
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1502

Abstract—This article presents the development of a neural

network cognitive model for the classification and detection of

different frequency signals. The basic structure of the implemented

neural network was inspired on the perception process that humans

generally make in order to visually distinguish between high and low

frequency signals. It is based on the dynamic neural network concept,

with delays. A special two-layer feedforward neural net structure was

successfully implemented, trained and validated, to achieve

minimum target error. Training confirmed that this neural net

structure descents and converges to a human perception classification

solution, even when far away from the target.

Keywords— Neural Networks, Signal Classification, Adaptative

Filters, Cognitive Neuroscience

I. INTRODUCTION

HE traditional processing methods for classifying signal

frequencies, such as the digital and analog filters are yet

quite dependent on the signal's shape, amplitude and noise,

and very often have to be completely re-calculated when the

signal frequencies changes.

 This work is about using a "common sense" human inspired

perception model, in order to create a simple and small

dynamic neural network structure, which will be able to

classify the high from the low frequency signals.

 Neural networks are inspired from the biological nervous

systems, like the brain (with axons, dendrites, nucleus and

synapses), being composed of simple parallel operating

elements.

Fig. 1 The generic neuron

Manuscript received June 30, 2008. This work was done in Faculdade de

Ciências e Tecnologia - New University of Lisbon (FCT-UNL).

Rui Antunes is with the Electrical Engineering Department of Escola

Superior de Tecnologia de Setúbal, at the Setúbal Polytechnic Institute, Rua

Vale de Chaves, Estefanilha, 2910-761 Setúbal, Portugal (phone: 351-265-

790000; fax: 351-265-721869; e-mail: rui.antunes@estsetubal.ips.pt).

Fernando V. Coito is with the Electrical Engineering Department of

Faculdade de Ciências e Tecnologia, at the New University of Lisbon, Quinta

da Torre, 2829-516, Caparica, Portugal (phone: 351-21-2948300; fax: 351-21-

2954461; e-mail: fjvc@fct.unl.pt).

 Fig. 1 shows the internal structure of a generic neuron,

where p
i

represents the thi input and
1,

w
i

a correspondent

weight. The f function will be the neuron activation function.

Thus, the inputs to a generic neuron include its bias and the

sum of its weighted inputs. The output response (a) of a

neuron will rely on the neuron’s inputs, and also on its

activation function, which implements:

R

R

p

p

p

www
2

1

,12,11,1 pW (1)

bbpwpwpwn RR pW,122,111,1 ...

 (2)

)f()f(bna pW (3)

 Other neurons may also be combined into one or more

layers. So a neural network structure will be a formal

mathematical representation of the total number of layers, the

number of neurons for each layer, and its activation functions,

and also the way layers are connected.

 The choice for the neural network architecture relies mainly

on the kind of the problem addressed.

II. DYNAMIC NETWORKS WITH SEQUENTIAL INPUTS

When a neural network has no feedback or delays, it is

commonly called a static network. Its inputs are concurrent

and it doesn't matter if they occur in a particular time

sequence.

 A neural network which contains delays is called a dynamic

network. In such cases, the input to the network is actually a

sequence of input vectors in a certain time order (note that

incremental and batch training techniques can be done both on

dynamic and static networks).

A. The Tapped Delay Line

 A tapped delay line (TDL) is used in a sequential inputs

dynamic network, as shown in Fig. 2. An input

signal []p k will enter and pass through (R-1) delays. Thus, the

tapped delay line output will be an R-dimensional array, made

with the current time input signal []p k , and the previous

A Cognitive Model for

Frequency Signal Classification

Rui Antunes, Fernando V. Coito

T

b

f

p2

p3

p

n a

w

w

w

1,1

1,R

1,R -1

R-1

R

.

.

.

p

p1

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1503

input signals ([1]p k , [2]p k , ... [1]p k R). This kind of

dynamic network, when combined with a linear activation

function can also be referred as a finite impulse response

(FIR) digital adaptative filter.

Fig. 2 A generic dynamic neural network with R delays

)]1([

]1[

][

Rkp

kp

kp

p (4)

 And the neural network output will be:
R

i

i bikpwbka
1

,1)])1[(f()f(][pW (5)

B. Multiple Generic-Neurons Dynamic Network

 One can have more than one neuron in the adaptive system,

and the TDL may still be used when several (S) neurons are

present:

SRSSS

R

R

b

b

b

www

www

www

2

1

,2,1,

,22,21,2

,12,11,1

m
L

-1m
L,

m
L bW (6)

Fig. 3 Multiple generic-neurons dynamic network

(an input layer of generic neurons - 1L)

 For a given mL layer, the correspondent network output

(L
m

a) can be expressed as:

R

i

jijj
bikpwka

1
m

L,1-m
L,

m
L

m
L

m
L)])1[((f][(7)

1=m
1111

1>m

)(f

)(f

][
LL,LL

m
L

1-m
L,

m
L

m
L

m
L

bpW

bpW

a k (8)

where p[k] is the layer input.

 A given neural network can also have one or more of such

layers. All are usually named hidden layers, except for the

layer that generates the network output (which is called the

output layer).

III. COGNITIVE NEURAL NET MODEL

In this work, a special feedforward neural net cognitive

model was proposed, inspired on a simple human perception

approach, that first starts to amplify the high frequencies from

the low frequencies, by using the derivative operator:

)(wI)(11,11 tn
dt

d
tn (9)

expressed in discrete time as the difference equation:

])1[][(wI][
1,11 kpkpkn (10)

which corresponds to

11
L2,11,11])1[wI][wI][bkpkpkn (11)

with:

0

wIwI

11
L

1,12,1

b
 (12)

A. First Hidden (Input) Layer

The first neuron of the neural net structure will work as a

real-time derivative operator, able to amplify the high from

the low frequencies. As a human doesn't really focus on the

correspondent output sign, we proposed a non-linear

activation function (the square function), able to further

amplify the derivative output, and able also to turn it always

positive.

That’s in fact what a human first expects to do when he

percepts [1] the high frequency signals - often he will simply

start to try to amplify (greatly) the higher variations of its

module.

So, the first layer output
1L

1
[]a k will be expressed as:

2

11
1

L1
L11

L
])[(])[(f][knknka (13)

leading to:

n1[k]

b1

f
D

D

D

p[k-1]

1,1 w

.

.

.

w

.

.

.

1,2 w

n2[k]
f

nS[k]
f

b2

a1[k]

a2[k]

.

.

.

aS[k]

p[k]

.

.

.

w
1,R

S,R

.

.

bS

.

S,1
w

w
S,2

n[k]

b

f

D

D

D

p[k-1]

1,1 w

.

.

.

w1,R

.

.

.

1,2 w

p[k]

p[k-(R-1)]

a[k]

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1504

][])1[][()wI(][22

1,11
1

L
kukpkpka (14)

B. Second (Output) Layer

 Now, a human operator is able to visually integrate and

threshold a part of the first amplified differenced output. Thus,

an additional two-neuron output layer was proposed, to work

as an integrator operator, along with a hard-limit output

activation function ("hardlim"), which returns "0" or "1", and

with two fixed bias values, for respectively classifying the

high from the low frequencies.

 In the continuous domain, we can write for the two

integrated outputs:

1)()(

0

11 bdttuCtx
t

t

 (15)

2)()(

0

22 bdttuCtx
t

t

 (16)

 And with SF as the sampling frequency, we can obtain, for

discrete time:

S

S
F

R
TRtt 0 (17)

1])1[w(][
1

,11 bikuLkx
R

i
i

 (18)

2])1[w(][
1

,22 bikuLkx
R

i
i

 (19)

which will give, for the (two) outputs []ja k :

R

i

jijjj bikuLkxka
1

,2
L

2
L)])1[w((f])[(f][

 (20)

])[hardlim()])1[w((f][
1

,2
L kxbikuLka j

R

i

jijj

 (21)

0)])1[w(0

0)])1[w(1

][

1
,

1
,

2,1 R

i

jij

R

i

jij

j

bikuL

bikuL

ka (22)

 Assuming a symmetrical condition between the high and

the low frequencies, we can expect that the integrator gain

relation might just be:

21 CC (23)

and that will give:

Ri

ii
LL

..1

,2,1
ww

 (24)

C. Complete Neural Net Structure

 The two-layer neural net complete structure is shown

below:

Fig. 4 Complete two-layer ({1} and {2}) neural network structure

The tapped delay lines have one delay for the first layer and

eleven delays for the second layer, generating respectively,

p[k-1] and u[k-1] to u[k-10].

 The second-layer hard-limit activation function makes the

neural net to produce only output digital values. Nevertheless,

one should remind that layers of neurons with nonlinear

transfer functions (as the first one) will give further ability for

the network to learn nonlinear and linear relationships.

The MATLAB sample code for creating this neural net

structure is:

%global network creation

net=network; %create a neural network

net.numInputs=1; %one input

net.numLayers=2; %two layers

net.biasConnect=[0; 1]; %net structure

net.inputConnect=[1; 0]; %net structure

net.layerConnect=[0 0;1 0]; %net structure

net.layers{1}.size=1; %net structure

net.layers{1}.transferFcn='fquadrado'; %pre-defined square function

net.layers{2}.size=2; %net structure

net.layers{2}.transferFcn='hardlim'; %hard limit

net.outputConnect=[1 1]; %net structure

net.targetConnect=[1 1]; %net structure

net.inputWeights{1,1}.delays=[0 1]; %two delays

net.layerWeights{2,1}.delays=[0 1 2 3 4 5 6 7 8 9 10];

%eleven delays

net.IW{1,1}=[4 -4]; %Iw1,1=4 Iw1,2=-4

net.LW{2,1}=[1 1 1 1 1 1 1 1 1 1 1 ; -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1];

%Lw1,1=...=Lw1,11=1 Lw2,1=...=Lw2,11=-1

net.b{1}=[]; %layer1 bias b=0

net.b{2}=[-4 ;1]; %layer2 bias b1=-4 b2=1

x2[k]

b2

f 2

D

D

D

1,1
Lw

.

.

. Lw
1,R

.

.

.

1,2
Lw

D

0

Iw

1,2
Iw = - Iw

1,1 b1

f 2

{2} {2}
Lw

2,1

Lw
2,R

Lw
2,2

1,1

x1[k]U
f 1

u[k]

u[k-(R-1)]

u[k-1]

n1[k]

{2}

a1[k]

a2[k]

p[k-1]

p[k]

{2}{2}{1}{1}{1}

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1505

IV. TRAINING THE NEURAL NET

 To achieve the desired output target, the neural net can be

trained by supervised learning [2], [3]. If the error goal or the

maximum number of epochs is reached, the training stops,

giving the net new parameters. Otherwise it will execute

another epoch.

A. Input Signal Generation

The input for our experiment was a Simulink generated, one

Volt amplitude sinusoidal signal, consisted by two different

time-phased frequencies, respectively with one and four

Hertz. The sampling rate SF was 100Hz, and the signal's

duration twenty seconds (2000 samples). A low-pass output

filter ()H s avoided any input signal discontinuities:

Fig. 5 Simulink input signal generation

1028.0104

1
)(

24 ss
sH (25)

B. The LMS Learning Algorithm (LEARNWH)

The Widrow-Hoff least-mean-squares weight/bias learning

rule [4] uses an approximate steepest descent method to

minimize the mean square error, by applying the squared error

(at each epoch), in order to estimate it:

][2][]1[

][][2][]1[

kkk

kkkk T

ebb

peWW
 (26)

Therein b and e are, respectively, the bias and the error

vectors, and is a learning rate. The learning process could be

faster when is higher. Yet, if is too high, it may increase

the error and generate fully unstable training.

 Although the non-linear characteristics of these neural net

activation functions, the Widrow-Hoff LMS rule still

performed (as will be confirmed) a simple, reliable and fast

learning algorithm.

C. Training Results

The MATLAB sample code for training the neural net

structure is show above:

%zero initial net conditions

net.IW{1,1}=0;

net.LW{2,1}=[0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0];

net.b{2}=[0; 0];

%train parameters

net.trainFcn='trainb';

%Batch training with weight and bias learning rules

net.performFcn='mse'; %mean square error

net.inputWeights{1,1}.learnFcn='learnwh'; %Widrow-Hoff learning

net.layerWeights{2,1}.learnFcn='learnwh'; %Widrow-Hoff learning

net.biases{2}.learnFcn='learnwh'; %Widrow-Hoff learning

net.inputWeights{1,1}.learnParam=struct('lr',0.1); %learning rate

net.layerWeights{2,1}.learnParam=struct('lr',0.1); %learning rate

net.biases{2}.learnParam=struct('lr',0.1); %learning rate

net.trainParam.epochs=100; %max. number of epochs

net.trainParam.show=5;

net.trainParam.goal=0.0001; %goal

%net batch train

T1=A; %target

net=train(net,P1,T1);

 The network was trained, starting with all weights and bias

values from zero, for both layers, and taking a pre-defined lr

learning rate. Given the correct output target (in this case two

square waves, one for each frequency) for the p[k] input

signal, we obtained for the mean square error (MSE):

Fig. 6 Neural net training results at different learning rates

It should be stressed first that when the learning rate is

above 0.52, the training will no longer converge to the goal

(unstable learning). All other applied learning rates

converged, however when the learning rate (lr) is lower, there

are considerably more local minima on the descent to the goal,

and the number of epochs must be higher to achieve it.

Trainb function trains the net (according to the weight and

bias learning rules) with batch updates, and the weights and

biases at the end of an entire epoch through the input data are

updated. With 0.1lr , the goal was reached within 60

epochs and the network ended up with:

net.IW{1}=[-3.99 3.96]
1,1

3.99WI ,
1,2

3.96WI

0 1 2 3 4 5 6

1

-

1

-

1

-

1

-

Goal is 0.0001

lr=0.0

lr=0.

1

lr=0.

lr=0.

3

lr=0.

lr=0.5

Epochs

Goal

MSE

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1506

net.b{1}=[] 0b

net.LW{2}=
[36.22 35.78 34.25 32.39 30.49 29.03 28.48 29.12 30.97 33.72 36.80 ;

 -50.56 -45.59 -40.59 -37.05 -35.08 -33.82 -32.65 -31.62 -31.13 -31.68 -33.54]

L ,L
2 1

W = net.LW{2}

net.b{2}= 135.40 45.30
T

 1 135.40b , 2 45.30b

 One should remind that the bias value for the first layer is

always null.

 Fig. 7 shows the layer's weighs Lw1,i and Lw2,i, for each of

the correspondent learning rate:

Fig. 7 Second layer weights for different learning rates

These weights (Lw1,i and Lw2,i) have always different sign

(i.e. the two output neurons have an opposite sign relation for

its inputs, as expected). Also, we can see that the trained

weighs values associated with a same output neuron will vary

little. This means (and confirms) that the output neural

network structure trends to behave near a discrete integrator,

because all second layer neuron inputs are always nearly equal

summed or nearly equal subtracted.

Table I shows the first layer trained weights for each one of

the correspondent learning rate, and Table II shows the second

layer final biases (b1 and b2), obtained for each of the

learning rates:

As the values of Iw1,1 and Iw1,2 are almost symmetrical

(for all the learning rates), it can be confirmed that the input

layer neural network structure starts first to execute, as

expected, a discrete instant derivative operation for the input

signal p[k].

 The second layer biases vary with the learning rate although

b1 and b2 have always different signs, and its ratio module

(for each of the learning rate value) varies between 2.10 and

5.39.

V. RESULTS

To test the neural network, it was introduced the filtered

input signal already described in Chapter IV (Section A). The

net weights and biases where obtained after training with

lr=0.1, reaching (at 60 epochs) the goal (0.0001).

 Figs. 8, 9 and 10 shows the first 700 samples for the p[k]

input and also for all the u[k], x1[k], x2[k], a1[k] and a2[k]

outputs:

Fig. 8 Input signal p[k] and layer one output

signal u[k]

Fig. 9 First layer output signal u[k], and second layer x1[k] and x2[k]

outputs (before the activation function)

1 2 3 4 5 6 7 8 9 10 11

-250

-200

-150

-100

-50

0

50

100

150

200

lr=0.

lr=0.0

5

lr=0.

lr=0.

lr=0.

lr=0.

i

0 100 200 300 400 500 600 700

0

0.5

1

1.5

0 100 200 300 400 500 600 700

-200

-100

0

100

0 100 200 300 400 500 600 700

-200

-100

0

100
x2[k]

x1[k]

Hidden Layer Output Signal

k

k

k

0 100 200 300 400 500 600 700

-1.5

-1

-0.5

0

0.5

1

1.5
Input Signal

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

1.2 Hidden Layer Output Signal

k

k

u[k]

x1[k]

x2[k]

u[k]

p[k]

TABLE I

FIRST LAYER WEIGHTS VERSUS LEARNING RATE

Iw1,1

lr=0.05

-3.993

lr=0.1

-3.993

lr=0.2

-3.994

lr=0.3

-3.995

lr=0.4

-3.996

lr=0.5

-3.994

Iw1,2 3.959 3.960 3.961 3.965 3.970 3.961

TABLE II

SECOND LAYER BIASES VERSUS LEARNING RATE

b1

lr=0.05

-68.8

lr=0.1

-135.4

lr=0.2

-254.8

lr=0.3

-325.5

lr=0.4

-554.0

lr=0.5

-622.0

b2 24.0 45.3 82.2 155.1 232.0 115.5

Lw1,i

Lw2,i

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1507

Fig. 10 Resulting final network outputs (a1[k] and a2[k]), obtained

from the trained input signal p[k]

It can be confirmed that the neural network successfully

classifies the high and the low-frequency signal intervals.

For a cross validation we used two different amplitude,

time-phased, sawtooth signals (respectively with 0.63Hz and

8Hz), at a 100Hz sampling rate, and with 20s duration. Again,

it was applied the same low-pass output filter H(s) (25):

Fig. 11 Final outputs (a1[k] and a2[k]) obtained from a filtered time-

phased sawtooth signal input (new p[k])

 This neural net model is able to distinguish from the two

different frequency signals, but as the net structure has only

eleven delays, it might still generate some potential

mismatches, specially in small time intervals with high

amplitude variations - see a2[k] between k=475 (4.75s) and

k=485 (4.85s).

 Nevertheless, a neural network with more delays in the

second layer tapped delay line will necessarily increase the

classification output delay (can be observed, with a1[k] and

a2[k] near 1s, 2s, 3s, etc.). A possible solution for this

dilemma lies in increasing the sample rate (and the

correspondent number of acquired samples), i.e. to increase

the array size of p[k].

VI. CONCLUSIONS

 Building a neural net model by first defining its basic

structure, using a "common sense" cognitive heuristic, proved

to be a good method before the network training, as both layer

weights will converge to an expected perception solution.

Keep in mind thought that when using neural net structures

with tapped delay lines there are always inherent output

classification delays, which can be reduced by increasing the

signals acquisition sample rate.

 The proposed model was successfully tested, and could be

easily further developed also to classify more than two

frequency signals. We only need to maintain the same neural

model cognitive structure, and implement an additional output

neuron for each frequency to classify.

REFERENCES

[1] Bruce Goldstein, "Sensation and Perception", Sixth Edition,

WADSWORTH, 2002.

[2] Paulo Gil, "Redes Neuronais Artificiais na Modelação e Controlo de

Sistemas Dinâmicos", Controlo Inteligente, DEE/FCT/UNL.

[3] Leslie Smith, "An Introduction to Neural Networks”, Department of

Computing Mathematics, Centre for Cognitive and Computational

Neuroscience, University of Stirling, UK, 2003. Available:

http:/www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

[4] Howard Demuth, Mark Beale, "Neural Network Toolbox For Use with

MATLAB - User’s Guide Version 3.0", The MathWorks, Inc, 1992.

Rui Antunes was born in Lisbon, in 1970. He received

the degree in Electrical Engineering and Computers from

the Technical University of Lisbon, Instituto Superior

Técnico (IST), Portugal, in 1993, and the MSc degree in

Electrical Engineering and Computers, in 1999, from the

Technical University of Lisbon, Instituto Superior

Técnico (IST), Portugal. Currently he is working

towards his PhD degree in Electrical Engineering at

Faculdade de Ciências e Tecnologia - New University of

Lisbon (FCT-UNL), Portugal.

From 1994 up to 1996 he has worked as a Process and Product Engineer at

Ford Electronics (Palmela), and he is currently Adjunct Teacher with the

Electrical Engineering Department at Escola Superior de Tecnologia de

Setúbal, in the Setúbal Polytechnic Institute (Portugal).

Fernando V. Coito was born in Lisbon, in 1961. He

received the degree in Electrical Engineering from the

Technical University of Lisbon, Instituto Superior

Técnico (IST), Portugal, in 1986, the MSc degree in

Electrical Engineering from the Technical University of

Lisbon, Instituto Superior Técnico (IST), Portugal, in

1990, and the PhD in Electrical Engineering and

Computers from the Technical University of Lisbon,

Instituto Superior Técnico (IST), Portugal, in 1996.

From 1986 up to 1998 he performed his research activity at the IST Signal

Analysis and Processing Center (CAPS) and at INESC. He is now a researcher

at UNINOVA. His main scientific interests are dynamic process modeling,

adaptive and fault tolerant control, and optimization.

He is currently Associate Professor with the Electrical Engineering

Department at Faculdade de Ciências e Tecnologia - New University of

Lisbon (FCT-UNL), Portugal.

0 100 200 300 400 500 600 700

-1

0

1

2

3

input Signal

0 100 200 300 400 500 600 700

0

1

2

Hidden Layer Output signal

0 100 200 300 400 500 600 700

0

1

2

Output Layer High Freq. Detection

0 100 200 300 400 500 600 700

0

1

2

Output Layer Low Freq. Detection a2[k]

k

k

k

k

0 100 200 300 400 500 600 700

-1

0

1

2

3

input Signal

0 100 200 300 400 500 600 700

0

2

4

6

Hidden Layer Output signal

0 100 200 300 400 500 600 700

0

1

2

Output Layer High Freq. Detection

0 100 200 300 400 500 600 700

0

1

2

Output Layer Low Freq. Detection

k

k

k

k

p[k]

u1[k]

a1[k]

a2[k]

p[k]

u1[k]

a1[k]

a2[k]

