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Abstract—As the use of registration packages spreads, the number 

of the aligned image pairs in image databases (either by manual or 
automatic methods) increases dramatically. These image pairs can 
serve as a set of training data.  Correspondingly, the images that are to 
be registered serve as testing data.  

In this paper, a novel medical image registration method is 
proposed which is based on the a priori knowledge of the expected 
joint intensity distribution estimated from pre-aligned training images. 
The goal of the registration is to find the optimal transformation such 
that the distance between the observed joint intensity distribution 
obtained from the testing image pair and the expected joint intensity 
distribution obtained from the corresponding training image pair is 
minimized. The distance is measured using the divergence measure 
based on Tsallis entropy. Experimental results show that, compared 
with the widely-used Shannon mutual information as well as Tsallis 
mutual information, the proposed method is computationally more 
efficient without sacrificing registration accuracy. 
 

Keywords—Multimodality images, image registration, Shannon 
entropy, Tsallis entropy, mutual information, Powell optimization. 

I. INTRODUCTION 
HE geometric alignment or registration of images is a 
fundamental task in numerous applications in 

three-dimensional medical image processing. Medical images 
from different modalities can provide complementary 
information about anatomy or functional in a synergistic 
manner. Since images may be acquired in different poses, 
considerable effort has been placed on developing methods for 
image registration. Existing image registration techniques can 
be broadly classified into two categories: feature-based and 
intensity-based methods [1,2]. A feature-based method requires 
the exaction of features common in both images. Obviously, a 
feature-based method is data dependent. Since different image 
data may have different features, the feature exaction 
algorithms adopted in a feature-based image registration 
algorithm are expected to be different for different registration 
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tasks. In contrast, intensity-based image registration techniques 
are free from this limitation because they do not deal with the 
identification of geometrical landmarks. 

 Recently there has been an active research into the use of 
intensity-based image registration techniques [3, 4]. The key 
step of intensity-based image registration is to find a spatial 
transformation such that a similarity metric (or distance metric) 
between two or more images taken at different times, from 
different sensors or from different viewpoints, achieves its 
maximum (or minimum).  The use of image similarity measures, 
especially those derived from information theory, have been 
shown to allow fully automated registration in a number of 
important clinical applications. The Shannon mutual 
information (Shannon-MI) which is based on the 
Kullback-Leibler divergence (KLD) has recently received 
substantial attention [5] for it is a robust and accurate 
registration method. In addition to the widely-used 
Shannon-MI, generalized information-theoretic similarity 
metrics, such as Rényi entropy [6, 7] and Tsallis mutual 
information (Tsallis-MI) [8, 9, 10], have properties that make 
them conductive to medical image registration.  

On the other hand, as the use of co-registration packages 
spreads, the number of the aligned images pairs in image 
databases (either by the manual or automatic methods) 
increases dramatically. These image pairs can serve as a set of 
training data, in which the statistical joint intensity properties 
can be observed and learned in order to acquire useful a priori 
knowledge for future registration tasks.  Chung et al. [11] and 
Gan et al. [12] proposed to make use of the a priori knowledge 
of the joint intensity distribution expected to obtain as a 
reference distribution. This expected joint distribution can be 
estimated from aligned training images. Any two images of the 
same or different acquisitions are aligned when the distance 
from their observed joint distribution to the corresponding 
expected distribution is minimized.  

In this paper, we propose to measure the distance using the 
Tsallis divergence measure (denoted as TDM). Unlike KLD, 
TDM is non-logarithmic and has an adaptive parameter. The 
performance of the proposed method has been investigated by 
applying it to 3D brain image registration problems both on 
simulated and clinical images. Experimental results show that 
the proposed TDM registration algorithm can provide an 
accurate and rapid registration. 
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II. REGISTRATION ALGORITHM 

A. The Spatial Coordinate and Transformation  
Each image is associated an image coordinate frame with 

origin positioned in a corner of the image, with x  axis along 
the row direction, the y  axis along the column direction, and 
the z axis along the plane direction [13]. 

One of the images is selected to be the floating image, f , 
from which samples s  are taken and transformed by the 
transformation Tθ  into the reference image, r .  In general, 

T sθ  will not coincide with a grid point of image r and 
interpolation of the reference image is needed to obtain the 
image intensity value ( )r T sθ . Nearest neighbor interpolation 
of r  is generally insufficient to guarantee subvoxel accuracy, 
as it is insensitive to translations up to one voxel. Other 
interpolation methods, such as trilinear interpolation, may 
introduce new intensity values which are originally not present 
in the reference image, leading to unpredictable changes in the 
marginal distribution of the reference image foe small 
variations of θ . To avoid this problem, F. Maes proposed a 
partial volume interpolation (PVI) to update the joint histogram 
for each voxel pairs ( , )s T sθ . Instead of interpolating new 
intensity values in image r , the contribution of the image 
intensity ( )f s  of the sample s  of f to the joint histogram 
distributed over the intensity values of all eight nearest 
neighbor’s of T sθ  on the grid of r , using the same weights as 
for trilinear interpolation [12]. 

In this paper we restrict the transformation Tθ  to rigid-body 
transformation. The rigid-body transformation is a 
superposition of a 3-D rotation and a 3-D translation and the 
registration parameter θ   is a six-component vector consisting 
of three rotation angles xφ , yφ , zφ  (measured in degrees) and 

three translation distances xt , yt  , zt  (measured in 

millimeters).  
Transformation of image coordinates fΡ  to rΡ  from the 

image f  to image r  is given by 
( ) ( ) ( ) ( ) ( )r r r x x y y z z f f fV C R R R V Cφ φ φ⋅ Ρ − = ⋅ ⋅ ⋅ ⋅ Ρ −  

                                 ( , . )x y zt t t t+          (1) 

with fV  and rV  being 3×3 diagonal matrixes representing 

the voxel sizes of images f  and r , respectively (in 

millimeters), fC  and rC  the image coordinates of the centers 

of the images, x y zR R R R= ⋅ ⋅  the 3×3 rotation matrix, with 

the matrixes xR , yR , and zR  representing rotations around 

the x , y , and z  axis, respectively, and t  the translation 
vector [13]. 

B. The Observed and Expected Joint Intensity Distributions 

Assuming fI  and rI  are the intensity values of two testing 

images of the same or different acquisitions, where f  and r  
respectively represent the floating and the reference images that 
are to be registered. 

Given a hypothesized transformation Tθ  defined by the 

registration parameter θ , then we can obtain their joint 
intensity distribution denoted as observed joint intensity 
distribution ( , )T

f rP I Iθ  [11, 12]. Note that ( , )T
f rP I Iθ  is a 

function of the transformationTθ .  

The corresponding expected joint distribution * *
*( , )

f r
P I I  

used as the reference distribution can be estimated from aligned 
training images *f  and *r . Here images *f  and f  should 

be the same acquisition, so should images *r and r . 
 The joint probability distribution of two images is estimated 

by calculating a normalized joint histogram of the grey values. 
The marginal distributions are obtained by summing over the 
rows, resp. the columns, of the joint histogram. We use partial 
volume interpolation (PVI) to construct the joint histogram 
since it provides subvoxel accuracy (as opposed to nearest 
neighbor interpolation) and avoids the introduction of spurious 
grey values (in contrast to trilinear interpolation). The 
histogram size we use here is 256×256 which indicates that the 
images have been pre-rescaled into 256 grey levels. 

The goal is to align two testing images of the same or 
different acquisitions such that the expected distribution and 
the observed joint intensity distribution are well matched. In 
other words, the registration algorithm aligns two different 
images based on the expected outcomes.  

C. The Distance Measured by the Tsallis Divergence 
Measure 

In this paper, the distance between two distributions  P  and 
Q  is measured by the Tsallis divergence measure (TDM), 
which is proposed by Tsallis [9]: 

1

1( || ) (1 )
1

i
TDM

i i

pD P Q
q

α

αα −= −
− ∑                (2) 

with {1}α ∈ℜ − , where ip and iq denote the probability 

distributions associated with the distributions P  and Q . Here 

distributions P  and Q  represent the observed and expected 

joint distributions ( , )T
f rP I Iθ  and * *

*( , )
f r

P I I  

respectively.  
The TDM value, TDMD , tends to zero when the two 

distributions become equal. So the registration goal is to search 
the optimal transformation *T

θ
 which minimizes the distance 

from the observed distribution to the expected joint distribution, 
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i.e. TDMD . The registration procedure is an iterative process, 

and is terminated when TDMD  becomes sufficiently small. 

D. Mutual Information Based Registration Measures 
To investigate the performance of the proposed TDM 

method, we compare it with other two registration method. The 
first is Shannon mutual information (Shannon-MI) method, 
which was proposed independently by Collignon et al. [14] and 
Viola et al. [15]  in 1995.  It is a very general and powerful 
criterion, and has been accepted by most researchers. So we 
would compare the new method with this classical method. The 
second method we considere here is Tsallis mutual information 
(Tsallis-MI), which is based on Tsallis entropy. It was applied 
into solving registration problems recently.   

Shannon mutual information is defined as follows: 
 

( ) ( ) ( , )f r f rShannon MI H I H I H I I− = + −  ,      (3) 

where 
 

( ) ( ) log ( )
f

f f f
i

H I p i p i= −∑                     (4) 

is the Shannon entropy. 
The expression of Tsallis-MI is as follows: 
 

( ) ( )

(1 ) ( ) ( ) ( , )
f r

f r f r

Tsallis MI H I H I

H I H I H I I

α α

α α αα

− = +

− − × −
,   (5) 

where 
 

1( ) (1 ) ( ( ) 1)
f

f f
i

H I p iα αα −= − −∑ , {1}α ∈ℜ −    (6) 

is the Tsallis entropy. 
   The mutual information based methods state that, for two 

images that are to be registered, the value of their mutual 
information will be maximal if the images are geometrically 
aligned. 

E. Optimization Method 
The images are initially positioned such that their centers 

coincide and that the corresponding scan axes of both images 
are aligned and have the same orientation. Powell’s method is 
used to minimize TDMD  [16]. This method is a reasonable 
method between robustness and speed.  

Powell optimization requires no derivative information of 
the objective function. It involves a series of one-dimensional 
maximizations for each dimension; these maximizations are 
carried out by Brent's method.  Having found an optimum in  
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Fig. 1 Examples of three different registration measures as functions 
of translations along the slice direction (in millimeters) for three 

testing image pairs 
 

one direction, the maximization is continued in the next 
direction, starting from the current position. Once all six 
parameters have been optimized, the loop is repeated until the  
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TABLE I 
SIMULATED REGISTRATION RESULTS OF THE IMAGE PAIR WITH 3% NOISE 

LEVEL 

Methods α  Results Function 
Evaluations 

Shannon-M
I None 10-3 ×[-0.1087, -0.1035,  0.0798, 

-0.0564,  -0.1401,    0.0266] 704 

Tsallis-MI 0.9 10+6 ×[-0.0125, 0.0171, 0.0001,  
0.0027,  -0.0022,    5.2893] 200 (failed) 

Tsallis-MI 
0.8 

10+4×[0.0768,  -4.6148,    0.0005, 
-0.0000, 0.0001,    0.0768] 194 (failed) 

TDM 0.9 10-3 ×[0.2429, 0.2267,    0.0424,  
-0.0981, -0.0079,   0.0226] 640 

TDM 0.8 [0.0002, -0.0012,  0.0000,    
0.0002,  0.0001,  -0.0000] 593 

TDM 0.7 [-0.0027, -0.0240, -0.0003,    
0.0046,  -0.0021, 0.0030] 504 

TDM 0.6 [0.0234, -0.0769, 0.0090,    
0.0095, 0.0177, 0.0103] 417 

TDM 0.5 [0.0833, 0.1380, -0.0165,   
-0.0187, 0.0371, -0.0003] 417 

TDM 0.4 [0.0882, 0.2215,  0.0394,   
-0.0256, 0.0927, 0.0206] 427 

TDM 0.3 [-0.2349,  0.2134, 0.0576,   
-0.0140, -0.0372, -0.0277] 665 

TDM 0.2 [0.2306, -0.3270, -0.0397,    
0.1032, 0.1053, 0.1179] 573 

TDM 0.1 [21.0586, -14.1472, 6.3378  
-5.7688, 5.0797, 19.8442] 237 (failed) 

 
improvement achieved in the most recent iteration is within 
predefined boundaries. The direction matrix is initialized with 
unit vectors in each of the parameter directions.  

An appropriate choice for the order in which the parameters 
are optimized needs to be specified, as this may influence 
optimization robustness. For instance, when matching images 
of the brain, the horizontal translation and the rotation around 
the vertical axis are more constrained by the shape of the head 
than the pitching rotation around the left-to-right horizontal 
axis. Therefore, first aligning the images in the horizontal plane 
by first optimizing the in-plane parameters ( , . )x y zt t t  may 

facilitate the optimization of the out-of-plane 
parameters ( , , )x y zφ φ φ  [13].  

In this work, the convergence parameters for the Brent and 
Powell optimization algorithms are set to 10-3 and 10-4 
respectively.  

 

TABLE II 
SIMULATED REGISTRATION RESULTS OF THE IMAGE PAIR WITH 5% NOISE 

LEVEL 

Methods α  Results Function 
Evaluations 

Shannon-M
I None 10-3 ×[0.0966, 0.1908, 0.0744,  

-0.0598, 0.2922, 0.0586] 705 

Tsallis-MI 0.9 10+6 ×[7.4277, -0.0253, 0.0036, 
0.0151, 0.0000, 0.0250] 317 (failed) 

Tsallis-MI 
0.8 

10+3×[2.7646, -4.4706, -1.6623, 
-0.0016, -0.0014, 0.0016] 265 (failed) 

TDM 0.9 10-4 ×[-0.2680, -0.6750, -0.1251, 
0.7588, 0.5101, -0.0908] 498 

TDM 0.8 [-0.0058, 0.0060, 0.0037, 0.0000, 
0.0000, 0.0000] 487 

TDM 0.7 [-0.0148, -0.0851, 0.0098, 
-0.0026, 0.0012, 0.0007] 486 

TDM 0.6 [-0.0228, 0.0702, 0.0192, 0.0442, 
-0.1451, 0.0698] 415 

TDM 0.5 [0.0271, 0.2358, 0.0116, 0.0369, 
-0.1695, 0.1034] 429 

TDM 0.4 [-0.0054, 0.0462, -0.2152, 0.1597, 
-0.3532, 0.3608] 500 

TDM 0.3 [0.3640, 0.3407, -0.0679, 0.0613, 
-0.0100, 0.2758] 496 

TDM 0.2 [0.5475, 0.3337, 0.0715, 0.0537, 
0.8598, 0.3013] 732 

TDM 0.1 19.7359, -9.2095, 5.1806, 
-4.9970, 6.2699, 19.2690 297 (failed) 

 

III. EXPERIMENTS AND RESULTS ANALYSIS 

A. Simulated Registration Function 
Four pairs of T1 and T2 image volumes are obtained from 

the Brain Web Simulated Brain Database [17, 18] (181×217
×60 voxels, 1 mm ×1 mm ×3 mm and noise levels were 0%, 
3%, 5% and 7%, respectively), in which all the images have 
already been perfectly aligned and can be used as a testing 
platform for studying the performance of different objective 
functions. The image pair with 0% noise level is used as the 
training data in our experiments, from which the expected joint 
intensity distribution is estimated; other image pairs are used as 
the testing data to test the proposed TDM registration 
algorithm. It should be noted that, to improve the registration 
speed, these images have been subsampled by a factor of two in 
each dimension, and image T2 was taken as the floating image 
in each image registration task.  
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TABLE III 
SIMULATED REGISTRATION RESULTS OF THE IMAGE PAIR WITH 7% NOISE 

LEVEL 

Methods α  Results Function 
Evaluations 

Shannon-M
I None 10-3 ×[-0.1123, 0.1957, 0.0657,  

0.0933, -0.0257, 0.0690] 653 

Tsallis-MI 0.9 10-3 ×[-0.0170, 0.2962, 0.0731, 
0.1543, -0.1109, 0.0243] 803 

Tsallis-MI 
0.8 

10+4×[2.7646, -4.4706, -1.6623, 
-0.0016, -0.0014, 0.0016] 308 (failed) 

Tsallis-MI 0.7 10+5 ×[0.0769,-7.2242, 0.0005, 
-0.0000, -0.0000, -0.0006] 571 (failed) 

TDM 0.9 10-4 ×[-0.4171, -0.4666, 0.2120, 
0.4221, 0.4145, -0.3949] 490 

TDM 0.8 [0.0207, -0.0694, 0.0000, -0.0005, 
-0.0000, 0.0297] 479 

TDM 0.7 [0.0002, -0.1803, 0.0155, -0.1445, 
-0.0035, 0.0455] 493 

TDM 0.6 [0.1077, -0.3369, 0.0434, -0.1680, 
0.0221, 0.1284] 506 

TDM 0.5 [0.2177, -0.0909, 0.2355, 0.4110, 
0.2731, -0.2918] 742 

TDM 0.4 [0.2391, 0.2295, 0.5410, -0.1280, 
-0.3759, -0.5405] 580 

TDM 0.3 [1.1501, 0.0259, 0.5311, 2.0414, 
-0.5289, 0.3612] 105 (failed) 

 
 

To visually investigate the performance of the proposed 
TDM  registration method, here we first plot the behavior of the 
three measures (Shannon-MI, Tsallis-MI and TDM) as 
functions for translations (measured in millimeters) along the 
slice direction in Fig. 1, and each measure is plotted as a 
function on all the three testing image pairs.  The value of α  in 
Tsallis entropy used in function’s plotting is 0.9.  

Observing Fig. 1, it is obvious that the three TDM curves are 
smoother than the others, which could be expected to benefit 
the subsequent optimization process of TDM function.  

B. Simulated Registration Experiments 
To further demonstrate the performance of the TDM method, 

we conducted a series of simulated registration experiments on 
the three testing image pairs mentioned above using 
Shannon-MI, Tsallis-MI and the proposed TDM registration 
method. With respect to each registration task, the T2 image 
(floating image) was first transformed with an initial 
registration parameter 0θ = [20, -20, 20, 5, -5, 5], prior to 

starting the optimization process. Since all the images have 
already been perfectly aligned, complete registration is 
obtained when the transformation parameter θ  was optimized 
to θ = [0, 0, 0, 0, 0, 0]. The simulated registration results we 
obtained are shown in Table I, Table II and Table III, 
respectively including the transformation parameters we 
obtained and the number of the registration function 
evaluations during each registration task. 

From tables we find that Shannon-MI succeeds registering 
three image pairs with higher precision, and the proposed TDM 
method can provide a more accurate registration with  faster 
convergence if the value of  α  is chosen as 0.9.  However, the 
performance of Tsallis-MI is poor and it is only successful in 
the registration of the testing image pair with 7% noise level. 
From three tables, we also can find that the convergence speed 
of the TDM method becomes faster as the value of α  
decreases with the exception of Tsallis entropy with α <0.7. 
Though the registration precision becomes poor as the value 
ofα  tends to 0, it still can succeed registering the three image 
pairs until α =0.3. So α  can be chosen by trading 
convergence speed and registration precision. 

C. Clinical Registration Experiments 
Furthermore, clinical images obtained from Retrospective 

Image Registration Evaluation (RIRE) are used to test the 
proposed TDM method [19]. Registration estimates derived 
from bone implanted markers in this data (removed from the 
images prior to experimentation) provide an accurate estimate 
of rigid registration.  

 Images CT (512×512×29 voxels, 0.65 mm ×0.65 mm ×4.00 
mm) and MR-PD (256×256×26 voxels, 1.25 mm ×1.25 mm 
×4.00 mm) from the practice data, for which the gold standard 
transformation was available to us, are chosen as the training 
image pair, and images CT (512×512×28 voxels, 0.65 mm 
×0.65 mm ×4.00 mm) and MR-PD (256×256×26 voxels, 1.25 
mm ×1.25 mm ×4.00 mm) from patient 001 are used as the 
testing image pair that are to be registered. Note that the gold 
standard transformation of the testing data is unknown to us.  

From the simulated registration results we know that 
compared with the Shannon-MI and TDM, Tsallis-MI performs 
poorer when applied into registration problem, so in this 
subsection,  we only compare the performance of the proposed 
TDM method with α =0.9 and Shannon-MI by using them to 
register image CT to image MR-PD from patient 001. All 
translation and rotation parameters were initialized to zero. 
This is a typical starting estimate for automated registration in 
clinical use. 

After 239 function evaluations, the TDM function converges 
to the finally transformation 1θ = [8.1861, -15.5135, -0.2944, 
0.1727, 0.3914, -0.6064], and the Shannon-MI declares the 
convergence when it reaches 2θ = [8.1381, -15.2125, 0, 0, 0, 
-0.4571] after 252 evaluations. It is obvious that the difference 
between 1θ  and 2θ  is a little, and the convergence speed of 
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TDM method is relative faster. This is identical with the 
conclusions just drawn from simulated registration 
experiments. 

So we can conclude that the proposed TDM is indeed 
feasible for intra-modality and multi-modality image 
registration. And compared with the classical Shannon mutual 
information and Tsallis mutual information, it enjoys faster 
registration convergence and higher registration precision. 

IV.  CONCLUSION 
The divergence measure based on the Tsallis entropy, 

combined with the a priori knowledge of the expected joint 
intensity distribution, has been proposed to enhance the image 
registration process. The a priori knowledge of the expected 
joint intensity distribution is obtained from the pre-aligned 
images, which is called training image in this paper. 
Correspondingly, the images that are to be registered are called 
testing images. The joint intensity distribution computed from 
the testing images depends on the transformation from the 
floating image to the reference one, and this distribution is 
denoted as observed joint intensity distribution. As the 
transformation varies, the distance from the observed joint 
intensity distribution to the expected joint intensity distribution 
will change constantly. If the distance is enough samll, then we 
can declare that the two testing images are registered 
successfully. The distance is measured by a divergence 
measure based on the Tsallis entropy. 

Experimental results show that, compared with other  
registration methods based on Shannon-MI and Tsallis-MI 
respectively, the TDM-based registration algorithm could 
obtain faster convergence without loss of registration precision. 
Future work will continue investigating our proposed method 
on large clinical data, and combine spatial information to the 
proposed TDM function to get further enhancement about the 
accuracy and robustness of the registration tasks. 
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