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Abstract—The main aim of this study is to describe and 

introduce a method of numerical analysis in obtaining approximate 

solutions for the SIR-SI differential equations (susceptible-infective-

recovered for human populations; susceptible-infective for vector 

populations) that represent a model for dengue disease transmission. 

Firstly, we describe the ordinary differential equations for the SIR-SI 

disease transmission models. Then, we introduce the numerical 

analysis of solutions of this continuous time, discrete space SIR-SI 

model by simplifying the continuous time scale to a densely 

populated, discrete time scale. This is followed by the application of 

this numerical analysis of solutions of the SIR-SI differential 

equations to the estimation of relative risk using continuous time, 

discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we 

present the results of the analysis, comparing and displaying the 

results in graphs, table and maps. Results of the numerical analysis of 

solutions that we implemented offers a useful and potentially superior 

model for estimating relative risks based on continuous time, discrete 

space data for vector borne infectious diseases specifically for dengue 

disease. 

 

Keywords—Dengue disease, disease mapping, numerical 

analysis, SIR-SI differential equations.  

I. INTRODUCTION 

HIS paper discusses and explains about the development 

of continuous time and discrete space stochastic SIR-SI 

models for dengue disease transmission. First, we describe 

relevant forms of ordinary differential equations, which are 

commonly used in the analysis of variables that change 

continuously with respect to time. Here, we present ordinary 

differential equations that specifically apply to infectious 

disease modeling, again in the particular context of dengue 

disease, based on the compartmental SIR-SI model presented 

in Fig. 1.  

This is followed by methods of numerical analysis to obtain 

approximate solutions of these differential equations that 

represent a SIR-SI model of dengue disease transmission. 
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These involve approximating the continuous time scale as 

discrete for these differential equations in order to calculate 

numerical solutions. The results of the numerical analysis 

provide us with useful information about the Susceptible, 

Infective and Recovered human populations, and the 

Susceptible and Infective vector populations. We demonstrate 

these results using dengue data from Malaysia.  

II.  DIFFERENTIAL EQUATIONS FOR SIR-SI MODEL OF DENGUE 

DISEASE TRANSMISSION 

In the study of dengue disease transmission model, the most 

common compartmental model used is as displayed in the 

following Fig. 1. This model is adapted from [1] and [2] by 

[3].  

In this study, for Mi ,,2,1 …= study regions, and 

Tj ,,2,1 …=  time periods, each notation showed in Fig. 1 is 

defined as follows.  
)(

,

h

jiS  : total number of susceptible humans at time j   

)(

,

h

jiI  : total number of infective humans at time j   

)(

,

h

jiR  : total number of recovered humans at time j 

)(

,

v

jiS  : total number of susceptible mosquitoes at time j 

)(

,

v

jiI  : total number of infective mosquitoes at time j 

)(hµ  : birth and death rates of humans per day (assumed equal) 

)(vµ : birth and death rates of mosquitoes per day (assumed 

equal) 
)(hγ  : rate at which humans recover per day 

b  : biting rate per day  

m  : number of alternative hosts available as the blood source   

A  : constant recruitment rate for the mosquito vector 
)(hβ : the transmission probability from mosquitoes to humans 

)(vβ : the transmission probability from humans to mosquitoes 

)(h

iN : the human population size for the study region i  

)(v

iN : the mosquito population size for the study region i 
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Fig. 1 Compartmental SIR-SI model for dengue disease transmission 

 

For intervals over the continuous time scale indexed by t, 

the compartmental SIR-SI model for dengue disease 

transmission shown in Fig. 1 can also be written 

mathematically as a system of ordinary differential equations, 

as time is the only independent variable in this context.  

Therefore, the differential equations for dengue disease 

transmission in human populations based on Fig. 1 are as 

follows: 

 

( ) )()()/()()( )( )()()()()()()()()( tStImNbtSNtS hvhhhhhhh +−−=′ βµµ       (1) 

 

 ( ) )()()()()/()()(
)()()()()()()()()(

tItItStImNbtI
hhhhhvhhh γµβ −−+=′  (2) 

 

)()()(
)()()()()(

tRtItR
hhhhh µγ −=′        (3) 

 

Similarly, the differential equations for dengue disease 

transmission in vector populations are as follows: 

 

( ) )()()/()()()( )()()()()()()()()( tStImNbtSNtS vhhvvvvvv +−−=′ βµµ

   

(4) 

 

( ) )()()()/()()( )()()()()()()( tItStImNbtI vvvhhvv µβ −+=′      (5) 

 

It is clear, because of the existence of products of functions, 

that this system of differential equations is nonlinear. As it 

involves five such equations, this system is very difficult to 

solve analytically, whereas analytic solution of a system of 

linear ordinary differential equations would be relatively 

straightforward. Many references point out that nonlinear 

system such as this can usually be solved only by performing 

numerical analysis with computer programming or by studying 

the asymptotic behavior of solutions as approximations to the 

actual solutions (for example as explained in [4]). The next 

section discusses how to solve these equations using numerical 

analysis with the help of computer software. 

 

III. NUMERICAL ANALYSIS OF SOLUTIONS OF THE SIR-SI 

DIFFERENTIAL EQUATIONS 

In this study, we develop computer programming to perform 

numerical analysis as a means of determining solutions of 

complicated systems of nonlinear ordinary differential 

equations such as those in (1) to (5). Many researchers have 

used various types of computer software to help them with the 

numerical analysis of differential equations in the context of 

disease modeling. For instance, [5] used Maple software to 

solve the system of differential equations in her study on 

vector-host models for epidemics, whilst others have used 

Mathematica software to solve similar complicated differential 

equations. For the purpose of this research, we choose to use 

WinBUGS software for the analysis because it has a natural 

iterative logic and readily enables us to include prior 

distributions for Bayesian analysis. WinBUGS software is a 

package designed to carry out Markov chain Monte Carlo 

(MCMC) computations for a wide variety of Bayesian models. 

Details explanation about this free software is discussed in [6]. 

While, a discussion and application of Bayesian analysis of 

disease mapping using this software can be found in [7]. 

In this section, we consider methods of numerical analysis 

for calculating solutions to our continuous time, discrete space 

SIR-SI model. In particular, we simplify the continuous time 

scale to a densely populated, discrete time scale. Although 

fundamentally different in nature and scale, this approach 

effectively reduces our continuous time, discrete space model 

to a similar form as the discrete time, discrete space SIR-SI 

models as introduced by [3]. We now adopt this approach to 

solve the system of nonlinear differential equations explained 

previously. 

Therefore, for Mi ,,2,1 …=  study regions, and 

Tj ,,2,1 …= time periods, the deterministic continuous time, 

discrete space SIR-SI model for dengue disease transmission 

in human populations reduces to this set of difference 

equations: 
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Similarly, the deterministic model for dengue disease 

transmission in vector populations reduces to this set of 

difference equations: 
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All these five difference equations are given as (1) to (5) in 

[3]. 

Following on from the above deterministic model, our 

continuous time, discrete space, stochastic SIR-SI model for 

dengue disease transmission in human populations reduces to 

this set of stochastic difference equations: 
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However, the continuous time, discrete space SIR-SI model 

for dengue disease transmission in vector populations is 

assumed to be non-stochastic: 
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The stochastic difference equations above are given as (6) 

to (14) in [3]. 

As in our previous analysis in [3], a stochastic element is 

assigned to the deterministic number of new infective humans 
)(hℑ . The main stochastic element is the spatial random effect 
)(h

ic , which has a spatial prior distribution to allow for 

dependency between adjacent regions. This is because spatial 

random variation is an important element in any analysis 

involving geographical regions.  

The continuous time, discrete space, stochastic SIR-SI 

model for dengue disease transmission that we analyzed here is 

next used in Section IV for our development of a method to 

estimate relative risks. This subsequently enables us to achieve 

our main purpose of mapping indirect diseases such as dengue.  

IV. RELATIVE RISK ESTIMATION OF DENGUE DISEASE 

MAPPING 

The relative risk estimation method used in this study is 

based on method proposed by [3]. In general, for 

Mi ,,2,1 …= study regions and  Tj ,,2,1 …=  time periods, 

the posterior expected relative risk can be approximated using 

an unbiased sample mean 
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Here, )(~ h

ijλ represents posterior expected mean number of 

infective, and )(h

ije  represents expected number of new 

infective cases. This relative risk equation is given as (17) in 

study by [3]. 

In this analysis, relative risk is defined to be the conditional 

probability that a person within the region contracts the disease 

divided by the conditional probability that a person in the 

population contracts the disease. In this context, we condition 

upon no infection thus far. 

A value for the relative risk close to 1 means that there is no 

real difference between the conditional probability that a 

person within the specific region contracts the disease 

compared to the conditional probability that a person in the 

general population contracts the disease. In other words, there 

is no real difference in terms of the likelihoods that people 

become infected by dengue virus within a region and within 

the whole population. If the value of relative risk increases 

above 1, then this indicates that people within the region are 

more likely to contract the disease compared with people in 

the population. Conversely, a value of relative risk below 1 

shows a decrease in likelihood of contracting the disease, 

which means that people within the region are less likely to 

contract the disease compared with people in the population. 

This formulation is utilized in the estimation of relative risk 

for disease mapping, based on the continuous time, discrete 

space, stochastic SIR-SI model as discussed in Section III 

using data for all tracts under consideration.  

V. APPLICATION OF NUMERICAL ANALYSIS OF SOLUTIONS FOR 

THE SIR-SI MODEL TO DENGUE DISEASE MAPPING 

This section demonstrates and discusses our extension of the 

SIR-SI model of dengue disease transmission that is applicable 

for the analysis of continuous time, discrete space data and the 

subsequent estimation of relative risk. In this analysis, we 

focus on dengue disease for illustration and the application of 
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the numerical analysis as the approximate method of solving 

the systems of ordinary differential equations. 

In this application, the analysis of daily dengue data is based 

on a numerical analysis of the continuous time, discrete space, 

stochastic SIR-SI model for dengue disease transmission. 

A. The Data Set 

A different set of data was available for this analysis, 

specifically relating to case-event data for infective dengue 

cases in the human population, and was provided by the 

Department of Health, Kuala Lumpur. Other data used in this 

analysis were provided by the Ministry of Health, the Institute 

for Medical Research and the Department of Statistics, all in 

Malaysia. 

In this analysis, dengue data refer to observed new infective 

dengue cases of humans, which were observed continuously 

every day from 1st January 2009 to 31st December 2009 

within six health administration zones in Kuala Lumpur, 

Malaysia. These health administration zones specified by the 

Ministry of Health are City Centre, Kepong, Setapak, Cheras, 

Klang Lama and Damansara.  

For the SIR-SI model of dengue disease transmission, the 

values for 
)(hβ and 

)(vβ  are 0.50 and 0.75, respectively. 

Whilst, the number of alternative hosts available as the blood 

source  m  is assumed zero and the recruitment rate of the 

mosquito population, A, is assumed to be 5,000 per day, as 

suggested by [1] and [3]. The daily rates used in this analysis 

are 

 

0000391.0)( =h

Dµ , 071.0)( =v

Dµ ,  2.0)( =h

Dγ  and 33.0=Db  

 

Furthermore, based on the Malaysian Census 2000, the 

human population size, )(hN , for the state of Kuala Lumpur is 

1,379,310. However, data for human population sizes in 

individual health administrative zones are not available. 

According to the Department of Health, there are several types 

of division in the state of Kuala Lumpur and most of them 

divide the city differently, such as divisions based on 

parliamentary constituencies and council administration.  

Parliamentary constituencies division includes 11 areas, 

which are Bandar Tun Razak, Batu, Bukit Bintang, Cheras, 

Kepong, Lembah Pantai, Segambut, Seputih, Setiawangsa, 

Titiwangsa and Wangsa Maju. However, council 

administration uses what is known as the Dewan Bandaraya 

Kuala Lumpur (DBKL) division and splits Kuala Lumpur into 

9 areas, which are Damansara, Seputeh, Segambut, Kepong, 

Wangsa Maju, City Centre, Setiawangsa, Bandar Tun Razak 

and Sungai Besi. Moreover, according to [8], there are no 

clear boundary limits within the urban area of Kuala Lumpur. 

Most of the boundaries shown in maps are approximate, 

though some divisions use major highways as boundaries.  

As a result, data for the human population size for each area 

are difficult to identify since there might be overlapping 

regions in terms of total human populations between adjacent 

areas or divisions. For simplicity and in order to demonstrate 

our models and analyses in practice, all divisions or zones in 

this section are assumed to have equal human population size. 

Therefore,  .885,229)(

6

)(

2

)(

1 ==== hhh NNN …
 

VI. RESULTS  

This section demonstrates and displays the results of a 

numerical analysis of continuous time, discrete space data to 

obtain solutions to the stochastic SIR-SI model of dengue 

disease transmission with application to relative risk 

estimation. This subsequently generates more accurate 

estimates of relative risk for dengue disease mapping. As 

previously mentioned, the continuous time, discrete space, 

stochastic SIR-SI model has the same form as the discrete 

time, discrete space, stochastic SIR-SI model except that is 

defined in terms of differential equations rather than difference 

equations. However, the need to use a discrete approximation 

to the continuous model to enable numerical analysis 

effectively results in the same formulation for both types of 

data. Nevertheless, the time periods involved differ 

substantially and so the continuous model formulation is able 

to retain much more information that is contained in the data, 

than is the discrete model formulation. 

Furthermore, similar to our analysis of discrete time, 

discrete space data in [3], this analysis requires us to make the 

same four assumptions for imputed mosquito populations. This 

imputation is discussed next. 

A. Estimation of Vector Mosquito Populations 

Possible estimation of vector mosquito populations includes 

two simple methods, which are estimation based on seasonal 

averages reported in relevant journal publications written by 

[9] and [10], and estimation based on propagation of the 

discrete time, discrete space stochastic SIR-SI model for 

dengue disease transmission, where the starting values are set 

and the estimation propagates from the SIR-SI equations.  

1. Estimation of Vector Mosquito Populations Based On 

Seasonal Averages 

Figs. 2-4 display time series plots for imputed infective 

mosquitoes without seasonality (Assumption 1), with 

piecewise constant seasonality (Assumption 2) and with 

sinusoidal seasonality (Assumption 3), for six zones according 

to the health administrative division of Kuala Lumpur for the 

year 2009. Notice that all six traces are identical in each of 

these three graphs. 

 

 

Fig. 2 Time series plot for imputed infective mosquitoes without 

seasonality for six zones in Kuala Lumpur 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1195

 

In this analysis, since we assumed that each zone has the 

same size of human population, then all six zones will have the 

same average number of imputed infective mosquitoes, which 

will then be used as an initial value in the estimation of 

infective mosquito population using four different 

assumptions. However, the pattern of the imputed infective 

mosquito population between time periods varies according to 

the three assumptions that are made.  

In Assumption 1, the imputed infective mosquitoes are 

constant and equal for all six zones throughout all time 

periods, while in Assumption 2 the imputed infective 

mosquitoes are equal for all six zones but have a piecewise 

constant pattern throughout all time periods. In Assumption 3, 

the imputed infective mosquitoes are equal for all six zones 

but have a sinusoidal pattern throughout all time periods. 

 

 

Fig. 3 Time series plot for imputed infective mosquitoes with 

piecewise constant seasonality for six zones in Kuala Lumpur 

 

 

Fig. 4 Time series plot for imputed infective mosquitoes with 

sinusoidal seasonality for six zones in Kuala Lumpur 

 

These three alternative assumptions for mosquito data are 

then imputed in the continuous time, discrete space, stochastic 

SIR-SI model for dengue disease transmission for all six zones 

of Kuala Lumpur. Subsequently, we can use this model to 

estimate the relative risks using posterior expectations, for 

dengue disease mapping in the state of Kuala Lumpur for the 

year 2009.   

2. Estimation of Vector Mosquito Populations Based On 

Propagation 

Fig. 5 depicts the time series plots for imputed infective 

mosquitoes based on propagation (Assumption 4) for six 

health administration zones of Kuala Lumpur during the year 

2009. 
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Fig. 5 Time series plot for imputed infective mosquitoes based on 

propagation for six health administration zones in Kuala Lumpur 

 

From Fig. 5, it can be seen that the imputed numbers of 

infective mosquitoes using Assumption 4 vary slightly across 

all six health administrative zones based on daily time periods 

and are projected to decline rapidly. This is different from the 

pattern of imputed infective mosquitoes using Assumptions 1-

3. The reason is probably because of; Assumption 4 did not 

assume seasonal patterns of dengue outbreak coincide with the 

rainy season compared to other assumptions. However, all 

zones have similar patterns of imputed infective mosquitoes 

across all daily time periods.  

For further illustration of the information provided by this 

analysis, we now present graphs of the estimated values of 

susceptible, infective and recovered human populations, and 

susceptible and infective mosquito populations, respectively, 

in the City Centre zone of Kuala Lumpur using Assumption 4. 

These time series plots are displayed in Fig. 6. 
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Fig. 6 Time series plots of fitted values of susceptible, infective and recovered human populations and susceptible and infective vector 

mosquito populations in the City Centre zone using Assumption 4 

 

B. Comparison of Posterior Expected Relative Risks for 

Four Different Estimation Methods of the Vector Mosquito 

Population 

The model in this analysis is posterior sampled and is run to 

convergence using WinBUGS software. Figs. 7-9 and 16 

respectively illustrate time series plots for the posterior 

expected relative risk based on our continuous time, discrete 

space, stochastic SIR-SI model of dengue disease transmission 

from 1st January to 31st December 2009 across all six health 

administrative zones of Kuala Lumpur, using Assumptions 1-

4. 

 

 

Fig. 7 Time series plots of posterior expected relative risk based on 

the continuous time, discrete space, stochastic SIR-SI model for 

dengue disease transmission using Assumption 1 

 

 

Fig. 8 Time series plots of posterior expected relative risk based on 

the continuous time, discrete space, stochastic SIR-SI model for 

dengue disease transmission using Assumption 2 

 

 

Fig. 9 Time series plots of posterior expected relative risk based on 

the continuous time, discrete space, stochastic SIR-SI model for 

dengue disease transmission using Assumption 3 

 

Figs. 7-9 clearly indicate that the values for posterior 

expected relative risk using Assumptions 1-3 are almost 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1197

constant throughout the daily time periods for all zones. 

However, they are actually not exactly constant, but fluctuate 

among small ranges of values which cannot be seen when all 

six zones are presented in one graph. For example, Fig. 10 to 

15 show more detail of the posterior expected relative risk for 

each zone separately using Assumption 2. 

 

 

Fig. 10 Time series plot of posterior expected relative risk for City 

Centre 

 

 

Fig. 11 Time series plot of posterior expected relative risk for 

Kepong 
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Fig. 12 Time series plot of posterior expected relative risk for 

Setapak 
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Fig. 13 Time series plot of posterior expected relative risk for Cheras 
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Fig. 14 Time series plot of posterior expected relative risk for Klang 

Lama 

 

 

Fig. 15 Time series plot of posterior expected relative risk for 

Damansara 

 

The time series plot of posterior expected relative risks for 

Cheras in Fig. 13 indicate constant values throughout all time 

periods. This is because we round off the results of our 

analysis to four significant figures, which conceals negligible 

variations over time. Another influential factor is that for the 

purposes of this demonstration, we made the reasonable 

assumption that each zone has the same size of human 

population due to unavailability of relevant data.  
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Fig. 16 Time series plots of posterior expected relative risk based on 

the continuous time, discrete space, stochastic SIR-SI model for 

dengue disease transmission using Assumption 4 

 

As our period of study for this analysis is only one year, it is 

entirely reasonable that the relative risks portrayed in Figs. 7-9 

should remain almost constant over this period of time. 

However, unlike the posterior expected relative risks shown in 

those graphs, the posterior expected relative risks shown in the 

time series plots of Fig. 16 display considerable variability of 

values among zones and time periods under Assumption 4, 
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which corresponds to iterative propagation of mosquito 

population counts. 

From all four of these time series plots, we conclude that 

people in the zone of Setapak had the highest risk in 

contracting dengue, while people in the zone of Damansara 

had the lowest risk in contracting dengue, during the year 

2009. People in the zones of City Centre, Kepong, Cheras and 

Klang Lama were indicated to have approximately medium 

risk with posterior expected relative risk close to one.  

The seasonality and non-seasonality assumptions 

corresponding to Figs. 2-5 provide a reasonable variety of 

models for the sizes of mosquito populations, which 

subsequently affect the values of our posterior expected 

relative risks in the different zones as shown in Figs. 7-9 and 

16. The assumption of constancy provides a reference model 

for comparisons, whereas the seasonal models are more 

biologically plausible. This is because many studies show that 

the transmission of dengue virus by Aedes mosquitoes is 

sensitive to changes of rainfall and temperature, and such 

climatic seasonality is notable throughout Malaysia. 

The following Fig. 17 shows the time series plots of relative 

risk based on Standardized Morbidity Ratio for six zones of 

Kuala Lumpur. These plots show that the relative risk is equal 

to zero for certain days, which is the drawback of the SMR 

method. In contrast, Figs. 7-9 and 16 did not show any zero 

value of relative risk as the estimation based on our proposed 

continuous time discrete space stochastic SIR-SI model for 

dengue disease transmission can overcome the problem of 

SMR when there is no observed count in certain regions. In 

addition, it can be seen that the range of values of relative risk 

are reduced by more than 50% when using our proposed 

model compared to the SMR method. 
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Fig. 17 Time series plots of relative risk based on Standardized 

Morbidity Ratio 

 

Table I presents the deviance information criterion (DIC) 

values for posterior new infective humans in the six health 

administrative zones of Kuala Lumpur during the year 2009 

under Assumptions 1-4. In this analysis, the DIC is used as a 

goodness-of-fit measure to help find the best fitting model 

empirically, among our four different assumptions for 

imputing the unknown mosquito population. 

 
 

TABLE I 

DEVIANCE INFORMATION CRITERION FOR RELATIVE RISK ESTIMATION BASED 

ON THE CONTINUOUS TIME, DISCRETE SPACE, STOCHASTIC SIR-SI MODEL 

USING FOUR ASSUMPTIONS FOR IMPUTING THE MOSQUITO POPULATION 

 Assumption 

1 

Assumption 

2 

Assumption 

3 

Assumption 

4 

DIC 7498.09 7425.07 7526.8 10554.7 

 

From the DIC values in Table I, we deduce that the model 

with Assumption 2 fits best empirically, as it gives the smallest 

DIC compared with the other models. This leads to the 

conclusion that the continuous time, discrete space, stochastic 

SIR-SI model, which assumes that the data for infective 

mosquitoes follow a cyclical seasonal pattern with piecewise 

constant seasonality, is the best model to be used in our 

analysis aimed at estimating the relative risk for dengue 

disease mapping using daily data for the six zones of Kuala 

Lumpur during the year 2009.  

C. Maps of the Relative Risk Estimates for Dengue Disease 

Mapping in the Six Zones of Kuala Lumpur 

Fig. 18 depicts a disease map for the posterior expected 

relative risks based on our continuous time, discrete space, 

stochastic SIR-SI model for dengue disease transmission using 

Assumption 2 in the six health administrative zones of Kuala 

Lumpur on one representative day during the year 2009. 

Similar maps can be generated to represent the posterior 

expected relative risks for each day from 1st January 2009 

until 31
st 

December 2009, though they are almost identical as 

noted in the previous section. By propagating through the 

system of differential equations, approximated by difference 

equations for computational convenience, it is also possible to 

construct disease maps that can be used for short-term 

forecasting. The disease map in Fig. 18 is classified into three 

levels of relative risk, corresponding low, medium and high 

risks, with corresponding intervals [0.0,0.8), [0.8,1.2) and 

[1.2,∞) respectively. 

Fig. 18 illustrates that people in the zone of Setapak have a 

high risk of contracting dengue, while people in the zone of 

Damansara have a low risk of contracting dengue. People in 

the other four zones, Kepong, City Centre, Cheras and Klang, 

are portrayed to have a medium risk of contracting dengue. By 

definition, these categories of risk are relative to the 

corresponding risk in the general population of Kuala Lumpur. 
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Fig. 18 Disease map of posterior expected relative risks based on the 

continuous time, discrete space stochastic SIR-SI model for one 

representative day during the year 2009 

D. WinBUGS Code for Relative Risk Estimation Based On 

the Continuous Time, Discrete Space, Stochastic SIR-SI Model 

 
 model{ 

for (i in 1:M){ 

Sh[i,1]<-Nh[i]-Ih[i,1]-Rh[i,1] 

Ih[i,1]<-0.00252*Nh[i]                 

Rh[i,1]<-0.00252*Nh[i] 

} 

 

for (i in 1:M){ 

for (j in 2:T){ 

 

#HUMAN POPULATIONS 

Sh[i,j]<-(muH*Nh[i])+(1-muH)*Sh[i,j-1]-newIh[i,j] 

newIh[i,j]~dpois(lambdanewH[i,j]) 

log(lambdanewH[i,j])<-betaH0+log((betaH*b)/(Nh[i]+m))+log(Iv[i,j-

1]+0.001)+log(Sh[i,j-1]+0.001)+Ch[i] 

Ih[i,j]<-(1-muH-gamma)*Ih[i,j-1]+newIh[i,j] 

Rh[i,j]<-(1-muH)*Rh[i,j-1]+newRh[i,j] 

newRh[i,j]<-(gamma*Ih[i,j-1]) 

 

#RELATIVE RISK 

RRH[i,j]<-lambdanewH[i,j]/eH[i,j] 

}} 

 

#CAR prior distribution for random effects Ch. The sum of Ch is always 0 

Ch[1:6]~car.normal(adjH[], weightsH[], numH[], varCh) 

for (k in 1:SumNumNeighH){ 

weightsH[k]<-1} 

 

#Other priors 

betaH0~dflat()                           #Flat prior for the intercept 

varCh~dgamma(0.01,0.01)         #Prior on precision for spatial random effect Ch 

gamma<-0.2 

} 

  

Fig. 19 Continuous time, discrete space, stochastic SIR-SI model for 

Assumptions 1-3 in WinBUGS 

 

Fig. 19 displays the WinBUGS code that we developed for 

relative risk estimation based on our continuous time, discrete 

space, stochastic SIR-SI model using Assumptions 1-3 for 

imputing infective mosquito population counts. While, Fig. 20 

displays the WinBUGS code that we developed for relative 

risk estimation using Assumption 4 for imputing infective 

mosquito population counts.  

 

 model{ 

for (i in 1:M){ 

Sh[i,1]<-Nh[i]-Ih[i,1]-Rh[i,1] 

Ih[i,1]<-0.00252*Nh[i] 

 Rh[i,1]<-0.00252*Nh[i] 

Sv[i,1]<-Nv[i]-Iv[i,1] 

Iv[i,1]<-0.00252*Nv[i] 

} 

 

for (i in 1:M){ 

for (j in 2:T){ 

 

#HUMAN POPULATIONS 

Sh[i,j]<-(muH*Nh[i])+(1-muH)*Sh[i,j-1]-newIh[i,j] 

newIh[i,j]~dpois(lambdanewH[i,j]) 

log(lambdanewH[i,j])<-betaH0+log((betaH*b)/(Nh[i]+m))+log(Iv[i,j-1]+0.001)+log(Sh[i,j-

1]+0.001)+Ch[i] 

Ih[i,j]<-(1-muH-gamma)*Ih[i,j-1]+newIh[i,j] 

Rh[i,j]<-(1-muH)*Rh[i,j-1]+newRh[i,j] 

newRh[i,j]<-(gamma*Ih[i,j-1]) 

 

#MOSQUITO VECTOR POPULATIONS 

Sv[i,j]<-(muV*Nv[i])+(1-muV-((betaV*b)/(Nh[i]+m))*Ih[i,j-1])*Sv[i,j-1] 

newIv[i,j]<-((betaV*b)/(Nh[i]+m))*Ih[i,j-1]*Sv[i,j-1] 

Iv[i,j]<-(1-muV)*Iv[i,j-1]+newIv[i,j] 

#RELATIVE RISK 

#RRH[i,j]<-lambdanewH[i,j]/eH[i,j] 

}} 

 

#CAR prior distribution for random effects Ch. The sum of Ch is always 0 

Ch[1:6]~car.normal(adjH[], weightsH[], numH[], varCh) 

for (k in 1:SumNumNeighH){ 

weightsH[k]<-1} 

 

#Other priors 

betaH0~dflat()                               #Flat prior for the intercept 

varCh~dgamma(0.01,0.01)         #Prior on precision for spatial random effect Ch 

gamma<-0.2 

} 

 

Fig. 20 Continuous time, discrete space, stochastic SIR-SI model for 

Assumption 4 in WinBUGS 

VII. CONCLUSION  

In this application, we apply numerical analysis in order to 

obtain finite-time solutions, with an algorithm that uses a 

discrete time approximation to solve the continuous time 

problem. This is because the SIR-SI system of nonlinear 

ordinary differential equations could not be solved 

analytically. Therefore, these equations are transformed into 

discrete relations, which effectively change the continuous 

time, discrete space, stochastic SIR-SI model into the same 

form as the discrete time, discrete space, stochastic SIR-SI 

model described previously in [3]. In other words, the 

continuous time model is solved using the discrete algorithm, 

and the continuous time model is reduced to the discrete time 

model for calculation purposes. Based on the results of the 

analysis, it can be concluded that the numerical analysis 

described above provide useful information about solution 

methods for the nonlinear system of ordinary differential 

equations representing the SIR-SI models. The numerical 

analysis of solutions gives information about the SIR and SI 

populations, which is subsequently used in the estimation of 

relative risk. This method of solution give a clear picture on 

how this nonlinear SIR-SI system can be applied, solved and 

interpreted for continuous time, discrete space, dengue data, 

and could be use for estimating relative risks based on 

continuous time, discrete space data specifically for dengue 

disease.  

Extensions to this work include the predictions of dengue 

disease for future time period conditional upon the observed 

history such as suggested by [11]. These predictions could 

contribute to the development of prevention and control 
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strategies for dengue disease. 
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