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Abstract—Partial coherence between two signals removing the 

contribution of a periodic, deterministic signal is proposed for 

evaluating the interrelationship in multivariate systems. The 

estimator expression was derived and shown to be independent of 

such periodic signal. Simulations were used for obtaining its critical 

value, which were found to be the same as those for Gaussian 

signals, as well as for evaluating the technique. An Illustration with 

eletroencephalografic (EEG) signals during photic stimulation is also 

provided. The application of the proposed technique in both 

simulation and real EEG data indicate that it seems to be very 

specific in removing the contribution of periodic sources. The 

estimate independence of the periodic signal may widen partial 

coherence application to signal analysis, since it could be used 

together with simple coherence to test for contamination in signals by 

a common, periodic noise source. 

Keywords—Partial coherence, periodic input, spectral analysis, 

statistical signal processing.

I. INTRODUCTION

HE coherence function is commonly used for evaluating 

the linear dependence between two random signals. It is a 

frequency domain, measuring technique, which is analogous 

to the correlation coefficient. The squared-modulus of the 

coherence function is often called just coherence [1]. 

Coherence is not affected by a time delay between the 

signals investigated. This feature, together with its frequency 

selectivity, turn coherence very useful for evaluating the 

relationship between signals arisen as output of many linear 

systems of interest. That is why it has been widely applied to 

data from such diverse areas as biomedical, radar and 

communication engineering, as well as oceanography, 

atmospheric science, and acoustics [2]. 

The extension of coherence definition to the multivariate 

case leads to multiple and partial coherences. While the first is 
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the fraction of the power accounted for in the output via linear 

relationships with all the input signals, the latter is the 

coherence between two signals after removing the linear 

contribution from a set of other signals. Multiple and partial 

coherences provide thus a more complete evaluation of the 

interrelationship in multivariate systems. 

In some engineering applications, such as in transmission 

lines, engines and electric machines, the input signal may be 

periodic. Another example occurs in evoked responses to 

sensory stimulation, which are used in the clinical practice as 

an exam in which a fixed, periodic stimulus is applied to the 

human sensory system, eliciting a response in the otherwise 

random electrical brain activity of the electroencephalogram 

(EEG). For such kind of systems one may be interested in 

evaluating the relationship between two output locations, 

which is not accounted for by the input. 

For the above cases, a technique that could allow measuring 

the degree of dependence between two signals removing the 

contribution of a common, periodic source would be very 

useful. This is exploited in the present work, where the 

expression of partial coherence between two random signals 

removing the contribution from a periodic one is obtained. 

The proposed technique is evaluated in simulated signals, 

which were also used for obtaining the critical value. An 

illustration example with EEG signals during stroboscopic 

(flash) stimulation is also provided.

II. THEORETICAL BACKGROUND

Consider the N-input-one-output linear system of Fig. 1, 

where xj[k] (j=1,2,…,N) and y[k] are discrete time signals. The 

augmented spectral matrix [3] for such system is defined as: 
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Fig. 1 N-input-one-output multivariate linear system. Input xj[k] is 

filtered through Hj(f) to result in response vj[k], which is added to the 

other responses and the background, Gaussian noise n[k] to result in 

the output measured signal y[k]

where )(ˆ fS pq  is the cross-spectrum estimate between signals 

p[k] and q[k] (or the auto-spectrum estimate if p=q). The 

conditional spectral matrix (a complex analog to the 

multivariate regression analysis equation provided in [4]) may 

be expressed using the sub-matrices from Aspec as:
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According to [3] the partial coherence between the output 

y[k] and the input x1[k] removing the contribution of the other 

N-1 inputs can be estimated with the following expression 

involving matrix Cspec:
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where Cspec(i,j) is the ith row, jth column element of Cspec.

Now consider the case of the one-input-two-output linear 

system of Fig. 2, where x[k] is a periodic, deterministic 

system.  
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Fig. 2 One-input-two-output linear system model used for deriving 

the partial coherence estimate between y1[k] and y2[k], removing the 

contribution from x[k] when this latter is a periodic, deterministic 

signal. The background activities n1[k] and n2[k] are zero-mean, 

Gaussian signals uncorrelated with each other and with input x[k]

If the windowing is applied as to keep the same number of 

cycles in each data segment, then the Fourier transform of x[k]

will have the same value in all windows, say X. For this 

particular case, if when aims at obtaining the partial coherence 

between the outputs removing the effect of the input signal, 

the augmented spectral matrix becomes: 
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where Yji(f) (j=1,2) is the ith-window Fourier Transform of 

yj[k], M is the number of segments used in the estimation and 

‘*’ superscript denotes complex conjugate. Here, the 

averaging factor in the spectral estimates – usually 1/(MT),

with T denoting the window duration – is omitted, since it 

would cancel in coherence estimation. Furthermore, the 

conditional spectral matrix will be independent of signal x[k], 

since X clearly cancels when yy 11

1

11
 is obtained. Thus, 

such matrix becomes: 
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Finally, according to (3), the partial coherence estimate 

between y1[k] and y2[k] removing the contribution of the input, 

periodic signal x[k] may be expressed as: 
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The numerator of (6) may be also obtained as the product of 

the nonprincipal diagonal elements of matrix Cspec in (5). Such 

partial coherence is here denoted as )(ˆ 2

21 fyy  in order to 

distinguish it from the generic )(ˆ 2

21 fxyy . It is interesting to 

note that this multivariate coherence estimate is independent 

of the periodic signal (x-index is intentionally removed from 

the estimate symbol to emphasize this aspect). The coherence 

estimate between a periodic signal and a random one is known 

to be independent of the first [5]. This result is hence a two-

variate generalization of (simple) coherence estimate 

independence of the input signal when such is periodic. 
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III. METHODS

Based on the Model of Fig. 2, a Monte Carlo simulation 

was carried out in order to determine critical values for 

)(ˆ 2

21 fyy  under the null hypothesis of no periodic component 

in both y1[k] and y2[k]. This leads to uncorrelated Gaussian 

signals. )(ˆ 2

21 fyy  was then calculated according to (6) from 

pairs of independent, Gaussian distributed signals divided into 

M segments, which was varied from 4 to 100. Critical values 

were then obtained as the 95th percentiles of the resultant 

sample distribution. 

The technique was next applied to simulated signals. Thus, 

x[k] (Fig. 2) was generated as a 8 Hz- unit impulse train and 

both H1(f) and H2(f) were set constant (=1). The background 

noise terms n1[k] and n2[k] were obtained as the sum of two 

parcels – an identical activity (band-filtered white noise within 

9-13 Hz) and another uncorrelated activity (unit-variance 

Gaussian signals). Partial coherence estimate )(ˆ 2

21 fyy  was 

also applied in EEG data acquired during rhythmic photic 

stimulation (flash) at 6 Hz. In this case, y1[k] was the signal 

from electrode O1 and y2[k], that from electrode O2. Such 

electrodes are symmetrically located above the visual cortex, 

where the evoked responses are expected to be stronger. 

Simple coherence was estimated for both simulation and EEG 

applications using the MATAB cohere.m function. In all 

cases, the number of segments used (M) was equal to 12. 

IV. RESULTS

Fig. 3 shows the simulated critical values (L=1000

iterations) for )(ˆ 2

21 fyy , together with the theoretical ones 

for partial coherence in Gaussian signals (obtained using the 

expression provided in [5] and carrying out the correction [3] 

of reducing the number of degrees of freedom by the number 

of signals removed, which is equal to one in this case). It can 

be noted random fluctuations of the first around the latter. 

However, such oscillatory behaviour decreases as L is 

increased, leading both critical values to be virtually identical 

(result not shown). This result would be a two-variate 

generalization of the well-known invariance of coherence 

estimate statistics (and hence of the critical values) with 

respect to second signal, provided the first is Gaussian and 

coherence is zero [6]. According to it, critical values are found 

as:

)2,1(betaˆ 2

21 Mcrit crityy (7)

where betacrit(1,M–2) is the critical value of the standard form 

of the beta distribution [7] with parameters p=1 and q=M–2

for a given significance level. 

Fig. 4 displays the critical values for both simple and partial 

coherences. It can be noted that the latter is always greater 

than the first (which is an expected result due to the reduce in 

the degrees of freedom in the estimation), but the difference 

decreases as the number of data segments used increases. 
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Fig. 3 Simulated (L=1000 iterations) critical values of )(ˆ 2

21 fyy  for 

different number of data segments (M) used in the estimation 

(continuous line). Theoretical partial coherence critical values for 

Gaussian signal are also shown (dotted line) to allow comparison 
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Fig. 4 Critical values of )(ˆ 2

21 fyy  (continuous line) and of simple 

coherence (dotted line) for different number of data segments (M)

used in the estimation 

The results with simulated signals are displayed in Fig. 5. It 

is interesting to note that major differences between 

)(ˆ 2

21 fyy  and simple coherence occur in the frequency of the 

input signal (8 Hz) and its harmonics. )(ˆ 2

21 fyy  clearly 

removes the peaks due to the periodic input signal. It however 

preserves the wide peak that occurs within 9-13 Hz, which is 

due to the nonsynchronized, background activity in both 

signals. Such results indicate the specificity of the proposed 

technique, since it seems to remove only parcels due to a 

common source that is periodic.  
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Fig. 5 Partial coherence )(ˆ 2

21 fyy  (continuous line) and simple 

coherence estimates (dashed line) between the simulated signals y1[k]

and y2[k]. The respective critical values are indicated in the 

horizontal lines and have been taken from Fig. 4 

 The results with real EEG data (Fig. 6) agree well with 

those from simulation. It is interesting to note that the 

attenuation in coherence peak at 12 Hz with )(ˆ 2

21 fyy  is not 

so pronounced as in the remaining harmonics of the 

stimulation frequency (6 Hz). This may be due to the 

background alpha rhythm, which seems to have not been 

entrained by the stimulation. 
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Fig. 6 Partial coherence )(ˆ 2

21 fyy  (continuous line) and simple 

coherence estimates (dashed line) between the EEG signals y1[k]=O1

and y2[k]=O2 acquired during photic stimulation at 6 Hz. The 

respective critical values are indicated in the horizontal lines and

have been taken from Fig. 4

V. CONCLUSION

In the present work, the expression of partial coherence 

estimate between two signals removing the contribution from 

a periodic one is derived. The application of the proposed 

technique in both simulation and real EEG data indicate that 

)(ˆ 2

21 fyy  seems to be very specific in removing the 

contribution of periodic sources

As can be noticed in expression (6), )(ˆ 2

21 fyy  is 

independent of the periodic signal. This result is relevant, 

especially for transient-periodic, input signals, whose 

amplitude may decrease very fast. Thus, )(ˆ 2

21 fyy  could be 

an interesting option since it would reduce random error 

introduction during the acquisition of the input signal. In 

addition, since its critical values were found to be the same as 

those for partial coherence in Gaussian signals, they can be 

readily obtained according to (7). 

Furthermore, such input signal may be also unknown, and 

hence using )(ˆ 2

21 fyy  may widen the application of partial 

coherence to signal analysis, since it could be used together 

with simple coherence to test for contamination in signals by a 

common, periodic noise source. 
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