
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

530

Abstract—Graph rewriting-based visual model processing is a

widely used technique for model transformation. Visual model
transformations often need to follow an algorithm that requires a
strict control over the execution sequence of the transformation steps.
Therefore, in Visual Model Processors (VMPs) the execution order
of the transformation steps is crucial. This paper presents the visual
control flow support of Visual Modeling and Transformation System
(VMTS), which facilitates composing complex model
transformations of simple transformation steps and executing them.
The VMTS Visual Control Flow Language (VCFL) uses stereotyped
activity diagrams to specify control flow structures and OCL
constraints to choose between different control flow branches. This
paper introduces VCFL, discusses its termination properties and
provides an algorithm to support the termination analysis of VCFL
transformations.

Keywords—Control Flow, Metamodel-Based Visual Model
Transformation, OCL, Termination Properties, UML.

I. INTRODUCTION
ISUAL Modeling and Transformation System (VMTS) [1]
[2] is an n-layer metamodeling environment which

supports editing models according to their metamodels, and
allows specifying OCL constraints. Models and
transformation steps are formalized as directed, labeled
graphs. VMTS uses a simplified class diagram for its root
metamodel (“visual vocabulary”).

Also, VMTS is an UML-based [3] model transformation
system, which transforms models using graph rewriting
techniques. Moreover, the tool facilitates the verification of
the constraints specified in the transformation step during the
model transformation process.

Graph rewriting [4] is a powerful technique for graph
transformation with a formal background. The atoms of the
graph transformation are rewriting rules, each rewriting rule
consists of a left-hand side graph (LHS) and a right-hand side
graph (RHS). Applying a graph rewriting rule means finding
an isomorphic occurrence (match) of LHS in the graph to
which the rule is applied (host graph), and replacing this
subgraph with RHS. Replacing means removing the elements

Manuscript received November 9, 2005. The fund of “Mobile Innovation
Centre” has supported, in part, the activities described in this paper.

L. Lengyel, T. Levendovszky, G. Mezei and H. Charaf, are with
Department of Automation and Applied Informatics in Budapest University of
Technology and Economics, Goldmann Gyorgy ter 3, 1111 Budapest,
Hungary; e-mails: {lengyel, tihamer, gmezei, hassan}@aut.bme.hu).

that are in LHS but not in RHS, and gluing the elements that
are in RHS but not in LHS.

Model transformation means converting an input model
available at the beginning of the transformation process to an
output model. Several widely used approaches to model
transformation uses graph rewriting as the underlying
transformation technique. Previous work [1] has introduced an
approach – metamodel-based rewriting rules –, where the left-
hand side (LHS) and right-hand side (RHS) graphs of the
transformation steps are built from metamodel elements. This
means that an instantiation of LHS must be found in the host
graph instead of the subgraph isomorphic to LHS. This
metamodel-based approach facilitates to assign OCL
constraints to pattern rule nodes (PRNs) – nodes of the
rewriting rules.

The Object Constraint Language (OCL) [5] is a formal
language for the analysis and design of software systems. It is
a subset of the UML standard [3] that allows software
developers to write constraints and queries over object
models.

The motivation of the work presented in this paper is to
support the control flow in visual model transformation
systems and to define the conditions exactly which guarantee
that if a transformation fulfills them it terminates or not. An
algorithm – VCFL Termination Algorithm (VTA) – is
developed to support the termination analysis of VCFL
transformations. The VTA is an offline algorithm, as an input
it uses only the control flow model to make the decision. This
means that the decision is independent from any host model.

II. THE VMTS VISUAL CONTROL FLOW LANGUAGE
One of the most important capabilities of a control flow

language is the possibility to express a transformation as an
ordered sequence of the transformation steps. Classical graph
grammars apply any production that is feasible. This
technique is appropriate for generating and matching
languages but model-to-model transformations often need to
follow an algorithm that requires a more strict control over the
execution sequence of the steps, with the additional benefit of
making the implementation more efficient.

The VMTS approach is a visual approach and it also uses
graphical notation for control flow: Stereotyped Activity
Diagram, which is a technique to describe procedural logic,
business process, and work flow. In many ways, it plays a role
similar to flowcharts, but the principal difference between it

Model Transformation with a Visual Control
Flow Language

László Lengyel, Tihamér Levendovszky, Gergely Mezei and Hassan Charaf

V

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

531

and flowchart notation is that activity diagrams support
parallel behavior [6].

In Fig. 1 the control flow model of the breadth-first search
(BFS) algorithm is depicted which is a tree search algorithm
used for traversing or searching a tree, tree structure, or graph.
Intuitively, one starts at the root (start) node and explore all
the neighboring nodes. Then for each of those nearest nodes,
explore their unexplored neighbor nodes, and so on until it
visits all nodes or finds the goal. In the current case our aim is
to visit all the nodes and sign them, this means that there is no
searched node.

The pseudo code of the algorithm is as follows.

BREADTHFIRSTSEARCH (Graph G, Node startNode)
 1 SETVISITED (startNode)
 2 ENQUEUE (queue, startNode)
 3 while (queue in not empty)
 4 node = DEQUEUE (queue)
 5 foreach neighbor in GETNEIGHBORS (node)
 6 if NOTVISITED (neighbor)
 7 SETVISITED (neighbor)
 8 ENQUEUE (queue, neighbor)
 9 end if
10 end foreach
11 end while

Fig. 1 The VCFL control flow model of the breadth-first search
algorithm

In Fig. 2 the metamodel of the VMTS control flow is

depicted, which describes that the root element is the
Transformation. A Transformation can contain optional
number of FlowEdgeTarget type object, this is denoted by
stereotype <<SystemContainment>>. The FlowEdgeTarget is
an abstract type which could be Transaction, StartRule, Rule,
HistoryRule, EndRule, FlowFinal, Decision, Merge, Fork or
Join. FlowEdgeTargets can be connected to each other using
directed edges (FlowEdge). Types Transaction and Rule can
contain another FlowEdgeTargets.

Moreover, the type Rule can contain RuleNodes. This is
presented in the metamodel of the VMTS Rule Editor (Fig. 3).
RuleNode is also an abstract type that can be LHSNode or
RHSNode. A type RuleNode can contain or can be connected
to another RuleNodes.

In the case study an arbitrary vertex from G to start the tree
from is given as a pivot node (startNode). A pivot node is an
input parameter of the control flow specified by the user. In
the graph each vertex has a property (IsVisited) which
determines if a vertex has already been visited by the
algorithm. The transformation steps of the BFS
(SelectNeighbors and SetVisited) are presented in Fig. 4.

The Internal Causality is a relation between LHS and RHS
elements (Fig. 3), it makes possible to connect an LHS
element to an RHS element and to assign an operation to this
connection. In Fig. 4 internal causalities are denoted as dashed
lines. An internal causality describes what we have to do
during applying a transformation step (element creation,
element deletion, attribute modification). The create and the
modify operations are accomplished by XSL scripts. The XSL
scripts can access the attributes of the objects matched to LHS
elements, and they produce a set of attributes for RHS element
to which the causality point.

Fig. 2 The metamodel of the VMTS Visual Control Flow
Language

Fig. 3 The metamodel of the VMTS Rule Editor

The first transformation step selects the neighbors of a tree
vertex which has at least one not visited neighbor (see 1..*
multiplicity in LHS of the step). The not visited property is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

532

validated by the constraint Cosnt_Vis propagated to LHS
vertex NeghborNode.

context Node inv Const_Vis:
not IsVisited

While the graph contains at least one vertex which is not
visited, then the step SelectNeighbors matches it and the step
finishes successfully. The decision object based on the success
of the first step selects the path to step SetVisited, otherwise to
the rule end.

The second step is passed the selected vertices as external
causalities and using an XSL script modifies their IsVisited
property to true (other, more technical, transformation steps
can also be defined [2] [7]). As result of the transformation all
the graph nodes will be visited. The presented transformation
does not modify the topology of the model but updates the
attribute values.

Fig. 4 Transformation steps SelectNeighbors and SetVisited

VCFL is a visual language for controlled graph rewriting
and transformation, which supports the following constructs:
sequencing transformation steps, branching with OCL
constraints, hierarchical steps, parallel executions of the steps
and iteration.

A. Sequencing Transformation Steps
Sequencing transformation steps results a transformation

which contains the steps in an ordered sequence (S0, S1… Sn-1).
Assume the case that the input model of the step i (Si) is the
model Mi and the result of the Si is the Mi+1 (where 0 ≤ i ≤ n-
1). In this case the input model of the step i+1 (Si+1) is the
model Mi+1. This means that during the execution of the step
sequence, each step works on the result of the previous step.
Obviously, except for the first step, which works on the input
model. The result of the whole transformation is the result of
the last step (Sn).

The interface of the transformation steps allows the output
of one step to be the input of another step, in a dataflow-like
manner. This is used to sequence expression execution. In
VCFL this construction is referred to as external causality. An
external causality creates a linkage between a node contained
by RHS of the step i and a node contained by LHS of the step
i+1. This feature accelerates the matching and reduces the
complexity, because the step i provides partial match to the
step i+1. In our example we use external causalities to pass
the selected vertices from step SelectNeighbors to step

SetVisited.

B. Branching with OCL Constraints
Often, the transformation we would like to apply depends

on a condition. Therefore, a branching construct is required.
In VCFL OCL constraints assigned to the decision elements
can choose between the paths of optional numbers, based on
the properties of the actual host model and the success of the
last transformation step (SystemLastRuleSucceed). If the last
transformation step fails, then VCFL could use the values of
the system variables SystemLHSFailure and
SystemRHSFailure for the decision. These variables represent
whether a failure has occurred, because there was no proper
match (LHS failure: structurally not suitable host model or
there is at least one constraint not satisfied in LHS of the
transformation step), or the transformation result was not
sufficient (RHS failure: there was at least one constraint not
satisfied in RHS of the transformation step).

In VCFL, each branch has an exact OCL guard condition
which is evaluated by the execution engine during the
execution.

When a step is connected to more than one follow-up steps,
then at most one of the branch conditions is allowed to be
true. This means that the conditions must not have any
common part. This restriction ensures that the control flow
execution of the VCFL is deterministic.

We applied VCFL in projects such as generating user
interface from resource model and user interface handler code
from statechart model for mobile platform [7]. These
applications required control flow support, and all of them can
be solved without non-determinism. However, VCFL provides
an interface for non-deterministic control flow as well.

C. Hierarchical Steps
The VCFL supports hierarchical specification of the

transformation steps. High-level steps can be created by
composing a sequence of primitive steps and can be viewed as
separate transformation modules.

A high-level step can contain several simple steps, hiding
the details which could be unimportant on a specific
abstraction level and represents the contained steps as
coherent units (Fig. 5).

Fig. 5 A Hierarchical step

Often, the OCL constraints assigned to a decision object do

not cover all possible cases. It could result that in certain cases

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

533

none of the branch paths is selected, in this case the parent
step of the actual transformation handles the control flow:
breaks the execution of the transformation on the actual level
and continues the transformation on the parent level.

D. Iteration (Tail Recursion) and Parallel Executions of
the Steps
The iteration is achieved with the help of the decision

objects and the OCL constraints contained by them. A
decision object evaluates the assigned constraints, and based
on the results selects a flow edge which could be a follow-up
or a backward edge as well (Fig. 1).

Recursion could be solved with the combination of the
iteration and external causalities. A high-level step can call
itself, where external causalities represent the actual
parameters of the recursive call.

Flattening the state machine is an example when we have to
apply a recursive algorithm that first calls flattening on its
children before flattening itself.

The parallel execution of the independent transformation
steps is supported by the Fork and Join elements.

In VCFL, if a transformation step fails and the next element

in the control flow is a decision object then it could provide
the next branch based on the OCL statements and the value of
the SystemLastRuleSucceed variable. If no decisions can be
found, the control is transferred to the parent state, if there is
no parent state, the transformation terminates with error.

E. VCFL Algorithms
VCFL provides algorithms to check whether a

transformation contains isolated or illegal transformation steps
and to validate that the OCL constraints assigned to a decision
object are disjoint.

The VCFL Isolated Transformation Steps algorithm checks
whether the user-specified control flow contains isolated
transformation steps. This means that starting from the start
step we can not reach these steps. The algorithm checks the
constraints contained by the decision objects whether all of
the branches related to the actual decision object could be
selected by the constraints. If a branch is found that can never
be selected, the flow edge related to this branch is not taken
into consideration by the algorithm. This means that not only
the structure of the control flow model but the constraints
contained by the decision objects are also taken into account.

In first step, checking the decision objects, the algorithm
signs the invalid flow edges, and in second identifies the
isolated steps using a modified breadth-first search.
Transformation steps which are not found by the search are
the isolated steps. The pseudo code of the algorithm is as
follows.

VCFLISOLATEDSTEPS (Transformation T) : NodeCollection
 1 foreach decision in T
 2 foreach constraint in decision
 3 if NOTSUITABLECONSTRAINT (constraint)
 4 SIGNFLOWEDGEBYCONSTRAINT (constraint)
 5 end if

 6 end foreach
 7 end foreach
 8 SETVISITED (startNode of T)
 9 ENQUEUE (queue, startNode of T)
10 while (queue in not empty)
11 node = DEQUEUE (queue)
12 foreach neighbor in GETNEIGHBORS (node)
13 if NOTVISITED (neighbor)
14 SETVISITED (neighbor)
15 ENQUEUE (queue, neighbor)
16 end if
17 end foreach
18 end while
19 return GETNOTSIGNEDNODES (T)

The VCFL Illegal Transformation Steps algorithm detects
steps in control flow models from which EndRules and
FlowFinals are unreachable. The algorithm is similar to the
VCFL Isolated Transformation Steps algorithm with the
following difference. The modified breadth-first search is
started from EndRules and FlowFinals, and uses the edges in
reverse direction as they are in the control flow model.
Transformation steps which are not found by the algorithm are
the steps from which end steps are unreachable.

The VCFL Disjoint OCL Constraint algorithm validates
whether the OCL constraints assigned to a decision object are
disjoint. This algorithm ensures that at the same time
maximum one of the branch conditions of a decision is
allowed to be true. Using this algorithm it is guaranteed that
the control flow execution of the VCFL is deterministic. The
algorithm utilizes that the OCL statements are boolean
expressions. It does an AND operation for each couple of the
OCL statements and if the result is false in each cases then
only one of the OCL statement could be true at the same time.
The pseudo code of the algorithm is as follows.

VCFLDISJOINTCONSTRAINT (VCFLDecision D) : ConstraintPairList
 1 foreach constraintA in D
 2 foreach constraintB in D
 3 if constraintA != constraintB and DOANDONCONSTRAINTS
(constraintA, constraintB)
 4 ADDTOLIST (constraintPairList, constraintA, constraintB)
 5 end if
 6 end foreach
 7 end foreach
 8 return constraintPairList

The most complex and maybe the most important VCFL
algorithm is the VCFL Termination algorithm which is
discussed in next section.

III. TERMINATION PROPERTIES
The termination properties of a transformation are really

important for model transformation. We want to investigate
under which conditions an arbitrary VCFL transformation can
satisfy termination criteria. The difference between a
transformation and a finite sequence of steps is that a finite
sequence of steps always terminates, but a transformation, can
contain infinite number of steps. Our aim is that VCFL
transformations terminate, therefore an algorithm (VCFL
Termination algorithm) has been developed to support the
early detection of the infinite loop and the validation of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

534

control flow that from each step can reach an end step.
In the VCFL a transformation step has two specific

attributes: Exhaustive and MultipleMatch. Recall that applying
a model transformation step means finding a match of LHS in
the host model and replacing this subgraph with RHS. An
exhaustive transformation step is executed continuously as
long as LHS of the step could be matched to the host model.
The MultipleMatch attribute of a step allows that the matching
process finds not only one but all occurrence of LHS in the
host model, and the replacing is executed on all the found
places.

Definition (VCFL Transformation). A VCFL transformation
is a stereotyped UML activity diagram. A VCFL
transformation T defines a strict order of the contained
transformation steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is
the start step of the T. Transformation T contains OCL
constraints, assigned to decision objects to choose between
different control flow branches and external causalities
between transformation steps to support parameter passing.

Definition (Termination of VCFL transformations). A
VCFL transformation T for a finite input model G0 terminates,
if there is no infinite derivation sequence from G0 via
transformation steps TSTEPS ∈ , where starting from S0

(start step of the T) steps STEPS are applied as it is defined
by the transformation T.

For non-exhaustive and also for exhaustive transformation

steps, the MultipleMatch attribute of the steps does not modify
the termination property of the VCFL control flows for
optional finite input model G0.

The termination checker algorithm has to differentiate
between certain cases. It needs to take into account whether
the VCFL transformation contains loops with decision object
or exhaustive transformation steps.

A. VCFL Control Flows with Non-Exhaustive
Transformation Steps
Proposition. A VCFL transformation T, which contains

only non-exhaustive transformation steps)(1-n10 ...SS,S and
does not contain loops for an optional finite input model G0
always terminates.

Proof. The transformation T contains finite number of
transformation steps)(∞<∧= nSTEPS#n . 1-ni 0 |i ≤≤∀

STEPSSi ∈ is executed at the most once because it is a non-
exhaustive step.

If the multiple match attribute of a step STEPSSi ∈ is
true, all occurrence of the Si

LHS (LHS of the step Si) is
searched and the replacement is executed for all found
matches, but step Si is executed only once. The number of the
found matches (mi) is also finite because of the finite input
model G0. 1-ni 0 |m n i ≤≤∞<∧∞< , therefore

∞<= ∑
−

=

1n

0i
imk . The number of the steps executed by

transformation T is finite and T terminates.

B. VCFL Control Flows with Exhaustive Transformation
Steps
Definition (⊆). nm GG ⊆ if and only if Gn has a

structurally isomorphic subgraph GI to Gm, and in the GI and
in the Gm the corresponding nodes and edges have the same
metatype, attributes, attribute values and OCL constraints.

An exhaustively applied step using external causalities
gives itself input model and parameters. For an exhaustive
step the termination algorithm has to take into consideration
the attribute modifications and the generated and deleted
elements. An exhaustive transformation step must contain
either attribute modification or element deletion to prevent
that the same match be found again and again by the matching
process. A solution can be also if there is a create type
causality and an OCL constraint which holds before the
creation and become false afterwards, therefore it prevents to
find the same match again on the same place. For example an
OCL constraint can validate the existence of a neighbor node.
In Fig. 6b the presented transformation step connects a
married and unemployed man to a company. The unemployed
property is checked by the const_employer constraint. After
the execution of the step, the matching process does not match
the same pattern again in the next iteration, because of the not
satisfied constraint. Thus it forbids the repeated application of
the same step on the same place again.

Definition (Create Termination Step – CT step). A create

termination step S has only create type internal causalities, it
contains an optional OCL constraint C1 in SLHS, which must to
stand for the host models matched to the SLHS and as a result of
the step execution the condition required by the constraint C1
becomes false.

Definition (Create Termination Step with constraint C2 –
CT step with C2). A create termination step S has only create
type internal causalities, it contains the OCL constraint C2 in
SLHS, which must to stand for the host models matched to the
SLHS and as a result of the step execution the condition
required by the constraint C2 becomes false.

The difference between a CT step and a CT step with C2 is
that in first case an arbitrary one of LHS constraints has to
fulfill the condition, while in the second case the given
constraint (C2) has to comply it.

Obviously, this transformation step property is important
only for exhaustive steps or steps which are in loops, because
the creation can prevent to find the same match again on the
same place and it helps to avoid infinite loops.

Following propositions contain statements about
termination properties of the transformations with exhaustive
transformation steps.

Proposition. Let the transformation step Si be an exhaustive

step. If RHS
i

LHS
i SS ⊆ and the step Si has a match M on an

optional input model Gi the step Si never terminates for the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

535

input model Gi.
Proof. The step Si has a match M on the input model Gi it

generates its output (Gi
1) with the Si

RHS. RHS
i

LHS
i SS ⊆ ,

therefore the Si
LHS has match in Gi

1. The step Si is an
exhaustive step and it always has match on the result model of
the previous iteration, therefore the Si never terminates for the
input model Gi.

Fig. 6 An example metamodel and a Create Termination Step

Proposition. Let the transformation step Si be an exhaustive
step which does not contain internal causalities of deletion and
modification type, and Si is not a CT step. Assume that T is a
transformation and TSi ∈ , the input model of the
transformation T is the model G0, and the input model of the
step Si is the model Gi. If the Si

LHS has a match M on model Gi,
the transformation T never terminates for the input model G0.

Proof. The step Si is an exhaustive transformation step, it is
executed as long as the Si

LHS has match on model Gi. The Si
has a match M, which is not modified by the step – there is no
deletion, attribute modification, and Si is not a CT step –,
therefore the matching process finds the match M in each
iteration. The step Si never terminates for the input model Gi,
and T never terminates for the input model G0.

C. Combining VCFL Transformation Steps
The intention of the transformation step combination is to

create a single step SC from an optional number of
transformation steps k1jj ...SS,S + . The combined step can

equivalently replace the original steps, because it produces the
same result. In the termination analysis we can use the
combined step instead of the original transformation steps. It
facilitates to replace the steps contained by a VCFL loop with
their combined transformation step. The result of the

replacement is similar to an exhaustive transformation step,
with the difference that a combined step may have a decision
object.

The combination algorithm takes not only the structure of
the steps into consideration but also their internal- and
external causalities and the metatypes of the nodes and edges
as well. The algorithm works based on the double pushout
(DPO) approach concurrency theorem [8] [9].

An example for transformation step combination is depicted
in Fig. 7.

Fig. 7 An example for transformation step combination

D. Termination Properties of VCFL Loops
A loop contains n transformation steps (where n>0) and a

decision object. A decision object evaluates the assigned
constraints on the actual host model and based on the results
selects a flow edge which could be a follow-up or a backward
edge as well.

The main difference between a loop with only non-
exhaustive steps and an exhaustive step is the exit condition.
A transformation leaves an exhaustive step if there is no more
match, while in the case of a loop the decision object
determines about the exit. If a loop consists of non-exhaustive
steps, the step combination algorithm combines them, and the
decision about the termination is made based on the combined
step and the OCL constraints of the decision object.

An exhaustive step is itself a specific loop. Therefore, if a
loop contains exhaustive steps then it is a loop of loops. The
algorithm examines separately the exhaustive steps and if each
of them terminates then analyses the whole loop.

Proposition. Assume that the transformation T contains a

loop L, let SC be the combination of the non-exhaustive
transformation steps L...SS,S k1jj ∈+ . The input model of

the transformation T is the model G0, and the input model of
the step SC is the model GC. If RHS

C
LHS
C SS ⊆ and the step SC

has a match M on input model GC the transformation T never
terminates for the input model G0.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

536

Proof. The transformation step SC has a match M on input
model GC it generates its output model 1

C
RHS
C

1
C GSG ⊆| .

RHS
C

LHS
C SS ⊆ , therefore the SC

LHS has match on model 1
CG .

The step SC represents a loop and it always has match on the
result model of the previous iteration, therefore the SC never
terminates for the input model GC and the transformation T
never terminates for the input model G0.

E. VCFL Termination Algorithm
For an optional VCFL transformation T the termination

algorithm validates the following.
1. If transformation T does not contain loop or exhaustive

transformation step then T terminates.
2. If TS ∈ is an exhaustive transformation step and

RHSLHS SS ⊆ the transformation T does not

terminate.
3. If TS ∈ is an exhaustive transformation step, S does

not contain delete and modify type internal causalities
and S is not a CT step then the transformation T does
not terminate.

4. If TL ∈ is a loop and SC is the combination of the
transformation steps L...SS,S k1hh ∈+ and

RHS
C

LHS
C SS ⊆ the transformation T does not

terminate.

The pseudo code of the VCFL termination algorithm is the

following.

VCFLTERMINATIONALGORITHM(Transformation T): retValue
 1 if T does not contain loop or exhaustive step then return retValue.true
 2 foreach Transformation Step S in T
 3 if S is exhaustive and RHS of the S contains LHS of the S then return
retValue.false
 4 if S is exhaustive and S does not contain modify or deletion and S is not
an ST step then return retValue.false
 5 end foreach
 6 foreach Loop L in T
 7 combinedStep = COMBINETRANSFORMATIONSTEPS(transformation steps
of the L)
 8 if RHS of the combinedStep contains LHS of the combinedStep then
return retValue.false
 9 end foreach
10 return retValue.undecided

If the transformation step contains create type internal

causality, the algorithm checks whether the host model with
the newly added elements contains new possible match places.
The algorithm takes into consideration the structure of the
pattern, metatypes of the nodes and edges, their attributes and
attribute values and also the propagated OCL constraints.

During the combination of steps S1 and S2, the S1
RHS

 and the
S2

LHS could have more than one matching variation. The
algorithm checks all the possible variations in point of VCFL
view (external causalities, metatypes).

In the case of loops the exit conditions (structure, attribute
value by modify internal causalities and
SystemLastRuleSucceed) are also checked by the algorithm.

VTA is an offline algorithm; the termination in many cases
depends not only on the VCFL transformation model but also
on the actual host model. A simple constraint could be itself a
significant difference between two steps or an attribute value
between two models. The problem is not trivial. There are
certain cases when the algorithm can make a sure decision
based on the VCFL transformation, and there are other cases
when not.

F. Summary of the Termination Properties
Termination of transformations is not always guaranteed. If

a control flow model contains an exhaustive step that can be
applied indefinitely to the result models, the transformation
does not terminate.

All derivation sequences over transformation steps
TSTEPS ∈ are terminating if each transformation step

STEPSS ∈ terminate. Since the non-exhaustive
termination steps terminate, therefore we can predicate the
following proposition.

Proposition. A VCFL transformation T terminates if all

exhaustive transformation step STEPSSE ∈ and loop

TL∈ terminate.

IV. RELATED WORK
Many approaches have been introduced in the field of graph

grammars and transformations to capture graph domains; for
instance, the GReAT [10] [11], the PROGRES [12], the
FUJABA [13] [14], the VIATRA [15], the AToM3 [16] and
the Attributed Graph Grammar (AGG) [17]. These approaches
are specific to the particular system, and each of them has
some features that others do not offer.

The GReAT framework is a transformation system for
domain specific languages (DSL) built on metamodeling and
graph rewriting concepts. The control structure of the GReAT
allows specifying an initial context for the matching to reduce
the complexity of the general matching case. The pattern
matcher returns all the possible matches to avoid the inherent
non-determinism in the matching process. The attribute
transformation is specified by a proprietary attribute mapping
language, whose syntax is close to C. The LHS of the rules
can contain OCL constraint to refine the pattern.

PROGRES is a visual programming language in the sense
that it has a graph-oriented data model and a graphical syntax
for its most important language constructs. PROGRES
provides constructs for rule firing and for sequencing the rules
to form a controllable transformation process. PROGRES
offers refined control structures; both imperative and
declarative approaches can be used in either a deterministic or
a non-deterministic manner. ACID transactions are also
allowed in the control specifications.

GReAT and the PROGRES have a test rules construction.
A test rule is a special expression and it is used to change the
control flow during execution. A test rule has only LHS. If a
test rule is successful (the matching was successful), the rule

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

537

after the test node is executable.
In FUJABA the combination of activity diagrams and

collaboration diagrams (story-diagrams) are used to express
control structures. Story-diagrams are a visual programming
language that facilitates the specification of complex
application-specific object structures. Moreover, FUJABA
extended story-diagrams by statecharts to story-charts. Story-
charts use statecharts and activity diagrams to define complex
control flows and collaboration diagrams to specify the entry,
exit, do, and transition actions that deal with complex object-
structures [14].

VIATRA (Visual Automated Transformations) is a model
transformation framework developed mainly for the formal
dependability analysis of UML models. In VIATRA,
metamodeling is conceived specially: the instantiation is based
on mathematical formalisms and called Visual Precise
Metamodeling. The attribute transformation is performed by
abstract state machine statements, and there is built-in support
for attributes of basic Java types. The model constraints can
be expressed by graph patterns with arbitrary levels of
negation. The rule constraints are also specified by graph
patterns. VIATRA uses abstract state machines (ASM) to
define the control flow of the system.

The transformation and simulation tool AToM3 uses model
transformation to simulation traces in order to simulate the
operations. The rule constraints can contain generalized
negative application conditions and can be pre- and
postconditions to events. Constraints can be both semantic and
graphical constraints. Similarly to AGG, the control flow
consists of layers; the rules are sequenced by priority numbers
within the layers. A rule is executed only once, but in case of
non-overlapping matches, the rules are applied to all the
matches.

AGG is a visual tool environment consisting of editors,
interpreter and debugger for attributed graph transformation;
attribute computation by Java; supports a hybrid programming
style based on graph transformation and Java. In AGG
termination criteria are implemented for Layered Graph
Transformation Systems (LGTS). The criteria they propose
are based on assigning a layer to each rule, node and edge
type. For termination, they define layered graph grammars
with deletion and non-deletion layers. Termination criteria are
expressed by deletion and non-deletion layer conditions. The
layers fix the order how rules are applied. The interpretation
process first has to apply all rules of layer 0 as long as
possible, and then all rules of layer 1, etc. Rule layers allow
specifying a simple control flow graph transformation. Once
the highest layer has been finished the transformation stops,
unless the option “loop over layers” is turned on.

Table 1 gives a comparison of control flow, constraint, and
attribute transformation support of the presented approaches.

Contextual layered graph grammars (CLGGs) have been
used in parsing, as they provide a natural way to steer the
parsing process, thereby reducing its non-determinism and its
complexity. A contextual layered graph grammar is a
construct CLGG = (S, T, P, cl, dl, rl), where S is a labeled

graph, called the initial graph, T is a set of node and edge
types of labels and P is a set of rules. The layering functions
cl, dl, and rl assign a creation and a deletion layer to elements
of T and a unique layer to each rule p ∈ P, respectively. In
[18], the following concrete termination criterion for CLGGs
was discussed.

TABLE I

COMPARISON TABLE OF CONTROL FLOW, CONSTRAINTS AND ATTRIBUTE
TRANSFORMATION SUPPORT FOR MODEL TRANSFORMATION TOOLS

 Control Flow Constraints
in the rule

Attribute
transformation

VMTS Stereotyped activity
diagrams

Instantiation
+ OCL

XSL

GReAT Deterministic, non-
deterministic,
recursion

OCL C-based attribute
mapping language

AGG Layers (exhaustive
or once, loop)

JAVA, NAC JAVA

PROGRES Imperative and
declarative,
transactions

Attribute
constraints,
cardinality,
negative edge

Built-in or host
programming
language (esp. C)

VIATRA ASM Graph pattern ASM statements
(built in support
for basic JAVA
types)

AToM3 Layers with
priorities,
sequencing by
priority. Parallel
execution of non-
overlapping
matches.

Generalized
NAC,
application
conditions.

Python

FUJABA Story diagrams Story
diagrams,
JAVA

Story diagrams

The layering condition above guarantees the termination of

the process, by producing a parsing derivation, or proving that
the sentence cannot be parsed. The existence of the layering
function rl allows the partitioning of the set P into a collection
of sets (P1, P2,…Pk). Rules in a set Pi can be used only after
rules from the set Pi−1 have been used and are no longer
applicable. Moreover, after using a rule from Pj , j ≥ i, no rule
from Pi−1 can be applied any longer.

This also provides a generalization to the following
approach. In [19] a contribution towards solving the
termination problem for rewriting systems with external
control mechanisms is given. It extends the concept of
transformation unit to high-level replacement systems. For
high-level replacement units, several abstract properties based
on termination criteria are stated and proved. However,
terminating rules do not always satisfy the measure function
required by this approach, since attribute transformations and
other constraint can also influence the termination properties
of a rule.

The layering approach is not applicable for VCFL
transformations. In CLGGs, there is no strict control flow,
rules are created without any fixed order and assigned to
different layers. In VCFL, we have a fixed control flow
specified by stereotyped activity diagram. Therefore, we have

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

538

to examine the termination conditions of fixed control flows
with given transformation steps and step structures (without
any modification of the order of the steps).

V. CONCLUSION
This paper has provided a control flow technique for model

transformations based on graph rewriting. The transformations
are represented in the form of explicitly sequenced
transformation steps. We have shown the fundamental
concepts of the VCFL approach.

As it was presented, a control structure language needs a
sequence as well as a conditional branch mechanism,
hierarchy, parallel executions and iteration constructs. VCFL
has all these control structures in a deterministic
implementation.

Termination is an important issue for model
transformations. Since model transformations can become
very complex, we consider not only the application of single
transformation steps, but also transformations where step
applications are restricted according to a strict control flow.

In this work, we discussed the properties of the VMTS
Visual Control Flow Language. We stated and proved several
termination criteria for transformation steps, loops and
transformations. An algorithm to validate the termination is
also provided.

The introduced approach can be generalized to other
control flow languages which facilitate to assign constraints to
transformation steps and supports constraint evaluation. The
presented concepts and algorithms can be reused with minor,
approach related modifications.

VCFL has successfully been applied in industrial projects,
like generating user interface from resource model and user
interface handler code from statechart model for Symbian [7]
and .NET Compact Framework mobile platform [20].

REFERENCES
[1] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, “A Systematic

Approach to Metamodeling Environments and Model Transformation
Systems in VMTS”, ENTCS, International Workshop on Graph-Based
Tools (GraBaTs) Rome, 2004.

[2] The VMTS Homepage. http://avalon.aut.bme.hu/~tihamer/research/vmts
[3] OMG UML 2.0 Specification, http://www.omg.org/uml/
[4] G. Rozenberg (ed.), ”Handbook on Graph Grammars and Computing by

Graph Transformation: Foundations”, Vol.1 World Scientific,
Singapore, 1997.

[5] OMG Object Constraint Language Specification (OCL), www.omg.org
[6] M. Fowler, UML Distilled, “A Brief Guide to the Standard Object

Modeling Language”, 3rd edition, Addison-Wesley, ISBN: 0321193687,
2003.

[7] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf,
“Metamodel-Based Model Transformation with Aspect-Oriented
Constraints”, International Workshop on Graph and Model
Transformation, GraMoT, Tallinn, Estonia, September 28, 2005.

[8] H. Ehrig, “Introduction to the Algebraic Theory of Graph Grammars”,
In:Graph Grammars and Their Applications to Computer Science and
Biology, Springer, Ed. V. Claus, H. Ehrig, G. Rozemberg, Berlin, 1979.

[9] H. Ehrig, M. Korff, M. Löwe, “Tutorial introduction to the algebraic
approach of graph grammars based on double and single pushouts”. In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the
4th International Workshop on Graph-Grammars and Their Application

to Computer Science, volume 532 of Lecture Notes in Computer
Science, pages 24-37. Springer Verlag, 1991.

[10] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the Use of Graph
Transformation in the Formal Specification of Model Interpreters”,
Journal of Universal Computer Science, Special issue on Formal
Specification of CBS, 2003.

[11] A. Agrawal, “A Formal Graph-Transformation Based Language for
Model-to-Model Transformations”, PhD Dissertation, Vanderbilt
University, Dept of EECS, August, 2004.

[12] A. Schürr, A. Zündorf, “Nondeterministic Control Structures for Graph
Rewriting Systems”, in Proc. WG'91 Workshop in Graph- Theoretic
Concepts in Computer Science, LNCS 570, Springer Verlag (1992), pp.
48-62, also: Technical Report AIB 91-17, RWTH Germany, 1991.

[13] FUJABA Homepage, http://wwwcs.upb.de/cs/fujaba/
[14] Hans J. Köhler, Ulrich A. Nickel, Jörg Niere, Albert Zündorf,

“Integrating UML Diagrams for Production Control Systems”, Proc. of
the 22nd International Conf. on Software Engineering (ICSE) Limerick
Ireland, ACM Press, 2000, pp. 241-251.

[15] D. Varró and A. Pataricza, “VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains and
UML”, Journal of Software and Systems Modeling, 2003.

[16] J. Lara, H. Vangheluwe , M. Alfonseca, “Meta-modelling and graph
grammars for multi-paradigm modelling in AToM”, Software and
Systems Modeling (SoSyM), 3(3):194-209, August 2004.

[17] G. Taentzer, “AGG: A Graph Transformation Environment for
Modeling and Validation of Software”, In J. Pfaltz, M. Nagl, and B.
Boehlen (eds.), Application of Graph Transformations with Industrial
Relevance (AGTIVE’03), vol. 3062. Springer LNCS, 2004.

[18] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel
Varró and Szilvia Varró-Gyapay, “Termination Criteria for Model
Transformation”, LNCS, Vol. 3442: Fundamental Approaches to
Software Engineering: 8th International Conference, FASE 2005,
Edinburgh, UK, April 4-8, 2005, pages 49-63. Springer-Verlag, 2005.

[19] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, Gabriele
Taentzer, “Termination of High-Level Replacement Units with
Application to Model Transformation”, Electr. Notes Theor. Comput.
Sci. 127(4): 71-86, 2005.

[20] L. Lengyel, T. Levendovszky, H. Charaf, “Implementing an OCL
Compiler for .NET”, In Proceedings of the 3rd International Conference
on .NET Technologies, Pilsen, Czech Republic, May-June 2005, pp.
121-130.

