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Abstract—This article presents the development of a neural 

network cognitive model for the classification and detection of 

different frequency signals. The basic structure of the implemented 

neural network was inspired on the perception process that humans 

generally make in order to visually distinguish between high and low 

frequency signals. It is based on the dynamic neural network concept, 

with delays. A special two-layer feedforward neural net structure was 

successfully implemented, trained and validated, to achieve 

minimum target error. Training confirmed that this neural net 

structure descents and converges to a human perception classification 

solution, even when far away from the target. 

Keywords— Neural Networks, Signal Classification, Adaptative 

Filters, Cognitive Neuroscience

I. INTRODUCTION

HE traditional processing methods for classifying signal 

frequencies, such as the digital and analog filters are yet 

quite dependent on the signal's shape, amplitude and noise, 

and very often have to be completely re-calculated when the 

signal frequencies changes. 

 This work is about using a "common sense" human inspired 

perception model, in order to create a simple and small 

dynamic neural network structure, which will be able to 

classify the high from the low frequency signals. 

 Neural networks are inspired from the biological nervous 

systems, like the brain (with axons, dendrites, nucleus and 

synapses), being composed of simple parallel operating 

elements. 

Fig. 1 The generic neuron 
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 Fig. 1 shows the internal structure of a generic neuron, 

where p
i

represents the thi input and 
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a correspondent 

weight. The f function will be the neuron activation function.

Thus, the inputs to a generic neuron include its bias and the 

sum of its weighted inputs. The output response ( a ) of a 

neuron will rely on the neuron’s inputs, and also on its 

activation function, which implements: 
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 Other neurons may also be combined into one or more 

layers. So a neural network structure will be a formal 

mathematical representation of the total number of layers, the 

number of neurons for each layer, and its activation functions, 

and also the way layers are connected.

 The choice for the neural network architecture relies mainly 

on the kind of the problem addressed.  

II. DYNAMIC NETWORKS WITH SEQUENTIAL INPUTS

When a neural network has no feedback or delays, it is 

commonly called a static network. Its inputs are concurrent 

and it doesn't matter if they occur in a particular time 

sequence.

 A neural network which contains delays is called a dynamic 

network. In such cases, the input to the network is actually a 

sequence of input vectors in a certain time order (note that 

incremental and batch training techniques can be done both on 

dynamic and static networks). 

A. The Tapped Delay Line 

 A tapped delay line (TDL) is used in a sequential inputs 

dynamic network, as shown in Fig. 2. An input 

signal [ ]p k will enter and pass through (R-1) delays. Thus, the 

tapped delay line output will be an R-dimensional array, made 

with the current time input signal [ ]p k , and the previous 
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input signals ( [ 1]p k , [ 2]p k , ... [ 1]p k R ). This kind of 

dynamic network, when combined with a linear activation 

function can also be referred as a finite impulse response 

(FIR) digital adaptative filter. 

Fig. 2 A generic dynamic neural network with R delays 
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 And the neural network output will be: 
R

i

i bikpwbka
1

,1 )])1[(f()f(][ pW  (5) 

B. Multiple Generic-Neurons Dynamic Network 

 One can have more than one neuron in the adaptive system, 

and the TDL may still be used when several (S) neurons are 

present:
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Fig. 3 Multiple generic-neurons dynamic network 

(an input layer of generic neurons - 1L )

 For a given mL  layer, the correspondent network output 

( L
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a ) can be expressed as: 
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where p[k] is the layer input. 

 A given neural network can also have one or more of such 

layers. All are usually named hidden layers, except for the 

layer that generates the network output (which is called the 

output layer). 

III. COGNITIVE NEURAL NET MODEL

In this work, a special feedforward neural net cognitive 

model was proposed, inspired on a simple human perception 

approach, that first starts to amplify the high frequencies from 

the low frequencies, by using the derivative operator: 

)(wI)( 11,11 tn
dt

d
tn  (9) 

expressed in discrete time as the difference equation: 
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1,11 kpkpkn  (10) 

which corresponds to 
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A. First Hidden (Input) Layer 

The first neuron of the neural net structure will work as a 

real-time derivative operator, able to amplify the high from 

the low frequencies. As a human doesn't really focus on the 

correspondent output sign, we proposed a non-linear 

activation function (the square function), able to further 

amplify the derivative output, and able also to turn it always 

positive. 

That’s in fact what a human first expects to do when he 

percepts [1] the high frequency signals - often he will simply 

start to try to amplify (greatly) the higher variations of its 

module. 

So, the first layer output 
1L

1
[ ]a k  will be expressed as: 
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B. Second (Output) Layer  

 Now, a human operator is able to visually integrate and 

threshold a part of the first amplified differenced output. Thus, 

an additional two-neuron output layer was proposed, to work 

as an integrator operator, along with a hard-limit output 

activation function ("hardlim"), which returns "0" or "1", and 

with two fixed bias values, for respectively classifying the 

high from the low frequencies. 

 In the continuous domain, we can write for the two 

integrated outputs: 
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 And with SF  as the sampling frequency, we can obtain, for 

discrete time: 
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which will give, for the (two) outputs [ ]ja k :
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 Assuming a symmetrical condition between the high and 

the low frequencies, we can expect that the integrator gain 

relation might just be: 

21 CC  (23) 

and that will give: 

Ri

ii
LL

..1

,2,1
ww

 (24)  

C. Complete Neural Net Structure 

 The two-layer neural net complete structure is shown 

below:

Fig. 4 Complete two-layer ({1} and {2}) neural network structure 

The tapped delay lines have one delay for the first layer and 

eleven delays for the second layer, generating respectively, 

p[k-1] and u[k-1] to u[k-10]. 

 The second-layer hard-limit activation function makes the 

neural net to produce only output digital values. Nevertheless, 

one should remind that layers of neurons with nonlinear 

transfer functions (as the first one) will give further ability for 

the network to learn nonlinear and linear relationships. 

The MATLAB sample code for creating this neural net 

structure is: 

%global network creation 

net=network; %create a neural network

net.numInputs=1; %one input

net.numLayers=2; %two layers

net.biasConnect=[0; 1];  %net structure

net.inputConnect=[1; 0];  %net structure

net.layerConnect=[0 0;1 0]; %net structure

net.layers{1}.size=1; %net structure

net.layers{1}.transferFcn='fquadrado'; %pre-defined square function

net.layers{2}.size=2; %net structure

net.layers{2}.transferFcn='hardlim'; %hard limit

net.outputConnect=[1 1]; %net structure

net.targetConnect=[1 1]; %net structure

net.inputWeights{1,1}.delays=[0 1]; %two delays

net.layerWeights{2,1}.delays=[0 1 2 3 4 5 6 7 8 9 10];   

%eleven delays

net.IW{1,1}=[4 -4]; %Iw1,1=4   Iw1,2=-4

net.LW{2,1}=[1 1 1 1 1 1 1 1 1 1 1 ; -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]; 

%Lw1,1=...=Lw1,11=1   Lw2,1=...=Lw2,11=-1 

net.b{1}=[ ]; %layer1 bias b=0

net.b{2}=[-4 ;1]; %layer2 bias b1=-4   b2=1 
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IV. TRAINING THE NEURAL NET

 To achieve the desired output target, the neural net can be 

trained by supervised learning [2], [3]. If the error goal or the 

maximum number of epochs is reached, the training stops, 

giving the net new parameters. Otherwise it will execute 

another epoch. 

A.   Input Signal Generation 

The input for our experiment was a Simulink generated, one 

Volt amplitude sinusoidal signal, consisted by two different 

time-phased frequencies, respectively with one and four 

Hertz. The sampling rate SF  was 100Hz, and the signal's 

duration twenty seconds (2000 samples). A low-pass output 

filter ( )H s  avoided any input signal discontinuities: 

Fig. 5 Simulink input signal generation 
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1
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24 ss
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B.   The LMS Learning Algorithm (LEARNWH) 

The Widrow-Hoff least-mean-squares weight/bias learning 

rule [4] uses an approximate steepest descent method to 

minimize the mean square error, by applying the squared error 

(at each epoch), in order to estimate it: 
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Therein b and e are, respectively, the bias and the error 

vectors, and  is a learning rate. The learning process could be 

faster when  is higher. Yet, if  is too high, it may increase 

the error and generate fully unstable training. 

 Although the non-linear characteristics of these neural net 

activation functions, the Widrow-Hoff LMS rule still 

performed (as will be confirmed) a simple, reliable and fast 

learning algorithm. 

C. Training Results 

The MATLAB sample code for training the neural net 

structure is show above: 

%zero initial net conditions 

net.IW{1,1}=0;

net.LW{2,1}=[0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0]; 

net.b{2}=[0; 0]; 

%train parameters 

net.trainFcn='trainb';

%Batch training with weight and bias learning rules 

net.performFcn='mse';  %mean square error 

net.inputWeights{1,1}.learnFcn='learnwh'; %Widrow-Hoff learning

net.layerWeights{2,1}.learnFcn='learnwh'; %Widrow-Hoff learning

net.biases{2}.learnFcn='learnwh'; %Widrow-Hoff learning

net.inputWeights{1,1}.learnParam=struct('lr',0.1); %learning rate

net.layerWeights{2,1}.learnParam=struct('lr',0.1); %learning rate

net.biases{2}.learnParam=struct('lr',0.1); %learning rate

net.trainParam.epochs=100; %max. number of epochs

net.trainParam.show=5;

net.trainParam.goal=0.0001; %goal

%net batch train 

T1=A; %target

net=train(net,P1,T1);

 The network was trained, starting with all weights and bias 

values from zero, for both layers, and taking a pre-defined lr

learning rate. Given the correct output target (in this case two 

square waves, one for each frequency) for the p[k] input 

signal, we obtained for the mean square error (MSE): 

Fig. 6 Neural net training results at different learning rates 

It should be stressed first that when the learning rate is 

above 0.52, the training will no longer converge to the goal 

(unstable learning). All other applied learning rates 

converged, however when the learning rate (lr) is lower, there 

are considerably more local minima on the descent to the goal, 

and the number of epochs must be higher to achieve it. 

Trainb function trains the net (according to the weight and 

bias learning rules) with batch updates, and the weights and 

biases at the end of an entire epoch through the input data are 

updated. With 0.1lr , the goal was reached within 60 

epochs and the network ended up with: 

net.IW{1}=[-3.99    3.96]  
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net.b{1}=[ ] 0b

net.LW{2}= 
[ 36.22   35.78   34.25   32.39   30.49   29.03   28.48    29.12   30.97   33.72   36.80 ; 

 -50.56  -45.59  -40.59  -37.05  -35.08  -33.82  -32.65  -31.62  -31.13  -31.68  -33.54 ] 

L ,L
2 1

W = net.LW{2} 

net.b{2}= 135.40 45.30
T

 1 135.40b , 2 45.30b

 One should remind that the bias value for the first layer is 

always null. 

 Fig. 7 shows the layer's weighs Lw1,i and Lw2,i, for each of 

the correspondent learning rate: 

Fig. 7 Second layer weights for different learning rates 

These weights (Lw1,i and Lw2,i) have always different sign 

(i.e. the two output neurons have an opposite sign relation for 

its inputs, as expected). Also, we can see that the trained 

weighs values associated with a same output neuron will vary 

little. This means (and confirms) that the output neural 

network structure trends to behave near a discrete integrator, 

because all second layer neuron inputs are always nearly equal 

summed or nearly equal subtracted. 

Table I shows the first layer trained weights for each one of 

the correspondent learning rate, and Table II shows the second 

layer final biases (b1 and b2), obtained for each of the 

learning rates: 

As the values of Iw1,1 and Iw1,2 are almost symmetrical 

(for all the learning rates), it can be confirmed that the input 

layer neural network structure starts first to execute, as 

expected, a discrete instant derivative operation for the input 

signal p[k].

 The second layer biases vary with the learning rate although 

b1 and b2 have always different signs, and its ratio module 

(for each of the learning rate value) varies between 2.10 and 

5.39.

V. RESULTS

To test the neural network, it was introduced the filtered 

input signal already described in Chapter IV (Section A). The 

net weights and biases where obtained after training with 

lr=0.1, reaching (at 60 epochs) the goal (0.0001). 

 Figs. 8, 9 and 10 shows the first 700 samples for the p[k]

input and also for all the u[k], x1[k], x2[k], a1[k] and a2[k]

outputs:

Fig. 8 Input signal p[k] and layer one output  

signal u[k]

Fig. 9 First layer output signal u[k], and second layer x1[k] and x2[k]

outputs (before the activation function)
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TABLE I

FIRST LAYER WEIGHTS VERSUS LEARNING RATE

Iw1,1 

lr=0.05

-3.993

lr=0.1

-3.993

lr=0.2

-3.994

lr=0.3

-3.995

lr=0.4

-3.996

lr=0.5

-3.994

Iw1,2 3.959 3.960 3.961 3.965 3.970 3.961
      

TABLE II

SECOND LAYER BIASES VERSUS LEARNING RATE

b1

lr=0.05

-68.8

lr=0.1

-135.4

lr=0.2

-254.8

lr=0.3

-325.5

lr=0.4

-554.0

lr=0.5

-622.0

b2 24.0  45.3 82.2  155.1 232.0 115.5
      

Lw1,i

Lw2,i
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Fig. 10 Resulting final network outputs (a1[k] and a2[k]), obtained 

from the trained input signal p[k]

It can be confirmed that the neural network successfully 

classifies the high and the low-frequency signal intervals. 

For a cross validation we used two different amplitude, 

time-phased, sawtooth signals (respectively with 0.63Hz and 

8Hz), at a 100Hz sampling rate, and with 20s duration. Again, 

it was applied the same low-pass output filter H(s) (25): 

Fig. 11 Final outputs (a1[k] and a2[k]) obtained from a filtered time-

phased sawtooth signal input (new p[k]) 

 This neural net model is able to distinguish from the two 

different frequency signals, but as the net structure has only 

eleven delays, it might still generate some potential 

mismatches, specially in small time intervals with high 

amplitude variations - see a2[k] between k=475 (4.75s) and 

k=485 (4.85s).

 Nevertheless, a neural network with more delays in the 

second layer tapped delay line will necessarily increase the 

classification output delay (can be observed, with a1[k] and 

a2[k] near 1s, 2s, 3s, etc.). A possible solution for this 

dilemma lies in increasing the sample rate (and the 

correspondent number of acquired samples), i.e. to increase 

the array size of p[k]. 

VI. CONCLUSIONS

 Building a neural net model by first defining its basic 

structure, using a "common sense" cognitive heuristic, proved 

to be a good method before the network training, as both layer 

weights will converge to an expected perception solution. 

Keep in mind thought that when using neural net structures 

with tapped delay lines there are always inherent output 

classification delays, which can be reduced by increasing the 

signals acquisition sample rate. 

 The proposed model was successfully tested, and could be 

easily further developed also to classify more than two 

frequency signals. We only need to maintain the same neural 

model cognitive structure, and implement an additional output 

neuron for each frequency to classify. 
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