection is presented. The number of computation steps 
required for faster neural networks with different image sizes 
is listed in Tables VI and VII. From these tables, we may 
notice that as the image size is increased, the number of 
computation steps required by faster neural networks is much 
increased. For example, the number of computation steps 
required for an image of size (50x50 pixels) is much less than 
that needed for an image of size (100x100 pixels). Also, the 
number of computation steps required for an image of size 
(500x500 pixels) is much less than that needed for an image of 
size (1000x1000 pixels). As a result, for example, if an image 
of size (100x100 pixels) is decomposed into 4 sub-images of 
size (50x50 pixels) and each sub-image is tested separately, 
then a speed up factor for character detection can be achieved. 
The number of computation steps required by faster neural 
networks to test an image after decomposition can be 
calculated as follows: 

1. Assume that the size of the image under test is (NxN 
pixels). 
2. Such image is decomposed into α (LxL pixels) sub-images. 
So, α can be computed as: 

α=(N/L)2                               (22) 

3. Assume that, the number of computation steps required for 
testing one (LxL pixels) sub-image is β. So, the total number 
of computation steps (T) required for testing these sub-images 
resulting after the decomposition process is: 

T = α β                                (23) 

The speed up ratio in this case (ηd ) can be computed as 
follows: 
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where, 
   Ns: is the size of each small sub-image. 
   Δ: is a small number of computation steps required to 

obtain the results at the boundaries between subimages and 
depends on the size of the subimage. 

 
     To detect a character of size 20x20 pixels in an image of 
any size by using faster neural networks after image 
decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table VI, we may conclude 
that, the most suitable size for the sub-image which requires 
the smallest number of computation steps is 25x25 pixels. 
Also, the fastest speed up ratio can be achieved using this sub-
image size (25x25) as shown in Figure 1. It is clear that the 
speed up ratio is reduced when the size of the sub-image (L) is 
increased. A comparison between the speed up ratio for faster 
neural networks and faster neural networks after image 
decomposition with different sizes of the tested images is 
listed in Tables VIII and IX. It is clear that the speed up ratio 
is increased with the size of the input image when using faster 
neural networks and image decomposition. This is in contrast 
to using only faster neural networks. As shown in Figure 2, the 
number of computation steps required by faster neural 
networks is increased rapidly with the size of the input image. 
Therefore the speed up ratio is decreased with the size of the 
input image. While in case of using faster neural networks and 
image decomposition, the number of computation steps 
required by faster neural networks is increased smoothly.  
Thus, the linearity of the computation steps required by faster 
neural networks in this case is better. As a result, the speed up 
ratio is increased. Increasing the speed up ratio with the size of 
the input image is considered an important achievement. 
Furthermore, for very large size matrices, while the speed up 
ratio for faster neural networks is decreased, the speed up ratio 
still increase in case of using faster neural networks and matrix 
decomposition as listed in Table X. Moreover, as shown in 
Figure 3, the speed up ratio in case of faster neural networks 
and image decomposition is increased with the size of the 
weight matrix which has the same size (n) as the input 
window. For example, it is clear that the speed up ratio is for 
window size of 30x30 is larger than that of size 20x20. 
Simulation results for the speed up ratio in case of using fast 
neural networks and image decomposition is listed in Table 
XI. It is clear that simulation results confirm the theoretical 
computations and the practical speed up ratio after image 
decomposition is faster than using only fast neural networks. 
In addition, the practical speed up ratio is increased with the 
size of the input image. 
 
    Also, to detect small in size matrices such as 5x5 or 10x10 
using only faster neural networks, the speed ratio becomes less 
than one as shown in Tables XII,XIII,XIV, and XV. On the 

other hand, from the same tables it is clear that using fast 
neural and image decomposition, the speed up ratio becomes 
higher than one and increased with the dimensions of the input 
image. The dimensions of the new subimage after image 
decomposition (L) must not be less than the dimensions of the 
character  which is required to be detected and has the same 
size as the weight matrix. Therefore, the following equation 
controls the relation between the subimage and the size of 
weight matrix (character to be detected) in order not to loss 
any information in the input image. 
 

nL ≥                                 (25) 
 
For example, in case of detecting 5x5 characters, the image 
must be decomposed into subimages of size not less than 5x5.  
 
     To further reduce the running time as well as increase the 
speed up ratio of the detection process, a parallel processing 
technique is used. Each sub-image is tested using a faster 
neural network simulated on a single processor or a separated 
node in a clustered system. The number of operations (ω) 
performed by each processor / node (sub-images tested by one 
processor/node) =  

nodes/ProcessorsofNumber
imagessubofnumbertotalThe

ω
−

=          (26) 

Pr
αω =                               (27) 

where, Pr is the number of processors or nodes. 

The total number of computation steps (γ) required to test an 
image by using this approach can be calculated as: 

 γ=ωβ                                   (28) 

     By using this algorithm, the speed up ratio in this case (ηdp) 
can be computed as follows: 

)/pr)sN)2n-2
sαq(8N)2

sN2log2
sα)(5N1)ceil(((q(α

21)n1)(N2q(2n

dpη

++++

+−−

=

 

(29) 

where, ceil(x) is a MATLAB function rounds the elements of x 
to the nearest integers towards infinity. 
 
     As shown in Tables XVI and XVII, using a symmetric 
multiprocessing system with 16 parallel processors or 16 
nodes in either a massively parallel processing system or a 
clustered system, the speed up ratio (with respect to 
conventional neural networks) for character  detection is 
increased. A further reduction in the computation steps can be 
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obtained by dividing each sub-image into groups. For each 
group, the neural operation (multiplication by weights and 
summation) is performed for each group by using a single 
processor. This operation is done for all of these groups as 
well as other groups in all of the sub-images at the same time. 
The best case is achieved when each group consists of only 
one element. In this case, one operation is needed for 
multiplication of the one element by its weight and also a 
small number of operations (ε) is required to obtain the over 
all summation for each sub-image. If the sub-image has n2 

elements, then the required number of processors will be n2. 
As a result, the number of computation steps will be αq(1+ε), 
where ε is a small number depending on the value of n. For 
example, when n=20, then ε=6 and if n=25, then ε=7. The 
speed up ratio can be calculated as: 

η=(2n2-1)(N-n+1)2/α(1+ε)               (30)  

     Moreover, if the number of processors = αn2, then the 
number of computation steps will be q(1+ε), and the speed up 
ratio becomes: 

η=(2n2-1)(N-n+1)2/ (1+ε)                (31)  

     Furthermore, if the number of processors = qαn2, then the 
number of computation steps will be (1+ε), and the speed up 
ratio can be calculated as: 

η=q(2n2-1)(N-n+1)2/ (1+ε)               (32)  

     In this case, as the length of each group is very small, then 
there is no need to apply cross correlation between the input 
image and the weights of the neural network in frequency 
domain.  

IV. SUBIMAGE CENTERING AND NORMALIZATION IN THE 
FREQUENCY DOMAIN 

     In [4], the authors stated that image normalization to avoid 
weak or strong illumination could not be done in the 
frequency space. This is because the image normalization is 
local and not easily computed in the Fourier space of the 
whole image. Here, a simple method for image normalization 
is presented. In [17-19], the authors stated that centering and 
normalizing the image can be obtained by centering and 
normalizing the weights as follows [17-19]: 
Let rcX be the zero-mean centered sub-image located at (r,c) 
in the input image ψ: 

rcxrcXrcX −=                       (33) 

where, rcX is the mean value of the sub-image located at 
(r,c). We are interested in computing the cross correlation 
between the sub-image rcX and the weights Wi that is: 

iWrcxiWrcXiWrcX ⊗−⊗=⊗            (34) 

where,  

2n

rcX
rcx =                             (35) 

Combining (34) and (35), the following expression can be 
obtained: 

iW2n
rcX

iWrcXiWrcX ⊗−⊗=⊗             (36) 

which is the same as: 

2n

i
W

rcXiWrcXiWrcX ⊗−⊗=⊗            (37) 

The centered zero mean weights are given by: 

2n

i
W

iWiW −=                           (38) 

Also, Eq. (37) can be written as: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⊗=⊗

2n

i
W

i
WrcXiWrcX               (39) 

So, it can be concluded that: 

iWrcXiWrcX ⊗=⊗                      (40) 

which means that cross-correlating a normalized sub-image 
with the weight matrix is equal to the cross-correlation of the  
non – normalized sub-image with the normalized weight 
matrix [17-19]. However, this proof which presented in [17-
19] is not correct at all because it is proved here 
mathematically and practically that cross-correlating a 
normalized sub-image with the weight matrix is not equal to 
the cross-correlation of the  non – centered image with the 
normalized weight matrix 
                  
     During the test phase, each sub-image in the input image is 
multiplied (dot multiplication) by the weight matrix and this 
operation is repeated for all possible sub-images in the input 
image. Repeating this process for all sub-images in the input 
image is equivalent to the cross correlation operation. 
Therefore, there is no cross correlation between each sub-
image and the weight matrix. The cross correlation is done 
between the weight matrix and the whole input image. Thus, 
this proves that there is no need to the proof of Eq.(40) 
(presented in [17-19]) which is mathematically wrong. The 
result of Eq.(40) is correct only for the center value which 
equals to the dot product between the two matrices (sub-image 
and weight matrices). For all other values except the center 
value: 

iWrcXiWrcX ⊗≠⊗                      (41) 
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     This fact is true for all types and values of matrices except 
symmetric matrices and our new technique of image 
decomposition presented in last section III. A practical 
example is given in appendix "C".  
 
     Furthermore, the definition of the mean value, Eq. (35) 
presented in [17-19] is not correct and must be : 
 

2n

n

1ji,
j)(i,

rc
X

rcx

∑
=

=                  (42) 

      
which makes the proof of Eq.(40) (presented in [17-19]) not 
correct.  
     Moreover, the operation performed between the weight 
matrix and each sub-image is dot multiplication. Our new idea 
is to normalize each sub-image in the frequency domain by 
normalizing the weight matrix. The dot product of two 
matrices is defined as follows: 

∑
=

=•
2n

1ji, ijWijXWX
                       (43) 

The result of dot product is only one value. We have also the 
following definitions: 

∑
=

=•=•
2n

1ji, ijXnxn1XXnxn1              (44) 

Where, 1nxn is a nxn matrix where every element is 1.  

∑
=

=•=•
2n

1ji, ijWnxn1WWnxn1              (45)  

Lemma :    Wnxn1xXnxn1w •=•  

Proof: 

From Eqs. 42,43,44,and 45, we can conclude that:  

∑
=

•∑
=

∑
=

==•
2n

1ji, ijX
2n

1ji, ijW
2n

1ji, 2n

1
ijXwXnxn1w     (46) 

Which can be reformulated as: 

∑
=

•∑
=

=•
2n

1ji, ijX
2n

1ji, ijW
2n

1Xnxn1w                 (47) 

Also, 

∑
=

•∑
=

∑
=

==•
2n

1ji, ijW
2n

1ji, ijX
2n

1ji, 2n

1
ijWxWnxn1x          (48) 

Which is the same as: 

∑
=

•∑
=

=•
2n

1ji, ijW
2n

1ji, ijX
2n

1Wnxn1x               (49) 

It is clear that Eq.(47) is the same as Eq.(49), which means:  

Wnxn1xXnxn1w •=•∴                    (50) 

Theorem: 

   XW WX •=•  

Proof: 

W)nxn1x-(XWX •=•  

Wnxn1x-WX ••=  

wnxn1X-WX ••=  

)nxn1w-X(W •=  

WX •=  

So, we may conclude that: 

iWrcXiWrcX •=•                     (51) 

which means that multiplying a normalized sub-image with a 
non-normalized weight matrix dot multiplication is equal to 
the dot multiplication between the non – normalized sub-
image and the normalized weight matrix. The validation of Eq. 
(51) and a practical example is given in appendix "D".  

     As proved in our previous paper [8], the relation defined by 
Eq. (40) is true only for the resulting middle value. This is 
under two conditions. The first is to apply the technique of 
faster neural networks and image decomposition. In this case, 
the cross correlation is performed between each input sub-
image and the weight matrix which has the same size as the 
resulting sub-image after image decomposition. The resulting 
middle value equals to the dot product between the input sub-
image and the weight matrix (the value which we interested 
in). The second is that the required face/object is completely 
located in one of these sub-images (not between two sub-
images). However applying cross correlation consumes more 
computation steps than applying dot product which makes Eq. 
(40) useful less. 
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V. EFFECT OF WEIGHT NORMALIZATION ON THE SPEED UP 
RATIO 

 
     Normalization of subimages in the spatial domain (in case 
of using traditional neural networks) requires 2n2(N-n+1)2 
computation steps. On the other hand, normalization of 
subimages in the frequency domain through normalizing the 
weights of the neural networks requires 2qn2 operations. This 
proves that local image normalization in the frequency domain 
is faster than that in the spatial one. By using weight 
normalization, the speed up ratio for image normalization Γ 
can be calculated as:  

 

q
1)n(N

Γ
2+−

=                      (52) 

     The speed up ratio of the normalization process for images 
of different sizes is listed in Table XVIII. As a result, we may 
conclude that: 

1. Using this technique, normalization in the frequency 
domain can be done through normalizing the weights in 
spatial domain.  

2. Normalization of an image through normalization of 
weights is faster than normalization of each subimage.  

3. Normalization of weights can be done off line. So, the 
speed up ratio in the case of weight normalization can be 
calculated as follows: 

 
 
a) For Conventional Neural Networks:  

     The speed up ratio equals the number of computation steps 
required by conventional neural networks with image 
normalization divided by the number of computation steps 
needed by conventional neural networks with weight 
normalization, which is done off line. The speed up ratio ηc in 
this case can be given by: 

22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2n
η

+−−

+−++−−
=      (53) 

which can be simplified to: 

1)q(2n
2n1η 2

2

c −
+=                        (54) 

b) For Fasr neural networks: 

     The over all speed up ratio equals the number of 
computation steps required by conventional neural networks 
with image normalization divided by the number of 
computation steps needed by fast neural networks with weight 
normalization, which is done off line. The over all speed up 
ratio ηo can be given by: 

  N)n-q(8N)Nlog1)(5N(2q
1)n-(N2n1)n1)(Nq(2n η 222

2
2

2222

o
+++
+++−−

=      (55) 

which can be simplified to: 

  N)n-q(8N)Nlog1)(5N(2q
)2n1)q(2n (1)n(N

η
222

2
2

222

o
+++

+−+−
=      (56) 

The relation between the speed up ratio before (η) and after 
(ηo) the normalization process can be summed up as: 

   N)n-q(8N)Nlog1)(5N(2q
1)n(N2nηη 222

2
2

22

o +++
+−

+=      (57) 

     The overall speed up ratio (Eq. 57) with images of different 
sizes and different sizes of windows is listed in Table XIX. 
We can easily note that the speed up ratio in case of image 
normalization through weight normalization is larger than the 
speed up ratio (without normalization) listed in Table I. This 
means that the search process with normalized fast neural 
networks is done faster than conventional neural networks 
with or without normalization of the input image. The overall 
practical speed up ratio (Eq. 57) after normalization of weights 
off line is listed in Table XX.  

VI. CONCLUSION 
A novel high speed neural model for fast character 

detection in a given image have been presented. It has been 
proved mathematically and practically that the speed of the 
detection process becomes faster than conventional neural 
networks. This has been accomplished by applying cross 
correlation in the frequency domain between the input image 
and the normalized input weights of the neural networks. A 
new general formulas for fast cross correlation as well as the 
speed up ratio have been given. A faster neural network 
approach for character detection has been introduced. Such 
approach has decomposed the input image under test into 
many small in size sub-images. Furthermore, a simple 
algorithm for fast character detection based on cross 
correlations in the frequency domain between the sub-images 
and the weights of the neural net has been presented in order 
to speed up the execution time. Simulation results have shown 
that, using a parallel processing technique, large values of 
speed up ratio could be achieved. Moreover, by using faster 
neural networks and image decomposition, the speed up ratio 
has been increased with the size of the input image. Also, the 
problem of local subimage normalization in the frequency 
space has been solved. It has been generally proved that the 
speed up ratio in the case of image normalization through 
normalization of weights is faster than subimage 
normalization in the spatial domain. This speed up ratio is 
faster than the one obtained without normalization. Simulation 
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results have confirmed theoretical computations by using 
MATLAB. The proposed approach can be applied to detect 
the presence/absence of any other object in an image. 

APPENDIX “A” 

AN EXAMPLE PROVES THAT THE CROSS CORRELATION 
BETWEEN ANY TWO MATRICES IS NOT COMMUTATIVE 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and   ,Let  

Then, the cross correlation between X and W can be obtained 
as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73
15

89
56

XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635
7916783915563855

19591858
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315
6911849
95340

 

On the other hand, the cross correlation the cross correlation 
between W and X can be computed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
56

73
15

WX  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85819591
8355879351659761

53576367
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40539
4911869
155342

 

which proves that X⊗W ≠ W⊗X.  

Also, when one of the two matrices is symmetric the cross 
correlation between the two matrices is non commutative as 
shown in the following example: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
53
35

X and,Let  

Then, the cross correlation between X and W can be obtained 
as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

89
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WX  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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××+××
=
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
4911263
154330

 

On the other hand, the cross correlation the cross correlation 
between W and X can be computed as follows: 

 

⎥
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⎤
⎢
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⎡
⊗⎥

⎦

⎤
⎢
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⎡
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⎥
⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

304315
6311249
276940

 

 
which proves that X⊗W ≠ W⊗X.  
 
The cross correlation between any two matrices is 
commutative only when the two matrices are symmetric as 
shown in the following example.  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
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W
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X and,Let  

Then, the cross correlation between X and W can be obtained 
as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
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⎢
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⎥
⎥
⎥
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⎡
=

406927
6912269
276940

 

 

On the other hand, the cross correlation between W and X can 
be computed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
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⎡
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⎡
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which proves that the cross correlation is commutative       
(X⊗W = W⊗X) only under the condition when the two 
matrices X and W are symmetric.  

APPENDIX “B” 

AN EXAMPLE PROVES THAT THE CROSS CORRELATION 
BETWEEN ANY TWO MATRICES IS DIFFERENT FROM THEIR 

CONVOLUTION 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

Wand   ,XLet
73
15

,  

the result of their cross correlation can be computed as 
illustrated from the previous example (first result ) in appendix 
"A". The convolution between W and X can be obtained as 
follows: 
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 which proves that W⊗X ≠ W◊X.  

When the second matrix W is symmetric, the cross correlation 
between W and X can be computed as follows: 
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while the convolution can be between W and X can be 
obtained as follows: 
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9
  

which proves that under the condition that the second matrix is 
symmetric (or the two matrices are symmetric) the cross 
correlation between any the two matrices equals to their 
convolution. 

 

APPENDIX “C” 

A CROSS CORRELATION EXAMPLE  BETWEEN A NORMALIZED 
MATRIX AND OTHER NON-NORMALIZED ONE AND VISE VERSA 
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⎥
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     Now, the cross correlation between a normalized matrix 
and the other non-normalized one can be computed as follows: 
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which means that WXWX ⊗≠⊗ . 
 
 
     However, the two results are equal only at the center 
element which equals to the dot product between the two 
matrices. The value of the center element (2,2) =6 as shown 
above and also in appendix "D". 

APPENDIX “D” 

A DOT PRODUCT EXAMPLE  BETWEEN A NORMALIZED MATRIX 
AND OTHER NON-NORMALIZED ONE AND VISE VERSA 

 
 
     This is to validate the correctness of Eq. (51). The left hand 
side of Eq. 51 can be expresseded as follows: 
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and also the right hand side of the same can be repressented 
as:  
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     By substituting from Eq.(60) in Eq.(58) and Eq.(59), then 
simplifying the results we can easily conclude that 

iWrcXiWrcX •=• . 

     Here is also a practical example:  
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     Now, the dot product between a normalized matrix and the 
other non-normalized one can be performed as follows: 
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which means generally that the dot product between a 
normalized matrix X and non-normalized matrix W equals to 
the dot product between the normalized matrix W and         
non-normalized matrix X. On the other hand, the cross 
correlation results are different as proved in appendix "C". 
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Fig. 1 The speed up ratio for images decomposed into different in size sub-images (L) 
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Fig. 2 A comparison between the number of computation steps required by FNN before and after Image decomposition 
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Fig. 3 The speed up ratio in case of image decomposition and different window size (n), (L=25x25) 
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TABLE  I 
 THE THEORETICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES 

Image size Speed up 
ratio (n=20) 

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 
1100x1100 3.62 5.60 7.99 
1200x1200 3.58 5.55 7.93 
1300x1300 3.55 5.51 7.93 
1400x1400 3.53 5.47 7.82 
1500x1500 3.50 5.43 7.77 
1600x1600 3.48 5.43 7.72 
1700x1700 3.45 5.37 7.68 
1800x1800 3.43 5.34 7.64 
1900x1900 3.41 5.31 7.60 
2000x2000 3.40 5.28 7.56  

TABLE II 
PRACTICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES USING 

MATLAB VER 5.3 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25  

 
 
 
 

TABLE III 
A COMPARISON BETWEEN THE NUMBER OF MULTIPLICATION STEPS 

REQUIRED FOR CONVENTIONAL AND FASTER NEURAL NETS TO 
MANIPULATE IMAGES WITH DIFFERENT SIZES (n=20, q=30) 

.Image size Conventional 
Neural Nets 

Faster Neural 
Nets 

Speed up 
ratio (ηm)

100x100 7.8732e+007 2.6117e+007 3.0146 
200x200 3.9313e+008 1.1911e+008 3.3007 
300x300 9.4753e+008 2.8726e+008 3.2985 
400x400 1.7419e+009 5.3498e+008 3.2560 
500x500 2.7763e+009 8.6537e+008 3.2083 
600x600 4.0507e+009 1.2808e+009 3.1627 
700x700 5.5651e+009 1.7832e+009 3.1209 
800x800 7.3195e+009 2.3742e+009 3.0830 
900x900 9.3139e+009 3.0552e+009 3.0486 

1000x1000 1.1548e+010 3.8275e+009 3.0172 
1100x1100 1.4023e+010 4.6921e+009 2.9886 
1200x1200 1.6737e+010 5.6502e+009 2.9622 
1300x1300 1.9692e+010 6.7026e+009 2.9379 
1400x1400 2.2886e+010 7.8501e+009 2.9154 
1500x1500 2.6320e+010 9.0935e+009 2.8944 
1600x1600 2.9995e+010 1.0434e+010 2.8748 
1700x1700 3.3909e+010 1.1871e+010 2.8564 
1800x1800 3.8064e+010 1.3407e+010 2.8392 
1900x1900 4.2458e+010 1.5041e+010 2.8229 
2000x2000 7.8732e+007 2.6117e+007 3.0146  

TABLE IV 
THE THEORETICAL SPEED UP RATIO FOR THE GENERAL FASTER CROSS 

CORRELATION ALGORITHM 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 5.59 8.73 12.58 
200x200 4.89 7.64 11.01 
300x300 4.56 7.12 10.26 
400x400 4.35 6.80 9.79 
500x500 4.20 6.56 9.45 
600x600 4.08 6.38 9.20 
700x700 3.99 6.24 8.99 
800x800 3.91 6.12 8.81 
900x900 3.85 6.02 8.67 

1000x1000 3.79 5.93 8.54 
1100x1100 3.74 5.85 8.43 
1200x1200 3.70 5.78 8.33 
1300x1300 3.66 5.72 8.24 
1400x1400 3.62 5.66 8.16 
1500x1500 3.59 5.61 8.08 
1600x1600 3.56 5.57 8.02 
1700x1700 3.53 5.52 7.95 
1800x1800 3.50 5.48 7.89 
1900x1900 3.48 5.44 7.84 
2000x2000 3.46 5.41 7.79  
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TABLE V 
SIMULATION RESULTS OF THE SPEED UP RATIO FOR THE GENERAL FASTER 

CROSS CORRELATION COMPARED WITH THE MATLAB CROSS 
CORRELATION FUNCTION (XCORR2) 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 10.14  13.05   16.49  
200x200 9.17  11.92  14.33   
300x300 8.25  10.83  13.41  
400x400 7.91  9.62  12.65  
500x500 6.77  9.24  11.77  
600x600 6.46  8.89  11.19  
700x700 5.99  8.47  10.96  
800x800 5.48  8.74  10.32  
900x900 5.31  8.43  10.66  

1000x1000 5.91  8.66  10.51  
1100x1100 5.77 8.61 10.46 
1200x1200 5.68 8.56 10.40 
1300x1300 5.62 8.52 10.35 
1400x1400 5.58 8.47 10.31 
1500x1500 5.54 8.43 10.26 
1600x1600 5.50 8.39 10.22 
1700x1700 5.46 8.33 10.18 
1800x1800 5.42 8.28 10.14 
1900x1900 5.38 8.24 10.10 
2000x2000 5.34 8.20 10.06  

TABLE VI 
 THE NUMBER OF COMPUTATION STEPS REQUIRED BY FASTER NEURAL 
NETWORKS (FNN) FOR IMAGES OF SIZES (25X25 - 1000X1000 PIXELS), 

q=30, n=20 

Image size No. of computation steps in case 
of using FNN 

25x25 1.9085e+006 
50x50 9.1949e+006 

100x100 4.2916e+007 
150x150 1.0460e+008 
200x200 1.9610e+008 
250x250 3.1868e+008 
300x300 4.7335e+008 
350x350 6.6091e+008 
400x400 8.8203e+008 
450x450 1.1373e+009 
500x500 1.4273e+009 
550x550 1.7524e+009 
600x600 2.1130e+009 
650x650 2.5096e+009 
700x700 2.9426e+009 
750x750 3.4121e+009 
800x800 3.9186e+009 
850x850 4.4622e+009 
900x900 5.0434e+009 
950x950 5.6623e+009 

1000x1000 6.3191e+009  

 
 

TABLE VII 
THE NUMBER OF COMPUTATION STEPS REQUIRED BY FNN FOR IMAGES OF 

SIZES (1050X1050 - 2000X2000 PIXELS), q=30, n=20 

Image size No. of computation steps in case 
of using FNN 

1050x1050 7.0142e+009 
1100x1100 7.7476e+009 
1150x1150 8.5197e+009 
1200x1200 9.3306e+009 
1250x1250 1.0180e+010 
1300x1300 1.1070e+010 
1350x1350 1.1998e+010 
1400x1400 1.2966e+010 
1450x1450 1.3973e+010 
1500x1500 1.5021e+010 
1550x1550 1.6108e+010 
1600x1600 1.7236e+010 
1650x1650 1.8404e+010 
1700x1700 1.9612e+010 
1750x1750 2.0861e+010 
1800x1800 2.2150e+010 
1850x1850 2.3480e+010 
1900x1900 2.4851e+010 
1950x1950 2.6263e+010 
2000x2000 2.7716e+010 
2050x2050 2.9211e+010  

TABLE  VIII 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 
DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF 

DIFFERENT SIZES (FROM N=50 TO N=1000, n=25, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
50x50 2.7568 5.0713 

100x100 5.0439 12.4622 
150x150 5.6873 15.6601 
200x200 5.9190 17.3611 
250x250 6.0055 18.4073 
300x300 6.0301 19.1136 
350x350 6.0254 19.6218 
400x400 6.0059 20.0047 
450x450 5.9790 20.3034 
500x500 5.9483 20.5430 
550x550 5.9160 20.7394 
600x600 5.8833 20.9032 
650x650 5.8509 21.0419 
700x700 5.8191 21.1610 
750x750 5.7881 21.2642 
800x800 5.7581 21.3546 
850x850 5.7292 21.4344 
900x900 5.7013 21.5054 
950x950 5.6744 21.5689 

1000x1000 5.6484 21.6260  
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TABLE IX 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 

DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF 
DIFFERENT SIZES (FROM N=1050 TO N=2000, n=25, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
1050x1050 5.6234 21.6778 
1100x1100 5.5994 21.7248 
1150x1150 5.5762 21.7678 
1200x1200 5.5538 21.8072 
1250x1250 5.5322 21.8434 
1300x1300 5.5113 21.8769 
1350x1350 5.4912 21.9079 
1400x1400 5.4717 21.9366 
1450x1450 5.4528 21.9634 
1500x1500 5.4345 21.9884 
1550x1550 5.4168 22.0118 
1600x1600 5.3996 22.0338 
1650x1650 5.3830 22.0544 
1700x1700 5.3668 22.0738 
1750x1750 5.3511 22.0921 
1800x1800 5.3358 22.1094 
1850x1850 5.3209 22.1257 
1900x1900 5.3064 22.1412 
1950x1950 5.2923 22.1559 
2000x2000 5.2786 22.1699  

TABLE  X 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER MATRIX 

DECOMPOSITION INTO SUB-MATRICES (25X25 ELEMENTS) FOR VERY LARGE 
MATRICES (FROM N=100000 TO N=2000000, n=25, q=30) 

Matrix size 

 

Speed up ratio 
in case of 

using FNN 

Speed up ratio in case 
of using FNN after 

matrix decomposition
100000x100000 3.6109 22.7038 
200000x200000 3.4112 22.7092 
300000x300000 3.3041 22.7110 
400000x400000 3.2320 22.7119 
500000x500000 3.1783 22.7125 
600000x600000 3.1357 22.7128 
700000x700000 3.1005 22.7131 
800000x800000 3.0707 22.7133 
900000x900000 3.0448 22.7134 

1000000x1000000 3.0221 22.7136 
1100000x1100000 3.0018 22.7137 
1200000x1200000 2.9835 22.7138 
1300000x1300000 2.9668 22.7138 
1400000x1400000 2.9516 22.7139 
1500000x1500000 2.9376 22.7139 
1600000x1600000 2.9245 22.7140 
1700000x1700000 2.9124 22.7140 
1800000x1800000 2.9011 22.7141 
1900000x1900000 2.8904 22.7141 
2000000x2000000 2.8804 22.7141 

 
 

TABLE XI 
THE PRACTICAL SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER 
IMAGE DECOMPOSITION INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF 

DIFFERENT SIZES (FROM N=100 TO N=2000, n=25, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
100x100 10.75 34.55  
200x200 9.19 35.65   
300x300 8.43 36.73  
400x400 7.45 37.70  
500x500 7.13 38.66  
600x600 6.97 39.61  
700x700 6.83 40.56  
800x800 6.68 41.47  
900x900 6.79 42.39  

1000x1000 6.59 43.28  
1100x1100 6.66 44.14 
1200x1200 6.62 44.95 
1300x1300 6.57 45.71 
1400x1400 6.53 46.44 
1500x1500 6.49 47.13 
1600x1600 6.45 47.70 
1700x1700 6.41 48.19 
1800x1800 6.38 48.68 
1900x1900 6.35 49.09 
2000x2000 6.31 49.45  

TABLE XII 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF DIFFERENT 
SIZES (FROM N=50 TO N=1000, n=5, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
50x50 0.3361 1.3282 

100x100 0.3141 1.4543 
150x150 0.2985 1.4965 
200x200 0.2872 1.5177 
250x250 0.2785 1.5303 
300x300 0.2716 1.5388 
350x350 0.2658 1.5448 
400x400 0.2610 1.5493 
450x450 0.2568 1.5529 
500x500 0.2531 1.5557 
550x550 0.2498 1.5580 
600x600 0.2469 1.5599 
650x650 0.2442 1.5615 
700x700 0.2418 1.5629 
750x750 0.2396 1.5641 
800x800 0.2375 1.5652 
850x850 0.2356 1.5661 
900x900 0.2339 1.5669 
950x950 0.2322 1.5677 

1000x1000 0.2306 1.5683  
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TABLE XIII 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF DIFFERENT 
SIZES (FROM N=1050 TO N=2000, n=5, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
1050x1050 0.2292 1.5689 
1100x1100 0.2278 1.5695 
1150x1150 0.2265 1.5700 
1200x1200 0.2253 1.5704 
1250x1250 0.2241 1.5709 
1300x1300 0.2230 1.5713 
1350x1350 0.2219 1.5716 
1400x1400 0.2209 1.5720 
1450x1450 0.2199 1.5723 
1500x1500 0.2189 1.5726 
1550x1550 0.2180 1.5728 
1600x1600 0.2172 1.5731 
1650x1650 0.2163 1.5733 
1700x1700 0.2155 1.5735 
1750x1750 0.2148 1.5738 
1800x1800 0.2140 1.5740 
1850x1850 0.2133 1.5742 
1900x1900 0.2126 1.5743 
1950x1950 0.2119 1.5745 
2000x2000 0.2112 1.5747  

TABLE XIV 
THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 

DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF 
DIFFERENT SIZES (FROM N=50 TO N=1000, n=10, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
50x50 1.1202 3.1369 

100x100 1.1503 3.9558 
150x150 1.1303 4.2397 
200x200 1.1063 4.3829 
250x250 1.0842 4.4691 
300x300 1.0647 4.5267 
350x350 1.0474 4.5678 
400x400 1.0321 4.5987 
450x450 1.0185 4.6228 
500x500 1.0063 4.6420 
550x550 0.9952 4.6578 
600x600 0.9851 4.6709 
650x650 0.9758 4.6820 
700x700 0.9672 4.6915 
750x750 0.9593 4.6998 
800x800 0.9519 4.7070 
850x850 0.9451 4.7133 
900x900 0.9386 4.7190 
950x950 0.9325 4.7241 

1000x1000 0.9268 4.7286  

 
TABLE XV 

THE SPEED UP RATIO IN CASE OF USING FNN AND FNN AFTER IMAGE 
DECOMPOSITION INTO SUB-IMAGES (5X5 PIXELS) FOR IMAGES OF 

DIFFERENT SIZES (FROM N=1050 TO N=2000, n=10, q=30) 

Image size Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after image 

decomposition 
1050x1050 0.9214 4.7328 
1100x1100 0.9163 4.7365 
1150x1150 0.9114 4.7399 
1200x1200 0.9068 4.7431 
1250x1250 0.9023 4.7460 
1300x1300 0.8981 4.7486 
1350x1350 0.8941 4.7511 
1400x1400 0.8902 4.7534 
1450x1450 0.8865 4.7555 
1500x1500 0.8829 4.7575 
1550x1550 0.8795 4.7594 
1600x1600 0.8762 4.7611 
1650x1650 0.8730 4.7628 
1700x1700 0.8699 4.7643 
1750x1750 0.8669 4.7658 
1800x1800 0.8640 4.7672 
1850x1850 0.8613 4.7685 
1900x1900 0.8586 4.7697 
1950x1950 0.8559 4.7709 
2000x2000 0.8534 4.7720  

 
TABLE XVI 

THE SPEED UP RATIO IN CASE OF USING FNN AFTER IMAGE DECOMPOSITION 
INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF DIFFERENT SIZES (FROM 

N=50 TO N=1000, n=25, q=30) USING 16 PARALLEL PROCESSORS OR 16 
NODES 

Image size Speed up ratio  

50x50 81.1403 
100x100 199.3946 
150x150 250.5611 
200x200 277.7780 
250x250 294.5171 
300x300 305.8174 
350x350 313.9482 
400x400 320.0748 
450x450 324.8552 
500x500 328.6882 
550x550 331.8296 
600x600 334.4509 
650x650 336.6712 
700x700 338.5758 
750x750 340.2276 
800x800 341.6738 
850x850 342.9504 
900x900 344.0856 
950x950 345.1017 

1000x1000 346.0164  
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TABLE XVII 
THE SPEED UP RATIO IN CASE OF USING FNN AFTER IMAGE DECOMPOSITION 
INTO SUB-IMAGES (25X25 PIXELS) FOR IMAGES OF DIFFERENT SIZES (FROM 
N=1050 TO N=2000, n=25, q=30) USING 16 PARALLEL PROCESSORS OR 16 

NODES 

Image size Speed up ratio  

1050x1050 346.8442 
1100x1100 347.5970 
1150x1150 348.2844 
1200x1200 348.9147 
1250x1250 349.4946 
1300x1300 350.0300 
1350x1350 350.5258 
1400x1400 350.9862 
1450x1450 351.4150 
1500x1500 351.8152 
1550x1550 352.1896 
1600x1600 352.5406 
1650x1650 352.8704 
1700x1700 353.1808 
1750x1750 353.4735 
1800x1800 353.7500 
1850x1850 354.0115 
1900x1900 354.2593 
1950x1950 354.4943 
2000x2000 354.7177  

TABLE XVIII 
THE SPEED UP RATIO OF THE NORMALIZATION PROCESS FOR IMAGES OF 

DIFFERENT SIZES (n =20, q =100) 

Image size Speed up ratio  

100x100 62  
200x200 328  
300x300 790  
400x400 1452  
500x500 2314 
600x600 3376  
700x700 4638  
800x800 6100  
900x900 7762  

1000x1000 9624  
1100x1100 11686 
1200x1200 13948 
1300x1300 16410 
1400x1400 19072 
1500x1500 21934 
1600x1600 24996 
1700x1700 28258 
1800x1800 31720 
1900x1900 35382 
2000x2000 39244  

 
TABLE XIX 

THEORETICAL RESULTS FOR THE SPEED UP RATIO IN CASE OF IMAGE 
NORMALIZATION BY NORMALIZING THE INPUT WEIGHTS 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.7869 5.2121 6.5532 
200x200 4.1382 6.1165 8.3167 
300x300 4.1320 6.2313 8.6531 
400x400 4.0766 6.2063 8.7031 
500x500 4.0152 6.1467 8.6684 
600x600 3.9570 6.0796 8.6054 
700x700 3.9039 6.0132 8.5334 
800x800 3.8557 5.9502 8.4603 
900x900 3.8120 5.8915 8.3891 

1000x1000 3.7723 5.8369 8.3212 
1100x1100 3.7360 5.7862 8.2568 
1200x1200 3.7027 5.7391 8.1961 
1300x1300 3.6719 5.6952 8.1389 
1400x1400 3.6434 5.6542 8.0849 
1500x1500 3.6169 5.6158 8.0340 
1600x1600 3.5922 5.5798 7.9858 
1700x1700 3.5690 5.5458 7.9403 
1800x1800 3.5472 5.5138 7.8971 
1900x1900 3.5266 5.4835 7.8560 
2000x2000 3.5072 5.4547 7.8169  

TABLE XX 
 THE THEORETICAL SPEED UP RATIO FOR IMAGES WITH DIFFERENT SIZES 

Image size Speed up 
ratio (n=20)

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30)

100x100 8.91 12.03 16.74 
200x200 7.43 10.42 15.39 
300x300 6.72 9.72 14.45 
400x400 5.99 8.61 13.59 
500x500 5.75 8.32 12.94 
600x600 5.61 8.09 11.52 
700x700 5.49 7.97 11.04 
800x800 5.41 7.83 10.74 
900x900 5.32 7.71 10.56 

1000x1000 5.29 7.58 10.45 
1100x1100 5.41 7.83 10.81 
1200x1200 5.36 7.77 10.76 
1300x1300 5.32 7.71 10.71 
1400x1400 5.28 7.65 10.66 
1500x1500 5.24 7.60 10.62 
1600x1600 5.21 7.56 10.58 
1700x1700 5.18 7.52 10.52 
1800x1800 5.14 7.48 10.47 
1900x1900 5.11 7.44 10.43 
2000x2000 5.08 7.41 10.38  

 
 

 


