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Boundary-element-based finite element methods for
Helmholtz and Maxwell equations on general
polyhedral meshes

Dylan M. Copeland

Abstract—We present new finite element methods for Helmholtz
and Maxwell equations on general three-dimensional polyhedral
meshes, based on domain decomposition with boundary elements on
the surfaces of the polyhedral volume elements. The methods use the
lowest-order polynomial spaces and produce sparse, symmetric linear
systems despite the use of boundary elements. Moreover, piecewise
constant coefficients are admissible. The resulting approximation
on the element surfaces can be extended throughout the domain
via representation formulas. Numerical experiments confirm that the
convergence behavior on tetrahedral meshes is comparable to that of
standard finite element methods, and equally good performance is
attained on more general meshes.

Keywords—Boundary elements, finite elements, Helmholtz equa-
tion, Maxwell equations.

[. INTRODUCTION

N industrial applications involving the numerical solution

of partial differential equations, refinement of a given mesh
may be infeasible due to a prohibitively large number of
degrees of freedom. If the mesh consists of elements beyond
the simplest types commonly used (e.g. tetrahedra, hexahe-
dra, prisms), then standard finite element methods cannot be
applied without refinement. Even if finite element methods
are known for the various types of elements in a mesh, the
implementation and solution via finite element methods can be
quite difficult and expensive for meshes with many different
types of elements. Thus there is a need for numerical methods
which can be applied robustly to any polyhedral mesh, without
refinement or special treatment of each of the various element
types. We propose such a method for the Helmholtz and
Maxwell equations, including the Laplace equation as a special
case (with wavenumber equal to zero).

The mimetic finite difference (MFD) method has been
proposed for numerically solving partial differential equations
on general polygonal or polyhedral meshes. The MFD method
has been proven effective for diffusion problems (see e.g.
[3], [23], [24]), and in [22], an MFD method for Maxwell
equations in two dimensions is presented, which could be
extended to three dimensions. However, this method relies on
a logically rectangular mesh structure, and there seems to be
no MFD method for Maxwell equations on general meshes.

The discontinuous Galerkin (DG) method appears to be a
more promising approach for discretization on general meshes.
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DG methods are known to treat general, non-conforming
meshes with ease, and methods for Maxwell equations have
been well studied— see e.g. [14], [19], [20] and the references
therein. However, the author is unaware of any study of
DG methods for Maxwell equations applied to general three-
dimensional meshes.

In this paper, we propose a new discretization method based
on boundary integral techniques. Boundary element methods
have been widely studied and have proven very effective in
many types of problems with constant coefficients. Boundary
integral representation formulas give the solution in a domain
as an expression involving only its traces on the boundary,
thereby reducing the problem to the boundary. This dimension
reduction makes boundary element methods much faster and
more efficient than finite element methods in some cases.
However, boundary element methods have some drawbacks
in general, such as the limited applicability to problems
with constant coefficients and the practical necessity of data-
sparse approximations of the dense linear systems that result
from discretization. As a result, some very efficient methods
have been designed by coupling boundary element and finite
element methods in different subdomains as appropriate. For
example, in [17], [18], scattering problems are efficiently
solved by coupling boundary elements in the unbounded
exterior domain, where the coefficient is constant, with finite
elements in the interior domain, where the coefficient may
vary. In principle, we take a similar approach for acoustic
and electromagnetic scattering problems, but in this paper we
focus only on developing finite-element-type discretizations
for the bounded interior domain. It is a simple matter to couple
our method with a boundary element method in the exterior
domain, and we will indicate how this can be done.

Given a general polyhedral mesh of the bounded domain, we
follow the domain decomposition approach of [21] and apply
boundary integral techniques on the surfaces of the polyhedral
elements. That is, we treat the elements as subdomains and
discretize the element surfaces with boundary element spaces.
Strictly speaking, the resulting method is a boundary element
domain decomposition, but we refer to it as a boundary-
element-based finite element method due to its similarity to
finite element methods with respect to several fundamental
properties. For instance, piecewise constant coefficients are
admissible, and the resulting linear system is sparse, with
coupling only between degrees of freedom in the same volume
element.

The methods developed in this paper can also be viewed
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strictly as domain decomposition methods analogous to [21],
for subdomains of any size. Such methods were studied in
[21] for scalar elliptic partial differential equations, but we
extend those results to the Helmholtz and Maxwell equations.
In particular, we analyze the Dirichlet-to-Neumann maps and
prove that they satisfy generalized Gérding inequalities. Thus
the present paper is of both a finite element and domain
decomposition nature, depending on one’s interpretation. In
the theoretical analysis, we can only prove error estimates
for a pure domain decomposition setting, with subdomains
of fixed size. However, the numerical experiments reported in
this paper investigate the method in a finite element setting,
demonstrating error behavior comparable to optimal finite
element methods.

For a practical implementation, we require a triangular mesh
of the skeleton comprised of the element surfaces. Alterna-
tively, one could just as easily use a quadrilateral skeleton
mesh. Note that hanging nodes are inadmissible, as the method
uses a conforming finite dimensional subspace of a trace
space on the skeleton. Thus our method allows for general
volume elements but requires a triangular or quadrilateral
mesh of the skeleton. As standard finite element methods can
be applied only after refinement of the volume elements to
geometrically simple elements, for some meshes our method
involves significantly fewer degrees of freedom than standard
finite element methods despite the necessary refinement of the
mesh skeleton to triangular or quadrilateral surface elements.

The paper is organized as follows. In section 2, we define
some trace operators and relevant Sobolev spaces on the
boundary of a Lipschitz polyhedral domain. Sections 3 and
4 have very similar structure, as they describe the boundary-
element-based finite element method applied to the Helmholtz
and Maxwell equations, respectively. Finally, we report on
some numerical experiments in section 5.

II. PRELIMINARIES

The methods proposed in this paper solve for traces of
solutions to the Helmholtz or Maxwell equations and therefore
require some theory for the trace operators and the Sobolev
spaces onto which they map. In this section, we briefly present
the necessary theory for Lipschitz polyhedral domains.

On a Lipschitz polyhedral domain §2 and its boundary I" :=
99, the complex-valued Sobolev spaces H*({2) and H!(T") are
defined for all s in R and [t| < 1 [1], [25], with L? := H".
The inner product < -,- >p in L2(T) is defined by

< U, v >ri= /ﬂv dsS for all u,v in LQ(F).
r

The inner product (-,-)q in L?(f2) is defined analogously.
To formulate a method for solving the Helmholtz equation,
we shall utilize the standard Dirichlet and Neumann trace
operators 4 : HL (R¥) — Hz(T) and 71 : Hipe(A,R3 \
) — H-2(D) (cf. [13]), where

Hioo( A, RP\T) = {6 € Hjoo(R\T) : A¢ € L, (R*\T)}.

The polyhedral boundary I can be decomposed as a union
I'= Uj-\]:rle of open planar polygonal faces F, 1 < j < Np.

Let n denote the unit outward normal vector to €2, and set
n; := n|p,. Further, let e;; denote the open edge between
the faces F; and Fj, i.e. €; = F.n Fj, and 7;; an arbitrary
unit vector parallel to the edge e;;. Then {7;, 7;;}, with 7, :=
Tij X Mg, is a basis of the plane containing F;.

Next, we define the appropriate function spaces for the
tangential traces involved in solving Maxwell’s equations.
Theory for these spaces was developed in [5], [6], and we
follow the notation therein. First, define the spaces

L) :={veL*T)?®:v-n=0onT},

HY?(T) = {v e L{(T) : v; € H'/2(F)), 1 < j < Nr},
and define the rangential components trace mapping m, :
D(Q)® — HY*(I") and the tangential trace mapping v, :
D(0)3 HY*T) by m,(v) := n x (v x n)|r and
7¢(v) := v X n|p. The tangential components trace 7, (v) of
a vector field v in H'(Q) is clearly in H'/2(F}) for each face
F}, and it was shown in [5] that 7, (v) is weakly tangentially

continuous across each edge e;;. To be precise, the functional
/\/;‘; defined by

s 7 )P
N // jux-ynS T dSkdSy

is finite when applied to 7. (v). By [5, Proposition 2.6],
1/2 1/2

H”/ (T):={veH” / () ./\flll(v) < oo for all edges ¢;;}

is a Hilbert space with the norm

vaum +3 M)

€ij

HVHﬁ,l/Z,F

Moreover, 7, : H(Q) — H”/ (T') is linear, continuous, and
surjective [5, Proposition 2.7]. We denote by Hr/ 2(F) the
dual space of Hi/ *(T), with L2(T) as the pivot space, and
by < ;- > 1/2,r the duality pairing between HF”(F) and
H/ %(T"). The tangential traces of vector fields in H(curl, ©2)

I
are contained in the space

H, /*(dive,T) == {v € H*(T) :dive(v) € H (D)},

where divp : HF/Q(I‘) — H~3/2(T) is the surface di-
vergence operator defined in [5]. By [5, Theorem 3.9],
vt - H(curl, Q) — H; /% (divp, T is linear and continuous.

In solving the Maxwell equations, Hﬂl/ *(divp, T) will be the
appropriate function space for the tangential traces.

As this paper is concerned with complex-valued Helmholtz
and Maxwell systems, the associated bilinear forms are not
elliptic. Therefore, we must consider a generalized notion of
coercivity suitable for our purposes.

Definition 1: A bilinear form a : X x X — C on a Hilbert
space X is said to be coercive if it satisfies a generalized

Garding inequality of the form
Re (a(u,Ou) — c(u,u)) > Cllul|% for all v in X,

where C' > 0, ¢ : X x X — C is a compact bilinear form,
and © : X — X is an isomorphism.
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We remark that such a general definition of coercivity is
not necessary for our treatment of the Helmholtz equation.
In this case, the isomorphism © may be taken to be the
identity operator. However, in the Maxwell case, we shall
use a bilinear form satisfying this coercivity definition with
an isomorphism specified in the proof of Lemma 7. This
definition is commonly used in the literature on boundary
integral formulations for the Maxwell equations, e.g. [7], [10],
[12].

A continuous bilinear form a : X x X — C induces a
bounded linear operator A : X — X’ (where X’ denotes the
dual space), defined by

< Av,w >:= a(v,w) for all v,w in X.
The following abstract result (cf. [7, Proposition 3] and [12,
Theorem 4.1]) is invoked to prove the unique solvability of
all variational problems considered in this paper.

Lemma 1: If a bilinear form a : X x X — C is coercive
and the associated operator A : X — X’ is injective, then the
inverse A~!: X’ — X exists and is continuous.

ITI. THE HELMHOLTZ EQUATION

Consider the Helmholtz equation for acoustic scattering,
which involves both an interior and exterior domain. Accord-
ingly, let 2~ := Q C R® be a bounded Lipschitz polyhedral
domain, and denote by QF :=R3\ Q  its open complement.
Often, we simply write {2 instead of 2~. The unit normal
vector n on I' := 90~ is defined as pointing from 2~ into Q.
For any trace operator 7y, v and ~ denote the traces from QT
and Q~, respectively. For example, v:-¢ = (V¢|q+) - n for ¢
in D(R?), with the same normal n in both cases. The jump in
a trace operator ~ is denoted by [y¢]r = vT¢p—~~ ¢. With this
notation, we state the Helmholtz equation with transmission
and radiation conditions as

Au+rPu =0 in Q- uUQt,
Yout —you =-—yfut onT:=0Q", (1)
g—ﬁ(x) —irku(x) =o(r 1)
uniformly for r := |x| — oo. Here, u! and u® denote

the incident and scattered waves, respectively. In the exterior
domain QF, u = u’ + u®.
For simplicity, in this paper we present a method for solving
the interior Dirichlet problem
Au+r?u =0 inQ~, 5
{ You =g onl, 2)

for some function g in H'/?(T). The method can easily be
extended to solve (1), as we shall indicate in a remark. We
assume that x > 0 is constant in Q7 and piecewise constant in
Q™ and that the differential operator A + k27 : H(A,Q7) —
L?(27) has a trivial null space. In the case that # is constant
in 7, this means that 2 is bounded away from the interior
Dirichlet eigenvalues of —A in Q™.

A. Boundary Integral Operators

In this section, we define the necessary boundary integral
operators on a general Lipschitz polyhedral domain 2 with
boundary I' and a constant wavenumber x > 0. The theory for
this section is quite technical and has already been established
in the literature, so we only give a survey here of the results
necessary for our purposes. For further details, see e.g. [11],
[18].

The key to the boundary integral approach is the represen-
tation formula (cf. [25, Theorem 6.10])

w(x) = — / Eu(x — ) bpuly. dSy

+ [ EE I i as,, ®)
for x in 2~ UQT, where
ginlx]
E.(x) = pre] for x # 0,

is the fundamental solution of the Helmholtz equation with the
constant wavenumber x > 0. The representation formula (3)
yields a solution to (1) in terms of the Dirichlet and Neumann
traces, provided that the wavenumber x is constant. Defining
the scalar single-layer and double-layer potentials

WSt H73(D) — HW(R%) N Higo(A R\ ),
YPL H3 (D) — Hipe(A,R3\T),
(see [25, Theorem 6.12]) by

Pt o(x) = / E.(x—y)d(y)dSy, xinQ UQT,
T
DL ., OE,(x —y) . _
1/)/@ gb(X) e F T(y)qﬁ(y) dSy, xin Q” U Q+,

we may rewrite the representation formula (3) as

u = —UJEL ([’Ylu]r) + ¢EL ([’YUU]F)

In this paper, we solve the interior Dirichlet problem (2) and
therefore employ the representation formula

u=y" (ru) = v (v u)

given in terms of the interior traces only. As in [11], [18],
[25], the trace operators 76t and ﬂ/it may be applied to (5),
yielding the the exterior (with the superscript +) and interior
(with the superscript —) Calderon projectors

1
s/ K FV
FD iIFK’

nQ-uUQt. @

in Q, (5)

Pf =

(6)

mapping H'/2(T") x H~1/2(T") onto itself, where

V:HT) - HTYT), —1<s<0, V:={y¢ ‘i,
K:H5(T) — H*(T), 0< s < 1, K = {o¥PL ),
K':H*T) — H(I'), —1<s5<0, K :={y}r,
D:HT)— HYI),0<s< 1, D := —{yPr}r,

are continuous boundary integral operators (cf. [11], [25]).
Here, {}r denotes the average across I', e.g. {yo¢}r =

(¢ @+ 097).
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If w is a solution to (1), then the pair of traces (qfoiu, yliu)
is referred to as exterior/interior Cauchy data. The space of all
interior Cauchy data for the Helmholtz equation coincides with
the range of P, . As a consequence of this fact, the interior
Neumann trace of a Helmholtz solution can be expressed in
terms of the interior Dirichlet trace via the operator

S~ ::D+(%I+K’)V‘1(%I+K) )

from Hz(T') to H2(T"), referred to as the interior Dirichlet-
to-Neumann map. The existence of the inverse V! is given
next in Proposition 1.

Lemma 2: The boundary integral equation

V= (%I—i—K)g, with (¢,n) in HY/2() x H-Y2(T"), (8)

holds if and only if (£,n) are interior Cauchy data for a
Helmbholtz solution.

Proof: If (§,n) are interior Cauchy data, then (8) is the
first row of P (&,1) = (€, m). Conversely, if (8) holds, then
the first component of P} (£,7) is zero. Since Pjf (&, n) is in
the range of Pj!, it is exterior Cauchy data with vanishing
Dirichlet trace. It follows from the uniqueness of solutions
to the exterior Dirichlet problem [25, Theorem 9.10] that
P (&,m) = 0. Thus (&,7) are interior Cauchy data. [ |

Proposition 1: The operator V : H=2 (') — H?2(T) has a
bounded inverse V! : H2(T') — H~2(T).

Proof: By [13, Theorem 2], V is coercive and hence
Fredholm of index zero. To verify the injectivity of V/, suppose
that Vi = 0. By Lemma 2, (0,7) are interior Cauchy data.
Under the assumption that x2 is not an interior Dirichlet
eigenvalue of —A, we have that 7 = 7, 0 = 0, which proves
the injectivity of V. Therefore, V has a bounded inverse. M

For x in I' and sufficiently smooth ¢, we have the following
expressions for the action of the aforementioned boundary
integral operators:

Kofx) = | angjzy*) Y oy) dsy.
K'ox) = [ P55 Yoty as,.
_ 0 OE.(x—Yy)
PO = 5060 o omyy YW

B. Element-wise Domain Decomposition

Given a mesh of the bounded domain 2, we propose a
domain decomposition method based on [21] to solve for the
Dirichlet trace of the solution to (2) on the skeleton of the
mesh. Locally on the surface of each volume element, one
can then obtain the Neumann trace from the Dirichlet trace
by applying the local Dirichlet-to-Neumann map. The solution
inside the volume element is then given by the representation
formula (3).

Consider a general conforming polyhedral mesh of the
bounded domain {2~ as a domain decomposition:

ﬁi = Uleﬁz‘, QZ N QJ = @ for ¢ 75 j7

where each (; is a simply-connected Lipschitz polyhedron.
Conformity means that for i # j, Q; N ﬁj is empty, a
vertex, an edge, or a polygonal face. The case of interest is
diam(€;) = h, but for theoretical analysis we only consider
the simple case that the subdomains €2; are of fixed size, with
a family of meshes defined on their surfaces. In order to use
boundary integral equations, we require that the mesh resolve
any discontinuities in the wavenumber x; i.e. k; := K|, is
constant on 2;, for each . Denote the local boundaries by
I'; = 09; and the mesh skeleton by I's = UY_ T;. Then
Hz(I's) denotes the space of traces of functions in H'(€2)
on I'g, and

1/2

p
9l 2 (rg) = Z ||¢\FJ||?{1/2(rj)

=1

defines a norm. We shall apply the results stated in the previous
section for the domains €2;. Throughout the remainder of the
paper, C' represents a generic constant independent of h but
possibly depending on the wavenumber x.

Let § be an arbitrary extension of g in H'(f2), and set
§ = 75§, where 7§ denotes the trace on I's. Since the
Dirichlet trace on I' is given as data g, we need only solve for
the Dirichlet trace on I's \ I'. Accordingly, we define the test
function space

W :={vin H/?>(Ts):v=0o0on T}

and seek @ in W such that %+ g is the trace of u on I'g. Then
we have the following variational problem for :

Find @ in W such that u =%+ g on I'g and ©)
af (i,v) = —af (g,v) for all v in W,

where the bilinear form a : W x W — C is defined by

p
afl (v, w) = Z < 8], w; >, . (10)
i=1
Here and throughout the remainder of the paper, ¢; denotes
the restriction of a scalar or vector-valued function ¢ to I';.
Each operator S is defined by (7), with the boundary integral
operators V;, K;, and D; defined on the subdomain 2;.

Remark 1: The existence of Vi_1 is given by Proposition 1,
provided that «; is not an interior Dirichlet eigenvalue of —A
on ;. In the case that diam(Q2;) ~ h for sufficiently small
h, a simple scaling argument shows that this condition holds.
Indeed, the eigenvalues of —A on €; equal h=2 times the
eigenvalues \;(€;) of —A on H} (), where Q; := {h~!(x—
Xic) 1 X € Q;} and x; .. is the center of mass of §2;. For 2 <
B2 Apin(€2), —A — k21 is positive definite on HJ(€;), and
V; has a bounded inverse. In practice, the condition h < Clii_l
is not restrictive, as it is necessary for accurate approximation
of the solution.

Remark 2: The scattering problem (1) in R3 can be solved
by including the term < STwvp,wr >r in the sum (10),
where ST is the exterior Dirichlet-to-Neumann map defined
on H'/2(T). Analogous to S~, an expression for ST can be
derived from the fact that the range of P; is the space of all
exterior Cauchy data. The space W should then be H''/?(T'g).
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Lemma 3: For each 1 < i < p, the local operator S; is
coercive. More precisely, there exists a compact bilinear form
¢i: H2(I;) x H2(T';) — C such that

- —¢; > 2

Re (< S; u,u>p, —ci(u,u)) > OHUHH%(F,) (11)
for all w in H2(T};).

Proof: By [18, Lemma 3.2] (selae also [11],1[25]), the
boundary lintegral operators D, : Hz(I';) - H2(I';) and
V. : H 2(I;) — Hz(T';) are coercive; specifically, there
exist compact operators Tp, : Hz(I;) — H~2(T;) and
Ty, : H-2(I;) — H=(T;) such that

Re <& Vit Tvi)e >r, 2 ClEl -y s
for all & in H-2(I';) and ¢ in H2(T;). Moreover, [18,
Lemma 3.3] states that K| equals the L?(T;)-adjoint K} of
K, plus a compact perturbation, i.e. there exists a compact
operator Tx, : H='/2(I';) — H~'/2(T';) such that

< (K[ +Tk,)§ ¢ >r,=< K/&, ¢ >r, .
Denoting TKi =Tk, Vi_l(%l + K;), we have
Re < (S; 4 Tp, + Tk, ¢, ¢ >r,= Re < (D; + Tp,)¢, ¢ >r,
+Re < (%HKZ‘ F TV G+ K0 >,

2
1 1
2 Z V= :
2 CH¢HH%(F1) +Re < (21+K1 )‘/z (21+K1)¢7¢ >y
_ 2
= Clol,y .,

1 1
+ Re < Vi71(§l + K)o, V,L-V,fl(§I + K;)é >r,
and hence

Re (< (ST + Tp, + Tk,)$, & >,
1 1
+ < ‘/;71(51 + KL)¢,TM‘471(§I + K1)¢ >[‘z>
> 2
> Cllol2 g
which verifies (11). Thus we have proved the coercivity of
S; . |
Theorem 1: The variational problem (9) has a unique solu-
tion in W.
Proof: We need only verify the hypotheses of Lemma 1.
The coercivity of aff : W x W — C follows immediately
from the local coercivity result stated in Lemma 3. To verify
the injectivity of the operator A, suppose that Av = 0 for
some v in W. For each 1 < i < p, v; := vlp, is in H'/2(I;),
and (v;, S; v;) are Cauchy data for some local function ¢; in
H(Q;) satisfying
Ag; + k2p; =0 in £,
Yo @i =i on I';,
Y ¢ =S, v; only.
For all w in W, we have
P p
Z <Yy Piswi >, = Z < S vi,wi >1,= a (v,w)

i=1 i=1
=< Av,w >= 0.

Hence the global function ¢, defined by ¢ = ¢; on €, is in
H'(Q7) and satisfies the interior Dirichlet problem

Ap+ k%9 =0 inQ,
Y%¢ =0 onT.

Under the assumption that A+ x27 has a trivial null space, we
have ¢ = 0 and hence v = 0. This shows that A is injective
and completes the proof of the theorem. ]

As mentioned in the introduction, the method (9) can be
considered as either a finite element method or a domain
decomposition method, depending on the choice of the subdo-
mains €2;. If one takes the subdomains to be volume elements
of size h, then a finite element method is obtained. In this
case, the wavenumber may be equal on different subdomains.
Alternatively, one may take the subdomains to be maximal
with respect to the constant values of the wavenumber. The re-
sulting pure boundary element domain decomposition method
would require fewer degrees of freedom, as the skeleton
mesh would be significantly smaller. The disadvantage in
this would be the large dense matrices on each subdomain,
necessitating sophisticated techniques for efficient data-sparse
approximation of dense boundary element matrices (see, e.g.
[2], [16], [27]). Additionally, the inversion of the single layer
potential operator V' in the application of the Dirichlet-to-
Neumann maps would become expensive. One may indeed
find the necessary tools to make this approach feasible in
practice, but in our numerical computations we take the “finite
element” approach with element-sized subdomains.

C. Discretization

We now discretize the domain decomposition method in-
troduced in the previous section via boundary elements on
the skeleton I's. To discretize the solution space W, we
further assume a conforming, quasi-uniform triangulation of
I's. Thus each element boundary I'; is triangulated as T, =
UN:?Z;, where each A? is an open planar triangle satisfying
diam Al = O(h) and A%, N AL = () for m # n, and NT;
denotes the number of triangles in I';. Note that, in general,
the faces of an element €2; may be arbitrary polygons.

With this decomposition of the skeleton I'g into triangles,
we now define boundary element spaces based on polynomial
spaces of the lowest possible order, namely

SHTg) :={ve HY*(Ts) : vlai € P},
Sg(FS) ={ve H71/2(F5) : U|N- € P},

for 1 <3 < pand 1 < j < NT;. Here, P, denotes the
space of polynomials of degree k. Then we approximate W
by the continuous piecewise linear space Wy, := Si(Ds) N W
and H~'/2(I's) by the piecewise constant space SP(T's).
We assume the standard boundary element approximation
estimates (cf. [27, Theorems 10.4, 10.9])

inf - < O3/ 0| g2, 12
vhels,{(ri) [[v Uh||H%(m = vl m2(ry), 12)
inf — W < Ch3/? ; 13

whElgg(Fq,) Hw wl,HH?é(Fi) - |w|H1(F1')’ a3
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for all v in H?(I';) and w in H'(T;). Note that H?(T;) is
defined as the trace of H°/2(£);), with the norm

[l 2,y = IVl r5/2(02,)-

inf

VEeH5/2(Q;),v=V|r,

The following (cf. [12, Theorem 4.1] and [27, Section 8.6])
is a generalization of Cea’s lemma for coercive operators and
will be used in proving the unique solvability of the linear
systems obtained from our proposed method of discretization.

Lemma 4: Let A: X — X'’ be a bounded, linear, coercive
operator satisfying the uniform inf-sup condition

| < Avh,wh > |

for all vy, in X},
l|wnllx

(14
for some positive constant Cj independent of h. Then the
variational problem

Collunllx < sup
wp€Xp \{0}

< Avp,wp, >=< f,wy >, for all wy, in X,  (15)

has a unique solution vy in X}, which satisfies the stability
estimate

lonllx < G5l £llx

and the quasi-optimal error estimate

1A .
— < (14— f — .
lv vth_( + Co oo lv — wa|lx

The next lemma automatically yields the uniform inf-sup
condition (14) for coercive, injective operators.

Lemma 5: Let A : X — X' be a bounded, linear, coercive,
injective operator, and assume that the family of conforming
spaces X, C X, with h tending to zero, is dense in X. Then
there exist positive constants Cy and hg such that for all h <
ho, the inf-sup condition (14) holds uniformly.

The variational method presented so far in trace spaces
on the mesh skeleton does not formally fit the framework
of Lemmas 4 and 5. Even the continuous space H2 (I'g)
depends on the mesh, and we do not have a nested family
of discrete subspaces. Moreover, the definition of the bilinear
form appears to be mesh-dependent. However, we can apply
this theory to our method by considering an equivalent finite-
element-type of formulation in a subspace of H!((2). Indeed,
Hz(Dg) and H'(Q) are isometric for all h > 0, due to the
boundedness of the trace operator 7§ : HY(Q) — Hz(I'g)
and an extension operator £ : Hz(I's) — H'(£2). Conse-
quently, the bilinear form a : W x W — C equivalently acts
on HE(Q) x HL(Q).

If ¢ and 7 are in H'(€);) and ¢ satisfies AE + 2 = 0 in
Q;, then S 7v0,:§ = 71,:€, and Green’s formula yields

<57 70,i€570,im >1, =< 714§, %, >
= (VE, Vn)a, + (A&, n)a,
= (va VU)Q,: - K?(g, 77)97:' (16)
Therefore, if € and 7 are in H* () and ¢ satisfies Aé+k2€ = 0
in 2, then

p

i=1

= (V& Vn)a — (K€, n)a.

Defining the subspace
S(Q) :={¢in H(A,Q) : A + k%6 =0}

of H(A,Q) :={¢ € H () : Ap € L*(Q)} and the bilinear
form afl : S(Q) x S(Q) — C by af (£,1) = (VE, V) —
(k2¢,m)q, we have that af (v5-,v5-) and af (-,-) coincide
on S(Q) for all h > 0. Thus the bilinear form a* is actually
independent of h and the mesh. Therefore, we shall apply
Lemmas 4 and 5 with X = S(Q).

Formulating the variational method in terms of the bilinear
form afl and the space S(2) is not only convenient for
analysis but also illuminates the finite element nature of the
method. Indeed, (9) is equivalent to a finite element method
with the commonly used bilinear form af and the space S(2)
of PDE-harmonic functions. Moreover, the discrete space used
for approximation is a subspace of S(2) and generally consists
of PDE-harmonic functions which are not of any simple form
such as polynomials. Thus we have a finite element method
which can be practically implemented only via boundary
integral techniques.

The boundary element space S;(I's) induces the finite
dimensional subspace

Sp = {up in S(Q) : v5uy is in Sp(Ts) for 1 <i < p}.

To obtain an approximation estimate for S;, as a subspace of
S(€2), we begin with the representation formula (5), which
holds on each subdomain 2; for all functions u in S(1Q).
Approximating the traces 7, v and y; v by functions &, in
S}(T's) and 7y, in SP(T's), respectively, we define the approx-
imation uy, := 5% (n,) —PE (&,) in Q;. The approximation
properties (12) and (13) yield

v —unlla (@)
<2 (v w—mn) s + 1025 (36 w = &n) 1o
< gl w - L 2 Mg w — Enll s

< OB (10" Ml wllars oy + 1025 g wllarzrs) -
a7

where |95 and ||y2%|| are the operator norms of 3% :
H=%(I;) — HY() and ¥PL . H2(I;) — H(;). These
operator norms may depend on the size of the subdomain
2;, so we can prove an asymptotic error estimate only in the
case that diam ; = O(1) is independent of h (the minimum
diameter of the triangular elements on the surfaces I';). The
approximation estimate in Lemma 6 now follows by summing
the local estimates (17).

Lemma 6 (Approximation in S())): For sufficiently small
h > 0 and subdomains §2; of fixed size, there exists a constant
C > 0 such that

,jnf [ = unl ey < CR*2 |l sz

for all u in S(Q) N H?(Q).

With the approximating subspace W;, of W, we consider
the following discrete variational problem:

{ Find 1, in W), satisfying (18)

a (i, vp) = —a* (g, vp) for all vy, in W,
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Note that (18) is equivalent to the following:

{ Find &, in S, satisfying
all (&n,mn) == a (Yo&n,vomm) = —a* (3, vomn)

for all ny, in Sp.

Theorem 2: Suppose that u is in H>/2(Q) and solves (2).
For sufficiently small & > 0 and subdomains €2; of fixed size,
the variational problem (18) has a unique solution @y in Wy,
satisfying @y, + § = 5 &, with &, in Sj, and

19)

H’LL - fh'lHl(Q) S Ch3/2||u‘|H5/2<Q).

Proof: We have already verified the coercivity and injec-
tivity of the operator A in the proof of Theorem 1, so Lemma 5
implies the inf-sup condition (14) for A. Hence Lemmas 4 and
6 yield the result, when applied to (19). ]

The composition of operators in the expression (7) for S,
precludes a direct Galerkin discretization. Instead, as in [21]
we approximate .S; by .S, ;, defined by

- 1 1
S =Di+ (51+ Kz{)Vh_,iIH(ﬁ(§f + K;),

where 119 is the L?(T';)-orthogonal projector onto S (I's), and
Vi, is the Galerkin discretization of V;. The operator V; has a
bounded inverse for diam €; sufficiently small (see Remark 1),
but the invertibility of the discrete operator V}, ; can be ensured
theoretically only for A sufficiently small (relative to diam (2;).
The invertibility must be checked in practice; however, in
numerical experiments with diam 2; ~ h, we have always
observed that V}, ; is nonsingular. The Galerkin discretization
Shi i Whi— W,’” of the approximate Dirichlet-to-Neumann
map S’h_z is given by
_ 1 .1
Spi=Dni+ (§I,fi + K{i)vhj(ilh,i + K ).

In practice, we solve the following discrete linear system:

{ Find 4, in W), satisfying

- I 20
a{j(uhavh) = _af(gavh) @0)

for all vy, in W),

where the discrete bilinear form af’(-,-) is defined by

P
H .7 -
ay (vp, wp,) = E < S;,.vn

i=1

r;»Wh >T; -

A simple modification of the proof of Lemma 3 shows that
the operators S}Z ; are coercive, so the linear system (20) is
nonsingular for sufficiently small » > 0. However, in order to
estimate the error of the solution, we would need to prove the
operator error estimate

ST = 850l -4 ) < CH il @D

for all ¢; in H?(I';). The proof of such an estimate requires
spectral bounds for the boundary integral operators K; and V,
independent of diam €2;. Such bounds are not known to hold,
so we can prove the desired error estimates for the approximate
system (20) only in the case of a pure domain decomposition
method with subdomains of fixed size as h tends to zero.
Thus we can assert the error estimate of Theorem 2 only for
fixed subdomains. However, numerical experiments in section

V confirm that our method behaves comparably to a standard
finite element method on tetrahedral meshes with diam €); =

O(h).

IV. MAXWELL’S EQUATIONS

In this section we present an analogous method and theory
for Maxwell’s equations. The Maxwell system for electromag-
netic scattering with transmission and radiation conditions is
given by

curlcurle — x’e =0 in Q- UQT,
et —v e =v¢e onT,
limy oo curle x x —ix[xle =0 uniformly.
(22)

As in the previous section for the Helmholtz equation, for
convenience we present a method for the interior Dirichlet
problem

(23)

curlcurle —xk%¢ =0 in O,
v e =g onl.

We assume that k > 0 is constant in QF and piecewise
constant in {2~ and that the differential operator curl curl —
K21 : H(A,Q7) — L%(Q7) has a trivial null space. In the
case that x is constant in ~, this means that x2 is bounded
away from the interior Dirichlet eigenvalues of curl curl in
Q.

A. Boundary Integral Operators

As in section (III-A), we define the necessary boundary
integral operators on the boundary I' of a general Lipschitz
polyhedral domain 2 = Q~, with the intention of taking
the domain to be a volume element in a mesh of {2~. The
wavenumber k£ > 0 is therefore assumed to be constant. For
further details, see e.g. [7], [10], [12], [17].

The vectorial single-layer potential operator is defined by
WLy (x) = / Eo(x —y)uly)dSy,  xin Q" UQF,
r

for vector-valued functions p. The bold letter ¥ distinguishes
this operator from the scalar single-layer potential 1/15 L defined
in section (III-A).

Following the notation of [12], we define the electric
and magnetic potentials Wg, ¥y, Hr/2(divF7 r -
H(curl curl, Q™) x Hjy(curl curl , Q%) by

U= 04k grad, 0@ odiv, Wy = curl®il

Here, H(curl curl ,Q7) = {v € H(curl ,Q7) :
curlcurlv € L2(Q7)}, and Hyoc(curl curl, Q) is defined
analogously. In terms of these potentials, the Stratton-Chu
representation formula for a Maxwell solution e can be written
as

e = —\I'M(['yte]r) — ‘IIE(['yNe]F) inQ Ut (24)

(see [7, Theorem 3]), where yyv := k™ !y,curl v is the
Neumann trace. Taking the Dirichlet and Neumann traces of
(24) yields the exterior and interior Calderon projectors

iII+M  +C

+ _
Pu=1"1c 31+ M
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mapping H[l/Q(divr,F)2 onto itself (cf. [12]), where the
boundary integral operators C,M : HF/Q(divF,F) —
Hr/Q(divr,F) are defined by

C:={vnjro¥p = {ynjro¥yu,
M = {’yt}r o \I’]u = {FYN}F [} \IJE,

The action of these operators can be expressed as

< Cv,w >,p= —K,/F/FEK(X —y)v(y)-

+K71//EH(X—y)diV[‘V(y)diV[‘W(X)dSyde,
rJr

<Mv,w > 1

- _/F/FgradeK(x—y) -(v(y) x

for tangential vector fields v, w in L°°(T") (cf. [9]), where the
antisymmetric bilinear form < -,- >, p: L{(I') x L}(T') — C
is defined by

w(x) dSy dSx

w(x)) dSy dSx,

<V, W >, pi= / v (w xn)dS.
r

Note that C and M are both symmetric with respect to
<- >T r. The space of all exterior/interior Maxwell Cauchy
data ('yt e nye) coincides with the range of Pi Using this
fact and combining the two rows of P, one obtains the
interior Dirichlet-to-Neumann map

S™:=C+ (%I + M)C*l(%l - M),

mapping from Hil/z(divF,F) to itself. The existence and
Y2(divp, T)  —
H, Y2 (divp,T) is given by [12, Corollary 5.5]. Note that
S~ is symmetric with respect to the bilinear form < -,- >, .
We also remark that the Dirichlet and Neumann traces are in

the same space, Hrﬂ(divr7 '), in contrast to the traces for
the Helmholtz equation.

continuity of the inverse C~! : H,

B. Element-wise Domain Decomposition

With the same notation for the domain and mesh in-
troduced in section (III-B), we consider the product space
Hrl/Z(dist,I‘S) of tangential traces of H(curl, Q™) vector
ﬁe{ds on the skeleton I'g. Since the tangential traces with
respect to two volume elements sharing an interface are of
opposite sign, traces on I'g are not well defined, except in
the product form (v, y,...,7;,)- Here, 7, is the tangential
trace operator defined on (2;. For convenience, we define a
skeleton trace operator on I'g with its sign determined by an
arbitrarily chosen but fixed normal vector field on I'g. That is,
forall 1 <14, j < psuch that I';; := I';NI; # (), we arbitrarily
choose a fixed normal vector ng on I';;. On I, take ng = n,
so that ng is defined on I'g = I" U1<; j<p I';;. Then

%S = (ng - ni)wt_ﬂ-, on each I';,

uniquely defines a tangential trace on I'g. Thus the space

H Y2(divp,,T's) is identified with ~5 (H(curl, Q7)), with
the norm

1/2
HV”HF/Q(divrS,rs) = (Z [(ns - VZ” 1/2(d.vF T ) )

To abbreviate notation, we write Xg for HF/Q(divFS,FS)
and X; for H /% (divr,, I';).

Let g be an arbitrary extension of g in Xg, and set g :=
'yts g. For the Dirichlet problem, we seek u in

W:={vinXs:v=0onT}

such that u+ g is the trace of u on I'g. A variational problem
for u is

{ Find @ in W such that u =ua+ g on I's and 25)

aM(@,v) = —aM(g,v) for all v in W,

where the bilinear form a : W x W — C is defined by

p
M -
a’(v,w) = E <S;Vi,W; >, .
i=1

The invertibility of C; for diam §; < Ck; L can be verified by
a scaling argument involving the eigenvalues of the curlcurl
operator, as in Remark 1. Note that the scattering problem
(22) can be solved by including the exterior operator ST in

M(. .} (see Remark 2).

Lemma 7: For each 1 < 4 < p, the local operator S; is
coercive. That is, there exist an isomorphism 6, : X; — X;
and a compact bilinear form ¢; : X; x X; — C such that

Re (< S;v,0;v>.r, —ci(v,v)) > C|v[k, 26

for all v in X;.

Proof: The proof is analogous to that of Lemma 3. How-
ever, we will utilize an isomorphism ©; : X; — X, defined
as follows. By [8, Theorem 5.5], we have the orthogonal
decomposition X; = Vp, (H(T;)) @ curl p, (Hz(I';)), where

H(Ty) == {p e H'(Q)/R | Ap,p € H/*(I),
< Ar,p,1>1)5p,= 0}

(see [5], [8] for details and definitions of the operators Vr,
and Ar,). For any v in X, uniquely decomposed as v =
V| +vo, with vo in curlp, (H2 (T;)) and v in Vp, (H(T;)),
we define ©;v := v, — vi. Thus ©; changes the sign of the
divergence-free component, which will be useful as C; has
two terms of opposite sign.

Now we verify that

<&m>.r,=0forall € nincurly, (H3(Iy), (27
< Vrip7 VFLq >r = 0 for all b q in H(Fv) (28)
Green’s formula

/ curlv-w—v-curlwdx =< yw,yv>,r, (29
Q;

705



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:3, No:9, 2009

holds for all v and w in H(curl, ©;) (see [5], [8]). By def-
inition (see [5]), for v in H%(§);) we have Vr,u = 7, (Vu).
Therefore, (29) implies
< VFJL VFiq > =< WTVP» WTVQ >r Ty
=<%Vp,1Vq>rr,=0

for all p,q in H%(£);), and a density argument yields (28). A
similar argument establishes (27), as curlp u = v(Vu) for u
in H2(;) [5].

By [12, Theorem 5.4], the boundary integral operator C; :

X; — X is coercive (up to a sign), i.e. there exists a compact
operator T, : X; — X; such that

—Re < (C; +1¢,)v,0;v >, p, > CHVH%;N (30)
for all v in X;. Hence
—Re < (S; +1¢,)v,0;v >, 1,
= —Re < (C; +T¢,)v,0;v >, 1,
—Re < (%I + M,;)C;l(él —M,;)v,0;v >,
1

1
> C|lv|%, —Re < 0;1(51 —M;)v, (51 -~ M,;)O;v >, 1, .

The proof will be complete upon verification of the non-
negativity of the last term plus a compact perturbation. Using
the identity S; = C;l(%l — M), the decomposition v =
v | +Vy, and the symmetry of the bilinear form < C;-,- >, r,,
we obtain

1 1
—Re < c;1(51 = M)v, (5T = M)Ov >rr,
= Re < CZ‘S;VL7S;VL >‘r,l"l
—Re < CiS;VO,S;VQ >rT -

By (28) and the compactness of < M;-,- >,p, on both
(curlp, (H=(T;)))% and (Vr, (H(T;)))? (cf. [12, Proposition
3.13)),

Re < C,‘S;VL7S;VL >rT;

1 1
=Re < (51 - M,-)vl,c,;l(il —M;)vyL >,

1 1
= _Re < CiC;1(§I —M;)v,, @iC;1(§I —M;)vy >-p,
+ compact,
where compact represents a compact bilinear form acting on
(v,v). By (30), the above is non-negative, up to a compact
perturbation. Similarly, (27) yields

—Re < CiS;VOv S;VO >

1 1
= —Re < (51 — Mi)v07 C’L_l(iI — Mi)VO >

1 1
= —Re < ClC:1(§I — Mi)V07 910;1(51 - Mi)VO >7—,F,j
+ compact.

This completes the proof of (26). |
Theorem 3: The variational problem (25) has a unique
solution in W.
Proof: The coercivity of a : W x W — C follows im-
mediately from the local coercivity result stated in Lemma 7,

and the injectivity of the operator A can be shown in the same
way as in the proof of Theorem 1. Therefore, Lemma 1 gives
the result. ]

C. Discretization

As in section (III-C), we assume a triangular mesh of
size O(h), with T; = UéV:TfZ; for each 1 < i < p. To
discretize the space W, one may use any H[1/2(divrs7 Is)-
conforming boundary element space, or equivalently, any two-
dimensional H(div)-conforming finite element space. Indeed,
the only necessary condition for a boundary element space to
be H[l/ % (divrp <, 's)-conforming is continuity of the normal
components across edges in the triangulation of I'g, which
ensures the boundedness of the surface divergence on I'g.
Given any straight edge e := A} N A}, k # [, let v},
denote the unit normal vector to e in the plane of A?, pointing
outward from A%. For smooth functions u in C*°(Q;)3, with
trace denoted by m = 7 ;u, the surface divergence operator
divp, is given by

div (1) on A%,

divp,n = i
r { ((mla:)- i+ (mlas) Vi )0 one

(cf. [5], [10]), where 5};1 is the delta distribution supported on
the edge e and div is the ordinary two-dimensional divergence
operator acting locally on A; Consequently, for any ¢ in
C= (AL UAD3, divr, ¢ is in H~1/2(AL UA}Ue) if and only
if

(Blag) Vi + (@la) v =0 onel

Thus, for each edge we may define a degree of freedom
Aeil@) = [(@lay) v eds

where the surface element A}; is arbitrarily chosen. However,
the sign of 5\” depends on the choice of A%. We remedy this
by multiplying by a sign function as follows. Let n¥ denote
the outward unit normal to A};, and let t. be a unit tangent
vector to e, with arbitrary but fixed orientation. Then

sign ((V7€ X nf) -te) = —sign ((Vﬁe X ni) ~t6) .

Therefore, if instead of ;\e,i we define the degree of freedom
on e to be

/\e((,i)) = 31
sign (v}, x ) - t.) (0 - ns(AL)) / ($la) - vE, ds,

then

Ae(vSu) = sign (W5, x nb) -t.) / (i) - vE, ds.

e

+

With the basis representation u = a(z)nf + b(x)v},

c(x)vf, x nf, we have

(w)lag = wx = b(a)v!
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This implies that (%JU‘NAQ - V?,e = —c(z) and hence
A ) = —sign (W, <0 -t.) [ el ds
= —sign (v, xnd) ) [, b de
.
_ 7/u-ted,s. (32)

Thus A, is uniquely defined, i.e. (31) is independent of the
choice of the volume element §2; and the surface element A}'C.

With the degrees of freedom thus defined, it is clear that the
lowest-order Raviart-Thomas space R7 := {x — a + Ox :
a € C2%,3 € C} is appropriate for discretization of the space
W. That is, we consider the discrete solution space

W, :={vp in W: V}L|A]i is in R7 for all 4,5}.

Let Py, : W — W, denote the orthogonal projector onto
‘W), with respect to the inner product in Xg. The following
approximation estimate is proved in [4, Lemma 4.9], with the
space Hj(divr,T's) defined as

{verH(Q)NH.(Ts): divv € H (Ts)}.

Note that [4] gives approximation estimates of order h!/2+s

for s in the range —1/2 < s < 1, but we only state the

estimate of order h3/2 to avoid defining more spaces.
Lemma 8: For all v in Hj(divr,T's), we have

H(I _ Ph)VHXs < Ch3/2HVHHﬁ(divrS,FS)'

The boundary element space W) induces the new finite
element subspace

Sy = {uy, in S(Q) : v up|a: is in RT for all 4,5}
of
S(Q) := {u in H(curl, Q) : curl curl u — x*u = 0}.

The following approximation estimate can be proved analo-
gously to Lemma 6.

Lemma 9 (Approximation in S(Q2)): For sufficiently small
h > 0 and subdomains 2; of fixed size, there exists a constant
C > 0 such that

ook [u—unlf(eurr) < CHY2(| (v, VJ%U)HHﬁ(diVFS,FSV
for all u in S(Q) with v u and yyu := k19 curl u in
Hﬁ(divrs,I‘s).

For all u and v in H(curl, Q;) with curlcurlv—«
Green’s formula (29) yields

2v =0,

2

< SV, W >,p,= /1_1/ curlw - curl v — k*w - vdx.
Q;

Define the bilinear form @}/ : H(curl, Q) x H(curl, Q) — C
by

aM(v,w) = (k tcurl w, curl v)g — (kw, v)q.

Since a™ (v, ~7+) and ad! coincide on S(Q) for all h >
0, Lemmas 4 and 5 may be applied, with X = S(f2), to

obtain an error estimate for the following discrete variational
problem:

Find 1, in W}, such that
{ aM(ap,vy) = —aM(g,vp) for all vy, in W.
(33)
Theorem 4: Suppose that e in H(curl, Q) solves (23), with
v7e and yye in Hi(divpg,T's). For sufficiently small h >
0 and subdomains §2; of fixed size, the discrete variational
problem (33) has a unique solution u, in Wy, satisfying

uy + g =7 &, with §, in S, and
”e - £h,||H(curl,Q) S Ch3/2||(r}/tse7 ’Yffe)HHﬁ(divFS,FS)z’

In practice, we approximate S; by the computable discrete
operator

S

ih T

1 1
Cin+ (5111,h, + Mi,lz)ci,;(gli,h — M, )

defined on W,, where I, 5,, C; 5, and M, , are the Galerkin
discretizations of the operators I, C;, and M;, respectively,
in the inner product < -,- >, in Wj. Then we solve the
following variational problem:

{ Find u;, in Wy, satisfying (34)

aﬂ"(ﬁ;,,7vh) = —aﬂ/[(g,vh) for all v, in Wy,

with

p

M I -

ap, (thwh) = § < Si,hvh
=1

;s Wh >T,l"71 .

As discussed at the end of section (III), we cannot prove an
error estimate for the solution of the approximate linear system
(34). Also, we have no error estimate for the approximate
tangential trace computed via (34), but the optimal estimate
in the Xg-norm would be of order O(h3/?), according to
Lemma 8. However, the Xg-norm cannot be computed in
practice; instead, we investigate the error behavior in the
L2(T's)-norm. Considering the inverse inequality given by the
following lemma, we expect the optimal error behavior in the
LZ(I's)-norm to be of order O(h).

Lemma 10 (Inverse Inequality): There exists a constant
C > 0 such that

HWhHLf(Fs) < Ch_1/2HWhHst for all W in W}L.

Proof: For each triangle 7 in I's (with diam 7 = O(h)),
let {t(Tl), t<72>} be an orthonormal basis of the plane containing
7 and denote by A(Tj ) the barycentric coordinate functions
on 7, for j = 1,2,3. We define the bubble function b, :=
ADADND) and the projection operator QF : I%(Ts) —
@ {pb; : p € Pr(7)} by

/pQ;?qsdsx = /p¢dsx, for all ¢ in L*(T'g), p in Pi(7).
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If QB¢ = pyb,, then mapping to a reference triangle 7 yields
1P6[17 o () = P61 T () < C/ﬁiﬁ‘r dSx
<cn? [ b asc—cn? [ pafods.

=00 [ paoase s O lpali o [ ass
< ChHIpgllLoe () 16l L2(r)

and thus

1PollLoe(ry < CR™H @l L2(r)s Ipgllz2(ry < Clldllr2(r)
(

35)
The standard inverse estimate || Vpl|r2(r) < Ch™t|p|lL2(r),
for p in Pi(7), yields

IVQESllL2(r) < IVPsllL2ry + 11Psll Lo () V- |l 2
< Ch7 (IpgllLzcry + 18l L2y Vbl L2(7))
< Ch Y@l L2 (-

Clearly |QF |l 12(r) < C||¢llL2(r). so interpolation gives the
estimate

”QE¢HH1/2(FS) < Ch_l/2”¢HL2(FS)7 for all (]5 in LQ(FS).
(36)
Now we set By(7) := span{b, £ bt >} and define the
projection Qgh :L#(T's) — &, By(7) locally on each triangle
T by

Qv = QE(vAMtW 4+ QB (v-tP)t?) | for v in L2(T'g).

Next, we verify the boundedness of the operator foh
LiTs) — HH/Z(FS) Clearly Qf,v|, is smooth and in
H'/2(7) on each triangle 7, with the estimate

HQtBhVHHl/2 (1)
< CIQE -ty + 1QF (v - £
< Ch™' 2| V|La(r).

Mz

by (36). It remains only to estimate the functionals ./\/JL (QE,v)
in the norm HQE}LVHHJ/QIS. For any two triangles 7, and 7
intersecting on an edge e, we may assume without loss of
generality that A(TP vanishes on the edge e. Then

/ 16, ()%
T2 ||X_

-1 (2) (3) ()2

\X—.V\|3

< on? / [ Ix= vt aseas,

SCh/ / I% - §]"' dxdy < Ch,
T1J T2

dS dSy

where 71 and 7, are the reference triangles with the ver-
tices {(-1,0),(0,0),(0,1)} and {(0,1),(0,0),(1,0)}, re-
spectively. Combining this estimate with (35) results in

NH@Ev) < ORIVl rom,

for all triangular faces I; and F; intersecting along an edge.
Thus

B —
Q¢ nvll1/20s < Ch 1/2HVHLE(FS)'
For any wj, in W}, we have

(Wh, V)Lf(r5>

[WhllLzrsy = sup
:(Ts) verz(rs)  IvllLzrs)
(Why Qe V)L2(rs)
sup —— o el S
veLy(Ts) HVHLf(FS)
- HQEILVHH,I/Z,FS
sup —n TS
verz(rs)  Ivlrars)

< Ch 2|l walj,—1/2,0s-

V. NUMERICAL EXPERIMENTS

As the aim of this paper is mainly to introduce the methods
and theoretically analyze the convergence behavior, the numer-
ical experiments reported in this section manifest certain com-
putational aspects which are lacking. First, a preconditioner
has yet to be proposed, resulting in very slow convergence of
iterative solvers. Second, we have not computed approximate
solutions throughout the domain €2 verifying the predicted
convergence rates in H'(Q) (Helmholtz case) or H(curl, Q)
(Maxwell case). Our methods solve for Dirichlet traces on
the mesh skeleton, which in theory should yield approximate
Neumann traces via the Dirichlet-to-Neumann maps. These
two traces should then provide an approximate solution in
Q via the representation formula. However, we have not
addressed these computational issues.

In our experiments, we simply take a nodal interpolant of the
Dirichlet traces to obtain an approximation to the discrete solu-
tion in £2. Obviously, this approximation does not demonstrate
the theoretically predicted error behavior of the methods, but it
is optimal in the corresponding standard finite element spaces.
In the Helmholtz case, the nodal interpolant of the discrete
solution in the continuous piecewise linear finite element space
approximates the exact solution with the optimal order O(h?)
in the L2(Q)-norm, and in the Maxwell case we observe the
optimal O(h) convergence rate with respect to the L2(()-
norm in the first-order Nédélec space. Thus, our methods are as
accurate as the corresponding standard finite element method
on simple meshes, and they are also applicable to general
meshes.

Although we use a triangular mesh of the skeleton, it is
also possible to use a quadrilateral mesh or a mesh with
mixed triangular and quadrilateral elements. A triangular or
quadrilateral mesh of the skeleton facilitates the application
of quadrature techniques, as in [15]. It is worth noting that
the approximate linear system and its solution depend on
the accuracy of the quadrature rules used in computing the
necessary singular integrals. In order to make the computation
of the linear system as fast as possible, we have used the
minimum degree of quadrature accuracy required for obtain-
ing reasonably good results. With higher-order quadratures,
slightly better numerical results could be obtained.
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TABLE I
HELMHOLTZ PROBLEM ON UNIFORM TETRAHEDRAL MESHES
OF THE UNIT CUBE Q = (0,1)3, k = 1.

TABLE II
HELMHOLTZ PROBLEM ON UNSTRUCTURED MESHES
OF THE UNIT CUBE Q = (0,1)3, k = 1.

[ R ] nodes [ GMRES | Emor(T's) [ [lu—junllp2(q) | [ R [ nodes | tetra. | hex. | GMRES [ Error(T's) |
1/4 71 11 | 4.0050 0.40578 0.22807 71 144 24 14 | 4.0781
1/8 429 25 1.4263 0.13109 0.10526 429 1152 192 28 1.4273
1/16 2969 51 | 0.43766 0.038895 0.051648 2969 8904 1692 52 | 0.42889
1/32 22065 98 | 0.11046 0.0097991 0.025536 22065 69496 14404 97 | 0.11023
1/64 170081 186 | 0.021596 0.0019040 0.012676 170081 551392 117520 184 | 0.021997
\ [ O™ [O(—") [ O(?) [ O(r?) | \ [O(r=%) [O(=") [O(™%) [O(™Y) [ O(?) |

A. Helmholtz Equation

Table (I) reports some computations done for the Helmholtz
equation on the unit cube = (0,1)3, with a non-nested
sequence of uniform tetrahedral meshes. The wavenumber «
is taken to be 1, and the exact solution is

u(x) = Ex(x — (1.01,0,0)).

The discrete solution for the trace is uj, = @y + g, where uy, is
the solution of (20). As explained above, we approximate the
solution in 2 by extending u; via nodal interpolation. Thus
H}luh denotes the unique continuous piecewise linear function
in Q which agrees with uy, at all nodes of the mesh.

We solve the linear system (20) by the unpreconditioned
GMRES method, and the iteration counts grow in proportion
to 1/h when x = 1. Table (I) lists the relative error

Error(T's) := [lu = un| 2wy /l[wll 2(rs)

of the Dirichlet trace on the skeleton, although there is no
theoretical estimate of it. Considering the fact that the skeleton
grows in proportion to 1/h, the order of convergence is
somewhat ambiguous. However, we observe that the relative
L?(I's)-norm of the error u — uy is of order O(h?). Also,
lu — IT}up || 2(q) is of the optimal order O(h?) in the space
of piecewise linear finite element functions.

The results in table (II) are for unstructured mixed meshes,
obtained from the uniform tetrahedral meshes by perturb-
ing the coordinates of the vertices by random numbers in
[—h/10, h/10] and forming hexahedra from some of the tetra-
hedra. The columns titled “tetra.” and “hex.” list the numbers
of tetrahedral and hexahedral volume elements, respectively.
We only report the relative error on the skeleton, which is
almost identical to Table (I).

Table (III) shows similar results for uniform tetrahedral
meshes with x = 10, in which case x? is larger than the
minimal Dirichlet eigenvalue of —A on the unit cube. Our
method applies immediately to the Laplace equation simply
by taking x = 0. Numerical experiments with x = 0 are
almost identical to Table (I), where x = 1.

B. Maxwell Equations

Table (IV) lists some results for the Maxwell equations, with
the same meshes as in table (I). We take the exact solution

u(x) =V x (Ex(x—(1.5,0,0))x) .

The discrete solution for the trace is u, = uy, + g, where
uy, is the solution of (34). The extension H{y Dy, denotes the

TABLE 1T
HELMHOLTZ PROBLEM ON UNIFORM TETRAHEDRAL MESHES
OF THE UNIT CUBE 2 = (0,1)3, k = 10.

[ A ][ nodes | GMRES [ Error(T's) [ flu =1 unllp2(q) |
1/4 71 12 | 6.2358 0.72021
1/8 429 37 | 1.6662 0.16422
1/16 2969 80 | 0.48067 0.044746
1/32 22065 163 | 0.11966 0.011046
1/64 170081 322 | 0.026442 0.0025347
[ [0~ [ O™ [O®?*) [ O(K?)

TABLE IV
MAXWELL PROBLEM ON UNIFORM TETRAHEDRAL MESHES
OF THE UNIT CUBE Q = (0,1)3, k = 1.

[ A ] edges [ GMRES | Eror(ls) [ lu =N Pusllrz(g) |
1/8 2156 242 1 0.10960 9.7059 E-3
1716 16024 555 | 0.057978 | 5.1002 E-3
1732 | 123440 1223 | 0.030625 | 2.6784 E-3
1/64 | 968800 2993 | 0.017036 | 1.4803 E-3
l [O(h=) [ O(h™T) [ O(h) [ O(h)

TABLE V
MAXWELL PROBLEM ON UNIFORM TETRAHEDRAL MESHES
OF THE UNIT CUBE = (0,1)3, k = 10.

[ h ] edges | GMRES [ Emor(Ts) | [[u—TNPupllp2(q) |
1/4 310 92 | 0.94874 0.64590
178 2156 424 | 040711 0.26524
1716 16024 1421 | 0.23313 0.14949
1732 | 123440 31776 | 0.13441 0.085339
\ [ O(7F) | [O(r) [0 \

unique function in the lowest-order Nédélec space on € (see
e.g. [26]) satisfying

—/Hf;[Duh “teds = Ae(up)
for all edges e of the mesh (cf. (32)). As in the Helmholtz
case, the convergence behavior is optimal. Indeed, one cannot
expect better than O(h) convergence in L%(I's) (considering
Lemma 10) or in L?(£2) for the ITY'? interpolant. The relative
error

Error(T's) := [l (u = wp)llez gy /I ulleers)

of the Dirichlet trace on the skeleton is of order O(h). Table
(V) shows that for k = 10, the linear system has a much larger
condition number.

The computation of the system matrix is significantly slower
than for standard finite element methods. However, this exam-
ple with a simplicial mesh is the worst-case scenario for the
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numerical integration required for our method. In computing
double integrals over the surfaces of volume elements, the
integration is singular or nearly singular on pairs of triangular
surface elements which coincide or share a common edge.
With larger, more complex volume elements, the numerical
integration would also involve some pairs of triangles which
are sufficiently far apart to allow for much faster, lower-order
quadrature rules. Thus any comparison of setup times would
be strongly biased in favor of standard finite element methods.

Although the methods of this paper can theoretically be
applied with piecewise constant x, we do not report numerical
experiments for such cases, since an exact solution is un-
known. Experiments with varying « could only show a growth
in the iteration numbers, as a preconditioner has not yet been
proposed.

A very important consideration for numerical performance,
out of the scope of this paper, is the optimal choice of the
element size. In the context of boundary-element-based finite
element methods, elements and subdomains are theoretically
interchangeable, so elements may be of any size as long as they
resolve jumps in the wavenumber. Increasing the element size
would decrease the size of the mesh skeleton and therefore
the number of unknowns in the discrete system. Also, the
numerical integration would involve fewer singular integrals,
reducing much of the computational bottleneck. The negative
computational effects of increasing the element size are that
the dense local matrices become larger and the matrix inver-
sion involved in their computation becomes more expensive.
At some point, special boundary element techniques to obtain
data-sparse matrices would become necessary. However, it
seems plausible that the numerical performance could be
improved by balancing the reduction in the system size with
the cost of larger element matrices.

VI. CONCLUSION

We have introduced new finite element methods which
can be applied to general polyhedral meshes, with piecewise
constant coefficients. The error behavior has been shown
theoretically to be quasi-optimal for the pure domain de-
composition case with subdomains of fixed size. Although
we did not perform numerical experiments demonstrating the
theoretical convergence rates, we have confirmed that the
L?(9) convergence rates for both the Helmholtz and Maxwell
methods are of the same order as for standard finite element
methods on simple meshes. Thus the methods have good
convergence rates and are more generally applicable than
conventional methods.

It is evident from the previous section that this work is only
the beginning, as several critical computational issues need to
be addressed. To obtain better accuracy, techniques should be
developed to utilize the representation formulas to compute an
approximate solution in 2. Perhaps more important in practice
is the need for a preconditioner that is robust with respect to
the size of the wavenumber and its jumps. Also, it would be
interesting to investigate the advantages in performance that
might be attained by taking larger elements.
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