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Abstract—In this paper the behavior of the decision feedback 

equalizers (DFEs) adapted by the decision-directed or the constant 
modulus blind algorithms is presented. An analysis of the error 
surface of the corresponding criterion cost functions is first 
developed. With the intention of avoiding the ill-convergence of the 
algorithm, the paper proposes to modify the shape of the cost 
function error surface by using a soft decision instead of the hard 
one. This was shown to reduce the influence of false decisions and to 
smooth the undesirable minima. Modified algorithms using the soft 
decision during a pseudo-training phase with an automatic switch to 
the properly tracking phase are then derived. Computer simulations 
show that these modified algorithms present better ability to avoid 
local minima than conventional ones. 
 

Keywords—Blind DFEs, decision-directed algorithm, constant 
modulus algorithm, cost function analysis, convergence analysis, soft 
decision.  

I. INTRODUCTION 
N multi-point transmission systems and in radio 
communication, the problem of channel equalization is 

particularly difficult. Indeed, these systems are characterized 
by a random user access and by a time-varying transmission 
channel [1], [2]. To satisfy utilization constraints, different 
classes of blind or self-adaptive equalization techniques, 
where training phase is avoided, are currently the purpose of 
many applied researches, so as to define for example WLAN, 
UWB or WiMAX norms. Among them, the Bussgang-type 
algorithms are initially introduced and analyzed for a 
transversal structure of the equalizer [3], [4]. This structure 
presents the disadvantage of providing limited performances 
in the case of strongly dispersive or rapidly time-varying 
channels, for what one prefers the Decision Feedback 
Equalizers (DFEs) [5], [6], [7].  

The functioning of the different blind equalization 
algorithms is in general disturbed by the existence of local 
minima, preventing a correct equalization of the transmission 
channel [8], [9]. For blind equalizers with linear transversal 
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structure, Ding et al. [10] have emphasized the false 
convergence to this type of minima. They showed that baud-
rate blind equalization algorithms might converge to 
undesirable stable equilibriums due to different reasons. One 
is the use of an FIR filter as an equalizer. The others are due 
to the cost function adopted by the blind algorithm itself, even 
implemented with double infinite equalizers.  

Indeed, to invert a channel filter of Finite Impulse Response 
(FIR), it would be necessary to use an equalizer filter of 
Infinite Impulse Response (IIR). In decision feedback 
equalization, the inversion of the FIR channel filter by a FIR 
filter equalizer becomes possible. However, despite this 
perfect modeling of the transmission channel, the error 
surfaces of the different criteria, corresponding to blind DFE 
algorithms, also present a non-convex form that can, possibly, 
present local minima [11].  

The purpose of the paper is to outline the interest of the use 
of soft decision to avoid the ill-convergence of DFEs. The soft 
decision is often used in neural networks and in 
communication techniques to reduce the effect of the error 
propagation. In this paper we give other sense to the use of the 
soft decision since it is used to modify the error surface. The 
goal is to attenuate the local minima and then to ensure the 
convergence to the desired minimum.  

The paper is organized as follows. Section 2 contains the 
system model. We point out, in Section 3, the approach used 
for the analysis of a DFE in presence of noiseless channel. In 
Section 4, the error surfaces of the decision-directed and 
constant modulus algorithm cost functions are investigated. 
We prove, in Section 5, that the use of a soft decision instead 
of the decision device during an initialization period, 
improves the performances of adaptive DFEs, avoiding ill-
convergence. Modified decision-directed and constant 
modulus algorithms achieving an automatic switch between 
the initialization phase and the properly tracking phase are the 
proposed. Finally, Computer simulations show, in Section 6, 
how the use of the soft decision improves the performances of 
the DD and the constant modulus algorithms.  

II. SYSTEM MODELING 
We here consider an equivalent discrete time baseband 

model of the digital transmission channel including the 
physical channel and the corresponding transmitter and 
receiver. Fig. 1 illustrates the system under consideration. The 
transmitted data na  are supposed independent and identically 
distributed (iid) taking, with equal probability, a finite number 
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of levels: 1 3 ( 1)± , ± , , ± −K ; where K is the number of 
levels. The signal ny  received at the output of the channel is:  

ν= + Θ + ,T
n n n ny a A                             (1) 

where ( )1 1θ θ −Θ = , , T
N , ( )1 1− − += , , T

n n n NA a a  and νn  an 
additive white Gaussian noise of zero mean and variance 2

νσ . 
This equation shows the presence of a direct path in the 
transmission channel.  

 
Fig. 1 Equivalent discrete time baseband model of the digital 
transmission channel including a decision feedback equalizer 

At the receiver, the input of the decision device is written:  
ˆˆ= − Θ ,T

n n nc y A                                 (2) 

where ( )1 1
ˆ ˆˆ θ θ −Θ = , ,

T

M , ( )1 1
ˆ ˆ ˆ− − += , , T

n n n MA a a , and 

( )ˆ =n na Q c , with 2 1

2 1
( ) sgn( 2 )/ −

=− / +
= +∑K

k K
Q x x k    ( sgn( ) 1=x  

if 0>x , sgn( ) 1= −x  if 0<x  and sgn(0) 0= ). Transmission 
attenuation is supposed recovered by the receiver.  

A more typical and indeed more general DFE structure 
usually consists of a feedforward FIR filter followed by a 
feedback FIR filter. However, in this paper, only the Feedback 
FIR filter is considered for two reasons. Firstly, in the more 
general structure it is usually possible to separate the 
adaptation of the feedforward section from the feedback one. 
Secondly, the aim of this paper is to highlight the 
performances of the feedback section when soft decision is 
used. However in Section 6, for computer simulations, the 
general form of the DFE with feedforward FIR filter will be 
considered for performance analysis. 

In adaptive equalization, the optimization of the DFE is 
usually performed during a training phase when a transmitted 
data sequence has to be known by the receiver. In blind 
equalization, the first idea was to use ˆna  instead of na  from 
the beginning of the adaptation, giving place to the Decision-
Directed (DD) criterion [4] whose cost function is given by:  

2ˆ( )⎧ ⎫
⎨ ⎬
⎩ ⎭

= − .d n nJ E a c                             (3) 

The LMS adaptive algorithm that derives from (2) and (3) 
is the following:  

ˆˆ ˆ ˆ( 1) ( ) ( )μΘ + = Θ − − .d d d n n nn n a c A               (4) 
The most famous algorithm for blind equalization is the 

Constant Modulus Algorithm (CMA), which is a special case 

of the Godard algorithm [12]. It derives from the following 
cost function:  

4
2 2

2

1 ( )
4

γ γ
⎧ ⎫
⎨ ⎬
⎩ ⎭⎧ ⎫

⎨ ⎬
⎩ ⎭ ⎧ ⎫

⎨ ⎬
⎩ ⎭

| |
= | | − , = .

| |
n

c n
n

E a
J E c

E a
              (5) 

The corresponding algorithm is:  
2 ˆˆ ˆ( 1) ( ) ( )μ γΘ + = Θ + − .c c c n n nn n c c A                  (6) 

In this paper, we limit our study to the decision-directed 
and the constant modulus algorithms and to the corresponding 
cost functions. Step sizes μd  and μc  are chosen to ensure 
algorithm convergences. 

III. PROBLEM FORMULATION 

A. Global Approach of the Error Surface Analysis 
In the context of channel equalization in the presence of 

finite alphabet signals, criteria of blind optimization applied to 
the DFEs present a multimodal error surface, having several 
minima: global minima corresponding to the desired 
functioning of the equalizer and local minima corresponding 
to undesirable one.  

To localize the points of potential convergence of the blind 
DFE, we draw one’s inspiration from the approach proposed 
in [11] and [13]. In these references, the authors establish the 
relationship between regions in parameter space 

Θ̂
D , called 

polytopes, and finite state Markov processes which 
completely specify the statistics which affect the location of 
convergence points of the blind algorithm. A partition of the 
space of the parameter vector Θ̂  in a series of polytopes 
separated by hyperplanes is presented. The objective is to 
return the global analysis of the algorithm, or the criterion in 
question, to a local analysis proper to each polytope.  

To apply this approach, we are interested first in a noiseless 
channel and in an equalizer impulse response of length 

=M N . The hyperplanes are then defined by the set:  

( ){ }ˆ
ˆˆ ˆ

Θ
= Θ : = + Θ − Θ ∈ ;T T

n n n n KD c a A A S              (7) 

with na  and ˆna  taking values in { }1 3 ( 1)± , ± , , ± −K  and 

{ }(2 ) (4 ) ( 2)= − , − , , −KS K K K .  

Each choice of 
−n ia  and ˆ −n ia  in { }1 3 ( 1)± ,± , ,± −K  and 

of nc  in: (2 ) (4 ) ( 2)− , − , , −K K K  defines a hyperplane. 
These hyperplans yield a number of manifolds, referred to as 
polytopes in [11]. In each polytope, nc  is in the same region 
of decision (i.e. ( )nQ c  takes the same value). Within each 
polytope, sequences { }na  and { }ˆna  are independent of the 

parameter vector Θ̂ .  
Thus, the interest of this partition is that each polytope 

cannot present more than one convergence point. The study of 
the convergence is then simplified by taking position each 
time into a given polytope. Finally, note that these results are 
independent of the blind criterion under study, so they are 

DFE 

yn cn an Channel 
1+Θ(z) 

Decision 
Q(.) 

Equalizer 
( )Θ̂ z  

υn 

+ 
ân 
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valid for all blind criteria especially for the DD and CMA that 
we are going to analyze in what follows.  

To make lucid the presentation of the problematic, we here 
consider the case of 2=K  ( 1= ±na ), and a noiseless 
channel and an equalizer of order 1= =N M  (we note 

1θ θ=  and 1
ˆ ˆθ θ= ).  

Thereafter, we consider two particular running cases of the 
equalizer. The first concerns the desired behavior of the 
equalizer, in other words the case where the decisions are 
correct:  

{ } ( )1 1ˆ ˆ1 or IN= ; = , ∀ > ∈ .n n n nE a a a a n N N   (8) 
The second concerns the undesirable behavior, 

corresponding to the case where the decisions ˆ sgn( )=n na c  

are independent of the values of na , 2∀ >n N  ( 2 IN∈N ), 
that is:  

{ }ˆ 0= .n nE a a                                   (9) 

By taking into account the above mentioned conditions, the 
space of parameters 

Θ
D , defined by (7), is reduced to an axis 

of parameter θ̂ :  

{ }1 1
ˆ ˆ ˆ 0θ θ θ− −Θ

= : + − = .n n nD a a a                   (10) 

where { }1 1ˆ 1 1− −, , ∈ − ,n n na a a .  
Thus, hyperplanes are reduced to four vertical lines: 

ˆ 1θ θ= ± ± , which separate five polytopes. We show in the 
following that among these polytopes some correspond to 
correct decision regions and others correspond to incorrect 
decision regions.  

In polytopes corresponding to a correct decision, we have 
the equality ( )ˆ sgn= =n n na c a . Thus, the following 
condition, according to (1) and (2), must be verified:  

1 1 1 1 1
ˆ ˆ ˆwithθ θ− − − − −| − |<| |, ∀ ,∀ = .n n n n n n na a a a a a a    (11) 

As 1| |=na , expression (11), that defines the polytopes of 
correct decisions, becomes:  

ˆ1 1θ θ θ− + < < + .                                  (12)  
By analogy with the above analysis for correct decision 

polytopes, we deduce the expressions:  
ˆ 1
ˆ ˆ1 or 1

θ θ

θ θ θ θ

| |> + | |,

| |< − + | | | |> + | |;
                 (13) 

 
which define polytopes of incorrect decisions ( { }ˆ 0=n nE a a ), 
for minimum phase and maximum phase channels  
respectively.  

These two regions of functioning do not cover the totality 
of the error surface. There are other regions where the 
decision is uncertain. Although these regions correspond 
globally to false decision regions, we cannot assert that inside 
them { }ˆ 0=n nE a a .  

B. Error Surface Analysis 
The expression of the cost functions corresponding to the 

DD and CMA criteria, using (1), (2), (3) and (5), are 
respectively:  

{ } { }
{ }

( ) ( )
( ) { }

( ) { }
( ) { }

2 2
1 1

1 1

2
2 2 2 2

2 2
1 1

2 2
1

2 2
1

ˆ ˆ ˆ ˆ2 2 2
ˆˆ ˆ ˆ2 2

1 1ˆ ˆ ˆ1
4 4

ˆ ˆ2

ˆ ˆ3

ˆ3

θ θ θθ

θ θ

θθ θ θ θ θ

θθ θ θ

θ θ θ

θ θ θ

− −

⎧ ⎫
⎨ ⎬− −⎩ ⎭

− −

−

−

= + + − −

− + ;

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

− + +

− +

+ + .

d n n n n

n n n n

c

n n

n n

n n

J E a a E a a

E a a E a a

J

E a a

E a a

E a a

      (14) 

The calculation of the terms {}.E  is made taking into 

accounts the two cases of correct and incorrect decisions 
separately. In the case of correct decisions, the terms 

{ }1−n nE a a , { }1ˆ −n nE a a , { }1ˆ −n nE a a  and { }1ˆ ˆ −n nE a a  are null 

since we have ˆ =n na a , 
1 1ˆ − −=n na a  and that the sequence { }na  

is iid ( { } 0− =n n iE a a , if 0≠i ). Also, the values of the 

remaining terms are { } { }1 1ˆ ˆ 1− −= =n n n nE a a E a a . Thus, the 

expressions of the cost functions are simplified to:  

( )
( ) ( )

2

2 2

ˆ ,

1 ˆ ˆ 4 ;
4

θ θ

θ θ θ θ

= −

⎡ ⎤= − − +⎢ ⎥⎣ ⎦

G
d

G
c

J

J
                     (15) 

where the index G makes reference to the global minimum that 
is included potentially in the polytope defined by (12), 
corresponding to correct decisions.  

In the case of incorrect decisions, the terms { }ˆn nE a a  and 

{ }1 1ˆ − −n nE a a  are null. The term { }1−n nE a a  is also null since 
the data { }na  are iid; whereas the other terms in (14) take 

different values according to the considered polytope among 
the polytopes defined by (13), corresponding to incorrect 
decisions. The calculus of these different values is given in 
appendix A and appendix B. Consequently, the expressions of 
the cost functions also depend on the considered polytopes. 
We thus obtain:  

( )
( )

( )

( )( )

2
2

2 2

2
2

2 2 2 2 2 2

ˆ ˆ1 1 if 1

ˆ ˆ1 1 if 1

ˆ ˆ1 1 if 1

1 ˆ ˆ ˆ4
4

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

⎧ + + + , < − − | |,⎪
⎪

= + − | | + , | |< − + | |,⎨
⎪

+ + − , + | |< ;⎪
⎩

= + + + + .

L
d

L
c

J

J

         (16) 

The index L is referred to the local minimum that may be 
included in polytopes corresponding to incorrect decisions. 
Note that the second polytope of (16), corresponding to the 
DD criterion, does not exist in the case of minimum phase 
channels (equation (13)).  
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C. Minima of the Cost Functions 
Within each polytope, the DD and CMA criteria present 

possible global or local minima according to whether it 
concerns correct or faulty decisions. From (15), we derive 
expressions of the global minima: ˆ ˆθ θ θ= =G G

d c . These 
minima are attainable since they belong to the polytope 
defined by (12) relative to the correct decision. The cost 
functions then present minimum values equal to: 

0= =min min
d cJ J .  
We have shown in the last subsection that the DD cost 

function presents different expressions (equation (16)) 
according to the considered polytope among three polytopes 
corresponding to incorrect decisions. Consequently, in each 
polytope, the DD cost function, on the contrary of the CMA 
cost function, offers a different minimum:  

ˆ1 if 1
ˆˆ 0 if 1

ˆ1 if 1

ˆ 0

θ θ

θ θθ
θ θ

θ

⎧− < − − | |,
⎪⎪= | |< − + | |,⎨
⎪+ + | |< ;⎪⎩

= .

L
d

L
c

                      (17) 

 
Note that these values are independent of the channel 

parameter θ .  
These minima correspond to possible local minima of the 

both criteria. Indeed, the only attainable local minimum is 
here ˆ ˆ 0θ θ= =L L

d c  occurred in the case of maximum phase 
channels. The other values (obtained for the DD criterion) are 
not included in the respective polytopes.  

Note that the local minima here enumerated correspond 
only to the regions of incorrect decisions such as { }ˆ 0=n nE a a . 

Let’s recall that it exists also a region of uncertain decisions 
such as { }ˆ 0≠n nE a a  and { }ˆ 1≠n nE a a  which is not studied and 

which can possibly present a second local minimum.  

IV. SOFT DECISION SOLUTION 
The investigation of the minima done in the last section has 

shown that the error surface consists in polytopes separated by 
hard frontiers sometimes difficult to cross by the blind 
equalization algorithm. This is due to the nonlinearity used in 
the decision device and so to the fact that data belong to a 
finite alphabet.  

In this section, we first analyze the effect of the 
introduction of the soft decision on the error surface 
associated with the blind decision-directed and constant 
modulus equalization criteria. We also show how the soft 
decision, once used during a phase of initialization called the 
pseudo-training phase, allows the corresponding algorithms to 
escape from the local minimum and to converge to the desired 
minimum ensuring a correct equalization.  

A. Modification of the Mean Error Surface 
The existence of local minima is linked to the discrete 

character of the transmitted data 
na  and of the consequently 

reproduced data ˆna . This restitution can be made only by the 

use of a hard decision that introduces a discontinuity in the 
error surface. This involves, as we have seen in the last 
Section, the creation of small portions of surface separated by 
hard frontiers sometimes difficult to cross by the blind 
equalization algorithm with possible attainable local minima.  

The idea that we expose to prevent the blind algorithm from 
convergence to the local minima, resides in the preliminary 
use of a soft nonlinear function in the decision device. We 
propose to use the tangent hyperbolic function characterized 
by the saturation factor s , defined as:  

( ) tanh ⎛ ⎞= .⎜ ⎟
⎝ ⎠

xQ x
s

                          (18) 

Fig. 2 exhibits the error surface associated with the DD 
criterion, for different values of s . This figure shows that the 
curves, corresponding to the utilization of the soft decision, 
present transitions (frontiers between the different polytopes) 
smoother than those corresponding to the hard decision 
(implemented by the function sgn( ).  since we use ˆ 1= ±na ). 
This phenomenon is emphasized as the factor of saturation 
increases that is to say as we distance the hard decision. The 
curve corresponding to 0 1= .s  presents almost the same 
cavity and the same transition levels as those corresponding to 
the case of the hard decision, while the curve corresponding to 

1 0= .s  presents a flat cavity with no transition between the 
polytopes of the local minimum and the global minimum.  

−3 −2 −1 0 1 2 3
0

2

4

6

8

a)
−3 −2 −1 0 1 2 3
0

2

4

6

8

b)

−3 −2 −1 0 1 2 3
0

2

4

6

8

c)
−3 −2 −1 0 1 2 3
0

2

4

6

8

d)  
Fig. 2 Mean error surface of the DD cost function ( )θ̂J :                   

a) hard decision case, b), c) and d) soft decision cases respectively   
for s = 0.1, 0.6 and 1.0 (maximum phase channel: ˆ 1.5θ = ) 

However, the portion of the error surface corresponding to 
the global minimum presents this time a deeper cavity. The 
curve relative to 0 1= .s  presents a shape similar to that 
relative to hard decision: a flat cavity between the two-
polytope limits. That relative to 1 0= .s , presents a very 
pronounced cavity around the global minimum.  

Fig. 2 also allows us to observe that the global minimum is 
no longer the same according to whether one introduces or not 
the soft decision. Indeed, in the case of the soft decision, the 
global minimum θ̂opt

 shifts according to s . It is 1.5 in the case 
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of the hard decision, while for the two values of the factor of 
saturation, mentioned higher, it is respectively 1.51 and 1.78. 
The displacement of the global minimum is small for the small 
values of s .  

We then observe, in this example, that the error surface is 
modified. The transitions between polytopes are smoothed. 
The local minimum is attenuated and the global minimum is 
displaced. This allows us to anticipate the interest of the use of 
the soft decision in the adaptive case: the blind algorithm, 
once trapped in a local minimum, may escape from it more 
easily than in the case of the hard decision.  

B. Modification of the convergence properties 
The use of the soft decision in the decision device results in 

replacing the vector ˆ
nA , present in the adaptation algorithms 

DD and CMA (equations (4) and (6)), by:  
( )1 2 1− − − += , , , ;n n n n MA a a a                 (19) 

where ( )=n na Q c .  
The analysis above shows that more the saturation factor 

increases more the global minimum moves over the desired 
global minimum. Then, we here suggest using a soft decision 
only at the beginning of the DFE adaptation, i.e. during a so-
called pseudo-training phase. The use of the soft decision 
during the pseudo-training phase allows the algorithm to 
converge to a new minimum presenting a value near the 
global minimum. Once the algorithm has converged to this 
minimum, we can switch to the hard decision, that is, to a 
properly tracking phase, to reach the desired global minimum 
and to guarantee the correct equalization of the channel.  

This approach is illustrated by the following example 
presented in Fig. 3.a. The DD algorithm is performed at the 
beginning with the soft decision during 500 samples, at the 
end of which the algorithm approaches the value 0.76: 

0 6= .s , ˆ(0) 0θ =  and 0 001μ = .  (see the Fig. 2.c for the 
corresponding error surface). After the switching to the hard 
decision (end of the pseudo-training phase), the algorithm 
hangs on to the global minimum ˆ 1 5θ θ= = . . This curve is 
compared to that of the DD algorithm, which is still trapped in 
the local minimum for the same value of the adaptation step 
size. The corresponding mean square error 
( ( ) 2MSE ⎧ ⎫⎪ ⎪

⎨ ⎬
⎪ ⎪⎩ ⎭

= −n nE a c ) evolution is presented in Fig. 3.b. 

Fig. 3.c and Fig. 3.d present the same illustrations relatives to 
the CMA equalizer.  

C. New algorithms based on the use of soft decision 
According to the foregoing, to smooth and then avoid the 

local minima, we must choose a high value for the saturation 
factor during the pseudo-training-phase. However, as s  
increases the equalizer parameter ˆ( )θ n  goes away from the 
global minimum at the convergence. This may distort the 
equalization even, if we switch later to the hard decision.  

So we can conclude that we have to choose a high value of 
the saturation factor at the initialization of the algorithm to 
avoid the local minima and a low value at the convergence 
such that the minima corresponding to the two kinds of 

decisions (hard and soft) are close enough to ensure 
convergence to the desired global minimum. To make variable 
the duration of the pseudo-training-phase according to the 
algorithm behavior towards a given channel, we propose to 
use the gradient based algorithm, minimizing the mean square 
error ( ) 2ˆ⎧ ⎫⎪ ⎪

⎨ ⎬
⎪ ⎪⎩ ⎭

−n nE a c , to calculate the evolution of s . The 

relative adaptation equation is written:  
( ) ( )ˆ( 1) ( ) ( )μ+ = + − Γn ns n s n a c s n           (20) 

where: ( ) ( ) ( )ˆ( ) =Γ = ∇ − |s n n s s ns n a c .  

The expression of ( )( )Γ s n  is deduced from the (2), (18) 

and (19):  
( )

2

1

( )
ˆ ( )

1 tanh
( ) ( ) ( ) ( )

θ − − −

=

Γ =

⎡ ⎤⎛ ⎞ ∂⎛ ⎞ ⎛ ⎞
− − .⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∑
L

i n i n i n i

i

s n

n c c c
s n s n s n s n

      (21) 

Account held of the recursive form of ( )( )Γ s n , the exact 

calculus of this term will necessitate then an infinite memory. 
Simulations that we have undertaken have shown that the next 
approximation:  

2

1

ˆ ( )
( ( )) 1 tanh

( ) ( ) ( )
θ − −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Γ = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∑
L

i n i n i

i

n c c
s n

s n s n s n
      (22) 

is acceptable. This is equivalent to the approximation version 
of the Least Mean Square algorithm (LMS): the Extended 
LMS [14], when applied to a recursive filter. This 
approximation supposes that ( )s n  varies slowly.  

To summarize, let’s say that the modified blind equalization 
algorithms: modified DD a modified CMA, are those 
achieving an automatic switch between the initialization phase 
(during which we use a soft decision) and the properly 
tracking phase (during which we use a hard decision). The 
implementation of these modified algorithms will be done by 
taking into account (4) or (6) (adaptation of the equalizer 
impulse response), (18) and (19) (use of a soft decision). So, 
the modified DD algorithm is written:  

ˆ ˆ ˆ( 1) ( ) ( )μΘ + = Θ − − ;d d n n nn n a c A              (23) 

where ( )1 2 1− − − += , , ,n n n n MA a a a , ( )tanh ( )= /n na c s n .  
The modified CMA is written as:  

2ˆ ˆ( 1) ( ) ( )μ γΘ + = Θ + − .c c n n nn n c c A           (24) 
The adaptation of the saturation factor ( )s n  is done 

according to (20).  

V. COMPUTER SIMULATIONS 
In the following, to prove the efficiency of the modified 

algorithms using the soft decision during the pseudo-training-
phase, we consider first noisy channels: Proakis A and Proakis 
B channels [15]. The SNR is fixed at 10 dB. We consider also 
a complete DFE with a forward filter of 21 coefficients and a 
feedback filter of 5 coefficients.  

To show the capacity of the soft decision to help the DFE to 
avoid the ill-convergence and consequently to reach the 
desirable functioning, we have initialized the coefficients of 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:11, 2008

2623

 

 

the forward filter and the feedback filter of the DFE by two 
times in addition to the initial initialization.  

The results of the simulation under the conditions 
mentioned above are presented in the Fig. 4, where only the 
CMA is used. In this figure, we illustrate the evolution versus 
time of the output signal of the DFE (input of the decision 
device) for the two channels. In this figure, we present a 
comparison between the behavior of the DFE without (curves 
1.a and 2.a respectively) and with the soft decision (curves 1.b 
and 2.b respectively). The evolution versus time of the 
saturation factor s , is also presented for the two channels in 
the curves 1.c and 2.c respectively. For all this curves the DFE 
is initialized at the times: 0 1000 2000= , ,n .  
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Fig. 3 Evolution, without (in continuous lines) and with the soft 

decision (in discontinuous lines), of ( )θ̂ n  and MSE versus time: 

curves a) and b) DD algorithm, and curves c) and d) CMA ( ˆ 1.5θ = ) 

It is obvious from the Fig. 4 (case of Proakis A channel) 
that the DFE succeed to reach the desirable functioning more 
rapidly when the soft decision is used. Moreover, the DFE is 
unable in certain situations (case of Proakis B channel) to 
avoid the ill-convergence if the soft decision is not used. This 
curves shows the interest to use the soft decision in the 
initialization phase or when the equalizer deviate from the 
desirable functioning (due to variation of the channel 
behavior, finite-precision design and implementation of the 
DFE, ...).  

VI. CONCLUSIONS 
In this paper, we have presented the behavior of the 

decision feedback equalizers adapted by the decision-directed 
algorithm or the constant modulus algorithm. The blind 
algorithm error surface analysis has inspired us to replace the 
hard limiter in the decision device by soft decision during the 
initialization of the blind algorithms. This was shown to 
reduce the influence of false decisions and to smooth the local 
minima so that the convergence to the desired minimum may 
occur for any step-size and any initialization. We have then 
proposed to modify the classic DD algorithm and the CMA by 
using a soft decision implemented by a tangent hyperbolic 
whose slope is adapted according to the error decision.  

Though the theoretical analysis presented in this paper 
concerns the noiseless case, we have shown by simulation the 
robustness of the soft decision DFE with respect to noisy 
transmission channel.  

The use of the soft decision could be extended to any blind 
algorithm since the problem of the discrete character of the 
data and so the hard transitions between the portions forming 
the error surface cost function, appears by the same manner.  

 
Fig. 4 DFE behavior in presence of channels Proakis A (1) and B 

(2), SNR = 10 dB. 1.a and 2.a: output without soft decision, 1.b and 
2.b: output with soft decision, 1.c and 2.c: evolution of s(n) 

APPENDIX 

Appendix A 
The goal is the calculus of the term { }1ˆ −n nE a a . Let’s 

determine the expression of 1ˆ −n na a :  

( )
( )

1 1

1 2 2

ˆ sgn
ˆ ˆsgn θ θ

− −

− − −

= ,

= + − .

n n n n

n n n n

a a a c

a a a a
         (25) 

 
Since we consider the incorrect decision case, the term 

( )1 2 2
ˆ ˆsgn θ θ− − −+ −n n na a a  is independent of the value of 

1−na , then:  

( )
( )

1 2 2

2 2

ˆˆ ˆsgn

ˆ ˆsgn

θ θ

θ θ

− − −

− −

= − ,

= − .

n n n n n

n n n n

a a a a a

a a a a
              (26) 

We have also used above the fact that na  takes the values 

1±  and so ( )sgn=n na a .  

The term 2−n na a  takes the values 1±  with equal probability 
since the data { }na  are iid and 

{ } { }1 1 1 2= = = − = /n nPr a Pr a . In addition, 
2−na  takes 

the values 2ˆ −± na  with equal probability (incorrect decisions: 
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{ }2 2ˆ 0− − =n nE a a ), and so 
2−n na a  takes the values 

2ˆ −± n na a  
with equal probability (i.e. 

{ } { }2 2 2 2ˆ ˆ 1 2− − − −= = = − = /n n n n n n n nPr a a a a Pr a a a a ). 

Consequently, the term 1ˆ −n na a  takes the values ( )ˆθ θ± +   

and  ( )ˆθ θ± −  with equal probability (i.e. with a probability 

equal to 1/4). We deduce then that { }1ˆ 0− =n nE a a .  

Appendix B 
The goal is the calculus of terms { }1ˆ −n nE a a  and { }1ˆ ˆ −n nE a a . 

By using the same assumptions that in appendix A, we write:  

( )
( )
( )

1 1

1 1 1

1 1 1

1 1

ˆ sgn

ˆsgn

ˆsgn

ˆsgn

θ θ

θ θ

θ θ

⎛ ⎞
⎜ ⎟− −⎝ ⎠

− − −

− − −

− −

= ,

= + − ,

= − ,

= − .

n n n n

n n n n

n n n

n n

a a c a

a a a a

a a a

a a

            (27) 

The term 1 1ˆ− −n na a  takes the values 1±  with equal 
probability since we consider here the incorrect decision case 
( { }1 1ˆ 0− − =n nE a a ) and so 

{ } { }1 1 1 1
ˆ ˆ ˆ ˆˆ ˆ 1/ 2θ θ θ θ θ θ θ θ− − − −− = − = − = + =n n n nPr a a Pr a a .  

Now, let’s determine the sign of θ θ−  and ˆθ θ+  according 
to the three polytopes corresponding to the incorrect decision 
case (equation (17)):  

( ) ( )

( ) ( ) ( )

( ) ( )

polytope 1
ˆ ˆ ˆ1 sgn 1 sgn 1

polytope 2 ( 1)
ˆ ˆ ˆ1 sgn sgn sgn

polytope 3
ˆ ˆ ˆ1 sgn 1 sgn 1

θ θ θ θ θ θ

θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ

:

< − − | | → − = , + = −

: | |>

| |< − + | | → − = + =

:

> + | | → − = − , + = .

  (28) 

Consequently, we can deduce that:  

{ } ( )1

ˆ0 if 1
ˆˆ sgn if 1 and 1

ˆ0 if 1

θ θ

θ θ θ θ

θ θ
−

⎧ , < − − | |;
⎪⎪= , | |< − + | | | |> ;⎨
⎪ , > + | | .⎪⎩

n nE a a     (29) 

By the same manner, we can calculate { }1ˆ ˆ −n nE a a :  

( )
( )
( )
( )

1 1

1 1 1

1 1 1

1 1

ˆ ˆ ˆsgn
ˆ ˆ ˆsgn

ˆ ˆ ˆsgn

ˆˆsgn

θ θ

θ θ

θ θ

− −

− − −

− − −

− −

= ,

= + − ,

= − ,

= − .

n n n n

n n n n

n n n

n n

a a c a

a a a a

a a a

a a

             (30) 

The term 1 1
ˆθ θ− − −n na a  takes the values ˆθ θ−  ( 1 1ˆ 1− − =n na a ) 

or ˆθ θ− −  ( 1 1 1− − = −n na a ) with equal probability. The sign of 

these two values are calculated before since 
( ) ( )ˆ ˆsgn sgnθ θ θ θ− − = − + . Finally, we can deduce that:  

{ }1

ˆ1 if 1
ˆˆ ˆ 0 if 1 and 1

ˆ1 if 1

θ θ

θ θ θ

θ θ
−

⎧ , < − − | |;
⎪⎪= , | |< − + | | | |> ;⎨
⎪− , > + | | .⎪⎩

n nE a a      (31) 
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