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An Effective Algorithm for Minimum Weighted
Vertex Cover problem

S. Balaji, V. Swaminathan and K. Kannan

Abstract—The Minimum Weighted Vertex Cover (MWVC) prob-
lem is a classic graph optimization NP - complete problem. Given
an undirected graph G = (V, E) and weighting function defined on
the vertex set, the minimum weighted vertex cover problem is to find
a vertex set SCV whose total weight is minimum subject to every
edge of G has at least one end point in S. In this paper an effective
algorithm, called Support Ratio Algorithm (SRA), is designed to
find the minimum weighted vertex cover of a graph. Computational
experiments are designed and conducted to study the performance of
our proposed algorithm. Extensive simulation results show that the
SRA can yield better solutions than other existing algorithms found
in the literature for solving the minimum vertex cover problem.

Keywords—weighted vertex cover, vertex support, approximation
algorithms, NP-complete problem.

I. INTRODUCTION

The classical minimum weighted vertex cover problem in-
volves graph theory and finite combinatorics and is categorized
under the class of NP-complete problems[6] in terms of its
computational complexity. In 1972, in a landmark paper Karp
has shown that the vertex cover problem is NP-complete[13]
meaning that it is exceedingly unlikely that to find an algo-
rithm with polynomial worst-case running time. The mini-
mum vertex cover problem remains NP - complete even for
certain restricted graphs, for example, the bounded degree
graphs[7]. Minimum weighted vertex cover problem (MWVC)
has attracted researchers and practitioners not only because
of the NP-completeness but also because of many difficult
real-life problems which can be formulated as instances of
the minimum weighted vertex cover. Examples of such areas
where the minimum weighted vertex cover problem occurs
in real world applications are communications, particularly
in wireless telecommunications, civil, electrical engineering,
circuit design, network flow.

Due to computational intractability of the MWVC problem,
many researchers have instead focused their attention on
the design of approximation algorithm for delivering quality
solutions in a reasonable time. Pitt[17] gave a randomized
algorithm which randomly selects an end vertex of an arbitrary
edge with a probability inversely proportional to its weight.
For a comprehensive survey on the analysis of approximation
algorithms for MWVC, the reader is referred to Monien and
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Fig. 1. (a) Graph G(V,E) (b) G(V,E) with MWVC

Speckenmeyer[18], Motwani[15], Hastad[11], Shyu, Yin and
Lin[19] and Likas and Stafylopatis[14]. The first fixed param-
eter tractable algorithm for k-vertex cover problem was done
by Fellows[5]. Recently, Dehne et al[4] have reported that they
used fixed parameter tractable algorithm to solve the minimum
vertex cover problem on coarse-grained parallel machines
successfully. Neidermeier and Rossmanith[16] presented an
efficient fixed parameter algorithm for the minimum weighted
vertex cover problem. In this paper for efficiently solving
MWV C problems, an effective algorithm called Support Ratio
Algorithm (SRA) is proposed. The proposed algorithm de-
signed with the term called support of vertices, which involves
the sum of the degrees of adjacency vertices, ratio between
weight and product of support and degree of vertices, to
get a near smallest weighted vertex cover of the graph. Its
effectiveness is shown by conducting extensive computational
experiments on a large number of random graphs. The simula-
tion results show that the SRA can find the optimum solution.
The paper is organized as follows. Section Il briefly de-
scribes the minimum weighted vertex cover problem and
its theoretical background. Section Il outlines the SRA. In
Section 1V graph model used in the experiments is briefly
described. Section V provides experiments done and their
results. Section VI summarizes and concludes the paper.

Il. MINIMUM WEIGHTED VERTEX COVER PROBLEM

Let G = (V, E) be an undirected graph with a weight function
w : V —R associated with each vertex of veV, a set SCV is
a minimum weighted vertex cover of G if (i) for every edge
(u, V)€E, either ueS or veS or both u,veS and (ii) among
all covers of E, S has the smallest weight, i.e., ¥,cyw(v)
is minimum. A vertex cover is minimal or optimal if it has
a minimum size, i.e., if there is no vertex cover set having
fewer vertices. The goal of minimum weighted vertex cover
problem is to find a vertex cover of minimum weight. Fig.1
briefly explains the above criteria.
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Graph of the MWVC instance shown in the Fig.1(a),
where the index of the vertexes are denoted by alphabets and
the number in the brackets is the weight of the associated
vertexes. The optimal solution S = {C, D, E} with a total
weight of 10. However there is no vertex set, covering all the
edges with total weight less than 10 shown in Fig. 1(b). There
are two versions of the vertex cover problem: the decision
and optimization versions. In the decision version, the task is
to verify for a given graph G, a weight function w : V. >R
and k, weighted vertex cover asks for a vertex cover of total
weight at most k but in the optimization version the task is to
find a vertex cover of minimum total weight. In this paper we
consider the optimization version of the minimum weighted
vertex cover with the goal of obtaining optimum solution.
Now the MWVC is formulated as an integer programming
problem by using the following conditions: Binary variables
a;;(i1=123,..,n;j=123,..,n) form the adjacency matrix
of the graph G. Each variable has only two values (1 or 0)
according as an edge exists or not. In other words, if an edge
(vi,v;) is in E, then a;; is 1 else a;; is 0. For example, for
the graph of Fig.1 has the following adjacency matrix

-0 O O
e == ]

1
1
1
0
0

_— -0 OO
O OO =
O OO = =

1 1 0

The output of the program expresses the vertex v; is in
the vertex cover or not. v;,=1 if it is in the vertex cover
otherwise v;=0. Thus the total weight in the vertex cover
can be expressed by Z = Sw,v;, 1 < i < n. At least one
vertex of the edge must be included in the vertex cover, so
we have the constrained condition of the minimum vertex
cover can be written as v; + v; >1. Thus the problem can be
mathematically transformed into the following optimization
problem as

Min Z = Yw;v;

Subject to

v; +v; > 1 VY(v;,v5) €E
v; € {0,1} Yv; €V

To illustrate the minimum vertex cover problem, consider
the problem of placing guards with associated costs of guards
[20] in a museum where corridors in the museum correspond
to edges and task is to place a minimum number of guards
with paying minimum total cost so that there is at least one
guard at the end of each corridor. Fig.1 depicts the problem
in brief.

Minimum weighted vertex cover problem is a special case
of set cover problem[3] which takes as input an arbitrary
collection of subsets S = {S1, Sa, ..., S, } of the universal set
V, and the task is to find a smallest subsets from S whose
union is V. The minimum weighted vertex cover problem
is also closely related to many other hard graph problems
and so it is of interest to the researchers in the field of
design of optimization and approximation algorithms. For

instance the independent set problem[2][13][7] is similar to
the minimum vertex cover problem because a minimum vertex
cover defines a maximum independent set and vice versa.
Another interesting problem that is closely related to the
minimum vertex cover is the edge cover which seeks the
smallest set of edges such that each vertex is included in one
of the edges.

I1l. TERMINOLOGIES, ALGORITHM AND
COMPUTATIONAL COMPLEXITY

Neighborhood of a vertex: Let G = (V, E), V is a vertex set
and E is an edge set, be an undirected graph and let |V'| = n
and |E| = m. Then for each veV, the neighborhood of v is
defined by N(v) = {u € V/u is adjacent to v} and N[v] =
v U N(v).

Degree of a vertex: The degree of a vertex veV, denoted
by d(v) and is defined by the number of neighbors of v.

Support of a vertex: The support of a vertex veV is defined
by the sum of the degree of the vertices which are adjacent to

v, i.e., support(v) = s(v) = ¥yen (v da(u).

A. Support Ratio Algorithm (SRA - Proposed)

The following algorithm is designed to find the general
minimum weighted vertex cover of a graph G. Adjacency
matrix of the given graph G of n vertices and m edges and
the weights of the each vertexes are given as the input of the
program. The degree d(v) and support s(v) of the each vertex
veV are calculated. Support of the vertex calculated by the
relation ¥,¢ () dc(u). Moreover the ratio r(v) of each veV
calculated by the relation r(v) = S(:j])(ff)”). Add the vertex
which has the maximum value of the ratio r(v) into the vertex
cover V.. . If one or more vertices have equal maximum value
of the support, in this case if (s(v;)> s(v;)), add the vertex
v; into the vertex cover V. otherwise add v; into V.. Update
the adjacency matrix by deleting N[v], veV., from the given
graph G. Proceed the above process until the edge set E has
no edges. i.e., up to a;; # 0 Vi, j. The pseudo-code of the
proposed algorithm is given below.

Input: G (V, E)
Output: Z = ¥, cv, wiv;
while E # ¢ do

step 1:

fori«<~1ton
forj«1ton

d(Uz) = Ejai]'

step 2:

fori<1ton
forj«<1lton

$(vi) = Xy en(u)da(v))
step 3:

fori<~1ton

r(v;) = S(ZEZf;)i)

step 4:

add the vertex v;, having the maximum value of r(v;),
into the vertex cover V,
Ve < V. Uw;
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step 5:

delete N[v],ve V., from G;

end while.

fori<~1ton

if(v; € Vo)

V; = 1

else

vy = 0

end.

in step 4 if two or more vertices have equal
maximum value of r(v), in such case, use the modified
version of step 4 as

step 4a:

if (one or more vertices have equal maximum value
of r(v))then

Ve < Ve U if(s(v) > s(vj))

else

V. V. u Vj

go to step 5.

B. Computational Complexity

The worst case complexity of finding the solution of the
minimum weighted vertex cover problem using SRA can be
obtained as follows: Assume that there are n vertices and m
edges, in the given algorithm calculation of degree of vertices
in step 1, support of vertices in step 2 and the ratio r(v)
of vertices in step 3 requires O(n?),0(n2) and O(n) running
time respectively. To pick the vertex which has the maximum
value of the ratio in step 4 requires O(n) running time. The
procedure of the algorithm goes up to m steps (worst case).
So the overall running time of the procedure of SRA can
be deduced as follows: m(O(n?)+ O(n)+ O(n) + O(n)) =
O(mn? + mn? + mn 4+ mn) = O(mn?2).

IV. GRAPH MODELS

This section outlines the graph models used to assess the
effectiveness of the proposed algorithm in previous section.
The graph models used are (i) G(n, p) graphs[1] and (ii)
G(n, m) graphs[1][21]. The models are standard random
graph models from the graph theory and all the graphs are
undirected.

1) G(n, p) Model: The G(n, p) model is also called Erdos
Renyi random graph model[1], consists of graphs of n vertices
for which the probability of an edge between any pair of nodes
is given by a constant p > 0. To ensure that graphs are almost
always connected, p is chosen so that p >> % To generate
a G(n, p) graph we start with an empty graph. Then we iterate
through all pairs of nodes and connect each of these pairs with
probability p.

2) Algorithmto generate (G, n, p)graphs. The pseudo code
for generating G (n, p) graphs as follows

initialize graph G(V, E)

fori< 1ton

for j« i+l ton

add edge (i, j) to E with probability p

return (G).

The expected number of edges of G(n, p) graph is pn(n —
1)/2 and expected degree is np. Graphs are generated for
different p and n values.

3) G(n, m) Model: The G(n, m) model consists of all graphs
with n vertices and m edges. The number of vertices n and
the number of edges m are related by m = nc, where ¢>0
is constant. To generate a random G(n, m) graph, we start
with a graph with no edges. Then, cn edges are generated
randomly using uniform distribution over all possible graphs
with cn edges. Each node is thus expected to connect to 2c
other nodes on average. The pseudo-code for the random graph
generation is shown in the following algorithm.

4) Algorithmto generate (G, n, c)graphs. The pseudo code
for generating G (n, m) graphs as follows

initialize graph G(V, E)

m< nxc

fori+< 1tom

repeat

e + random edge

until e not present in E

E«+ EU{e}

return (G).

V. EXPERIMENTAL RESULTS AND ANALYSIS

All the procedures of SRA have been coded in C++ lan-
guage. The experiments were carried out on an Intel Pentium
Core2 Duo 1.6 GHz CPU and 1 GB of RAM. The effectiveness
of the SRA heuristic was evaluated using 60 instances. These
instances are divided into 3 sets as shown in the TABLE
I. Simulations are carried out on three types of graphs: the
randomly generated small size, moderate and large scale
graphs for the minimum weighted vertex cover problem.

TABLE |
MWV C INSTANCES

Problem No. of Range of Graph Optimal
set Instances ~ Weights Model Solution
20 [1,40] G(n, p) Known

20 [1, d(®2] G(n, m)  Unknown

3 20 [1, 100] G(n, m)  Unknown

A. Experiment 1

We first tested the SRA on 20 random graphs generated
based on the concept explained in Section IV-1. The weight
w(i) on vertex i was randomly selected in the range [1, 40],
1< i < n. The result we recorded for each test graph and
their information are shown in the TABLE Il. These results
have been compared with dual-LP (D-LP)[12] method, its
effectiveness to solve the minimum weighted vertex cover
problem shown in [10]. From the TABLE II, we can see that
the SRA approach delivers the optimal solutions to the most of
the MWV/C test instances and the quality of the solution of the
proposed algorithm is much better that of Dual-LP method.

B. Experiment 2

To test the performance of SRA approach, further we have
compared with two more heuristics WtRAND-(WR)[17] and
Tabu Search(TS)[8][9] for the MWV C. Here we generated the
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TABLE Il
SIMULATION RESULTS FOR THE 1 SET OF INSTANCES

Graph D-LP SRA Opt.

\Y E p Algorithm  (Proposed)

20 28 0.15 520.4 500.3 500.3
25 45 0.15 649.2 625.6 625.6
30 65 0.15 779.7 750.3 750.3
40 117 0.15 995.6 960.8 960.8
45 99 0.1 976.2 945.2 945.2
45 148 0.15 1068.8 1035.1 1035.1
50 123 0.1 1093.2 1050.4 1050.4
50 184 0.15 1178.9 1150.7 1150.7
55 148 0.1 1125.4 1100.2 1100.2
55 223 0.15 1187.2 1155.8 1155.8
60 177 0.1 1239.6 1202.5 1200.1
60 265 0.15 1300.4 1263.7 1260.8
65 208 0.1 1341.2 1300.9 1300.9
65 312 0.15 1398.4 1365.5 1365.5
70 241 0.1 1379 1330.8 1330.8
70 362 0.15 1452.5 1400.5 1400.5
75 277 0.1 1461.3 1429.4 1425.9
75 416 0.15 1558.8 1503.2 1500.2
80 316 0.1 1572.2 1521 1520.3
80 474 0.15 1640.1 1602.1 1600.4

random graphs based on the concept explained in section IV-
3. The graphs are generated based on the relation m = cn, ¢
varied from 1.25 to 2 in steps of 0.25 and for each value of c,
n varied from 100 to 300 in steps of 50. For each combination
of n and c, 20 random graphs are generated. The weight
w(i) on vertex i be randomly distributed over the interval [1,
d(i)?], where d(i) is the degree of the vertex i, 1< i < n.
The above discussion is possible because of larger degree
(more transportation benefits) on a vertex might induce more
weight (running time) on it. We summarized the tested results
in TABLE |1l and we calculated the percentage of deviation
of other heuristics compared with SRA and these results are
listed in TABLE 1V, in which positive values tells us that the
SRA reaches the best optimum solution and negative values
represents the SRA fails to reach the optimum solution than
the other heuristics compared. If the values are exactly equal
to zero then the SRA and the compared heuristics reaches the
same optimum. Evidently there is no negative and zero values
in the TABLE IV. From the results shown in the TABLES III
and IV, we can see that the quality of the solution delivered
by SRA are much better than the other heuristics, involved
in this experiment, even though the weights on vertexes are
proportional to the degrees.

C. Experiment 3

In this experiment the parameter set opted like small-large
scale problems, that is V varied from 50 to 1000. The weight
w(i) on vertex i was also randomly drawn from the interval
[1, 100]. Here we used the G(n, m) graph model to generate
the random graphs. All of the heuristics implemented in
experiment 1 and 2 were examined in this experiment. For
most of the test instances the optimal solutions are unknown,

TABLE Il
SIMULATION RESULTS FOR 2ND SET OF INSTANCES

Graph D-LP WR TS SRA
Label \% E (@) (b) (c) (d)
RG1 100 100 173.3 171.6 170.2 169.2
RG2 200 629.7 631.9 614.3 607.4
RG3 300 1880.3 1844.7 1850 1807.6
RG4 400 2761.6 2768.8 27475 2663.3
RG5 150 150 457.9 454.3 452.6 446
RG6 300 20052 1993.7 1997.2 1938.1
RG7 450 23245 23179 22799 22383
RG8 600  5395.2 5374 53389 5168.8
RG9 200 200 486.4 484.4 482.1 468.2
RG10 400 1710 1707.8  1722.8 1643.9
RG11 600 2941.6 29257 29428 2838.6
RG12 800  4610.5 4661.1 4645.1 4437.9
RG13 250 250 445.1 438.4 436.8 428.3
RG14 500 15245 15131 1502.9 1460.7
RG15 750  3484.6  3469.1 34545 3314.3
RG16 1000 6375 6339.3 6327.8  6058.2
RG17 300 300 660.3 655.1 653.3 638.3
RG18 600 1642.8 1628 1630.1  1569.5
RG19 900 47823 4727.4 4736.9 4539.9
RG20 1200 8104 8029 7981.6  7654.7
TABLE IV
DEVIATION OF OTHER HEURISTICS FROM SRA FOR 2ND SET OF
INSTANCES
Label Percentage of deviation from SRA
[(a-d)/d]x100  [(b-d)/d]x100  [(c-d)/d]x100
RG1 2.45 1.45 0.75
RG2 3.67 2.86 1.13
RG3 4.02 2.05 2.35
RG4 3.69 3.96 3.16
RG5 2.67 1.87 1.47
RG6 3.46 2.87 3.05
RG7 3.85 3.56 1.86
RG8 4.38 3.97 3.29
RG9 3.89 3.46 2.96
RG10 4.02 3.89 4.80
RG11 3.63 3.07 3.67
RG12 3.89 5.03 4.67
RG13 3.93 2.35 1.98
RG14 4.37 3.59 2.89
RG15 5.14 4.67 4.23
RG16 5.23 4.64 4.45
RG17 3.45 2.63 2.35
RG18 4.67 3.73 3.86
RG19 5.34 413 4.34
RG20 5.87 4.89 4.27
Average 4.08 3.44 3.08

we obtained the relative performance of the other heuristics
with the SRA by calculating the percentage of deviation of
other heuristics from the SRA. These results are shown in the
Fig. 2 where the major axis represents the 20 test instances
and for each test instances error rate of other heuristics with
SRA were plotted as points and for each algorithm their points
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Fig. 2. Error rate (in percentage) of other heuristics with SRA in 3rd set of
test instances

are linked by a line. With that figure we show that, for the set
instances we used, the SRA produced better solutions than
other heuristics compared and the other heuristics get higher
deviation from SRA when the size of the problem increases.

VI. CONCLUSION

A new SRA for minimum weighted vertex cover problem
has been proposed and its effectiveness has been shown by
simulation experiments. The terminology support of a vertex
introduced in the new model, with that, the new model can find
the minimum weighted vertex cover effectively. The simulation
results show that the new SRA can yield better solutions
than D-LP, WR and TS heuristics for random graphs. At the
same time, our approach gives best solutions for large scale
problems also. The proposed algorithm has led to give near
optimal solutions for most of the test instances where we know
the optimal solutions. Our approach is heuristic with O(mn?)
complexity and maximum number of n iterations to solve
the vertex cover problem. Furthermore, another important
attractiveness of this heuristic is its outstanding performance
for solving MWVC problems.
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