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Abstract—In this paper the optimal control strategy for 

Permanent Magnet Synchronous Motor (PMSM) based drive system 
is presented.  The designed full optimal control is available for speed 
operating range up to base speed. The optimal voltage space-vector 
assures input energy reduction and stator loss minimization, 
maintaining the output energy in the same limits with the 
conventional PMSM electrical drive. The optimal control with three 
components is based on the energetically criteria and it is applicable 
in numerical version, being a nonrecursive solution. The simulation 
results confirm the increased efficiency of the optimal PMSM drive. 
The properties of the optimal voltage space vector are shown. 
 

Keywords—Matlab/Simulink, optimal control, permanent 
magnet synchronous motor, Riccati equation, space vector PWM 

I. INTRODUCTION 

T is well known that the PMSM is a high efficient electric 
motor, but in the transient behavior, as starting, stopping or 

reversing, the efficiency of the energy conversion is 
diminished down to a values smaller than 60 percent, while in 
the stationary state it is greater. In order to improve the 
performances in industry applications, with often dynamic 
regimes, an optimal control is proposed by using linear 
quadratic criteria. In the motion control area (metallurgical 
rolling mills, robotics, manipulators, elevators, escalators) the 
obtained solution of the optimal control proves to be very 
adequate, increasing the working period of the electrical drives 
by decreasing the copper losses in the stator windings of the 
PMSM. 

The optimal control of the three phase surface permanent 
magnet synchronous machine (PMSM)-as it is presented in 
this paper-uses a different strategy besides those already 
offered by the technical literature [1]-[6]. The energetically 
optimization techniques are classified in accordance with the 
control principles that are used: single state variable control 
(the control variable is chosen such as it leads either to the 
input power minimization by using power factor control [1], 
or to the motor losses minimization through the slip control 
[2], model based control [3], [4], and search control [5], [6]. 
From the point of view of the optimal control theory there are 
presented both the stationary optimization methods and the 
dynamic optimization ones.  The proposed optimal vector 
control assures energy minimization by using the feedback 
component, zero steady state by its forcing component and 
fast compensation of the load through its feedforward 
compensating component. The proposed optimal control 
objectives are: smooth response without overshoot; the load 
torque compensation, and the input energy minimization. 
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As it is nonrecursive, determined on the basis of variational 

methods, the optimal solution is calculated on-line (to the 
current time), without memorizing this from the final time to 
the initial time, as in off-line case where the optimal control 
solution is based on the recursive method. In this way, the 
nonrecursive solution can be implemented to any type of 
electric motor, to usual electrical drive application, for any 
operating dynamic regimes, with any variation form of the 
load torque. 

II. PROBLEM FORMULATION 

The formulation of the optimal control problem supposes: 
1) the mathematical model of the three-phase PMSM; 2) 
defining  the performance functional criteria such that the 
objectives of the optimal control to be attained. 

A. Mathematical model of the PMSM 

The PMSM mathematical model is derived from the 
classical d, q mathematical model of the Synchronous motor 
with Round Rotor, taking into account that the excitation is 
provided by the permanent magnet, and the damper windings 
not exist [7]. By introducing the decoupling terms between d 
and q axes to the stator voltage uSd and uSq, their inter-
influence can be compensated. In this manner, the direct-axis 
stator current isd, and  the quadrature-axis stator current isq can 
be independently controlled.  

Taking into consideration the rotor surface mounted 
permanent magnet synchronous motor (SMPMSM) (Lsd=Lsq), 

and considering 0)(* =tisd , the mathematical model of the 

PMSM in d,q reference frame is presented: 
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or in compact form: 

Gw(t)Bu(t)Ax(t)(t)x ++=
o

 (2) 

 
where: 
isq – Transversal stator current component in synchronously 

d,q coordinate system 
Rs - Stator phase resistance 
Lsd= Lsq=Ls - Stator phase inductance d, q axes are equal 
usd,q - Stator voltages in d,q coordinate system 
ω - Angular speed 
J - Moment of inertia 
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θ - Rotor position angle 
Ψm - Permanent magnet flux 
p - Number of poles pairs, 
ml-load torque 
F - Viscous friction force 
x(t) , u(t), and w(t) are the state, the control and the 

perturbation vectors. 
The rotor field oriented PMSM is controlled at constant 

flux, the optimal control generates the voltage control of the 
Space Vector Pulse Width Modulator. 

B. The performance functional quadratic criteria 

The performance functional quadratic criteria [8] was 
chosen in order to assure a good behavior in transient state 
without oscillations of the angle q, and for reaching the 
stationary state without overshoot 
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in which the final free state is )x(t 1 and the required final 

state is 
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The matrix S has in view the minimizing of the square error 
between the reached state and the desired state x1 in the fixed 
time t1 
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the first term of the criteria (3), often called the terminal cost, 
is given by: 
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In the same way, by setting 
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the second term of (3) is related by equation 
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and minimizes the accumulated energy of the system inertia 
and the stator copper losses [9], [10].  

The third term results as 
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where the matrix R=[r] degenerated in a scalar value, 
determines the transfer from the initial state into the final state 
with minimal control effort; this has as its consequence the 
minimizing of the input energy.  

By choosing weighting matrices  
 

0, ≥QS , 0>R  (9) 

 
and taking into account that rank of the system is equal with 
the number of variable  states:  

 
2rank =trbC ,  (10) 

 
Where trbC  is the controllable matrix of the dynamic system 

(1), that means the dynamic system (4) is controllable [9].  
According to (10) and (11) the optimal control exists and is 

unique [1], [9], [10]. 
Therefore, the optimal control problem is with free-end 

point, fixed time and without restrictions. The restrictions of 
the magnitude for the control and state could be resolved by 
the adequate choice of the weighting matrices. 

C. The solution of the optimal control problem 

By using the variational method, the Hamiltonian of the 
optimal control problem is 
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in which y(t)∈ℜ2 is the associated costate vector. The costate 
vector is the solution of the differential matrix equation 
 

Ht x−∇=)(
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or in other form 

 

[ ])()()(
o

ttt T yAQxy +−=  (13) 

 
The necessary condition to obtain the optimal control is 

 
0=∇ Hu  (14) 

 
This implies: 

 

)()( 1* tt T yBRu ⋅⋅−= −  (15) 

 
By substituting u*(t) in the dynamic system (4), and by 

using (14) we get the canonical system associated to the linear 
quadratic problem. 
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Fig.  2 Switching pattern for the first sector 

 
Taking into consideration a starting of the PMSM, the 

integration conditions of the canonical system are: 

• the initial condition of the system 
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• the final costate vector condition  
 

)()( 11 tt xΛ∇=y , (18) 

 
 i.e., 
 

[ ]111 )()( xxSy −= tt          s4.01 =t   (19) 

 
the transversality condition of the costate vector. 
 

 
Fig. 1 The structure of the optimal control u*(t) 

 
By solving the canonical system (16) the optimal state 

trajectory and the costate vector are obtained such that the 
optimal control u*(t)=u*

sq(t) is provided by eq. (15). In order to 
avoid the classic recursive solution of the matrix Riccati 
differential equation, with the well known disadvantages and 
the positive eigenvalues of the system, the current time ' t ' 
goes to ' t1-t ', time remaining until the end of the optimal 
process through the adequate conversion of the state 
coordinates [8]. 

The optimal control, at any moment ' t ', is [9], [10]: 
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in which P(t1 - t) is the solution of the matrix Riccati 
differential equation, and the matrices K1 and K 2 are 
calculated via P(t1-t). 

The optimal control law has three components: the state 
feedback, the forcing component to achieve the desired state 
x1 and the compensating feed forward of the perturbation w(t).  

Obviously, the analytical solution supposes the knowledge 
of the perturbation w(t)=ml(t), which could be available by 
using a torque estimator. 

The next step consists in the computation of the stator 

reference frame voltage components ( )tus
*
α  and ( )tus

*
β  by 

using the inverse Clark transformation:  
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where 

0* =sdu  (22) 

The optimal stator voltage space-vector is obtained by using  
 

***
βα sss juuu +=   (23) 

 
The method used to generate the required voltage for the 

PMSM feeding is based on pulse with modulation technique 
via space vector modulation approach. Space vector theory 
demonstrated certain improvement for output crest voltage and 
harmonic copper loss. In addition to these advantages, the 
maximum output voltage based on the space vector theory is 

3/2  times higher than conventional sinusoidal modulation, 

and allows a higher efficiency and a higher torque at high 
speeds. 

The purpose of space vector PWM technique is to 
approximate the reference voltage vector outU  by a 

combination of the eight switching patterns. 
If, in a small PWM cycle periodpwmT , the average output 

of the inverter is the same like reference voltage average  

outU , we get the following equation: 
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where 1T  and 2T  are the durations in time for which 

switching patterns xU  and 60±xU  are applied within the 

period pwmT , and xU  and 60±xU  form the sector containing 

outU . 

Since the sum between 1T  and 2T  is less than or equal to 

Tpwm, the power inverter needs to have a 0 (000 or 111) pattern 
inserted for the rest of the period. Therefore, the above 
equation becomes: 
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Note that the third term on the right side of equation (25) does 
not affect the vector sum on the left side. 

A 3-phase AC induction motor command algorithm based 
on discussed SV-PWM principle contains the following steps: 
• Configure the timers and compare units to generate 

symmetric PWM outputs; 

K1(t1-t)
 R-1BT x(t) = A x(t)+Bu(t)+Gw(t)

P(t1-t) K2(t1-t)

x(t)

x(0) w(t)

x1

w(t)
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• Obtain the magnitude of reference voltage vector outU  

(command voltage) based on the optimal control; 
• Obtain the phase of outU  based on the orthogonal 

component; 
• Determine which sector outU  is in; 

• Decompose outU  to obtain 1T ,  2T and 0T ; 

• Determine the switching pattern or sequence to be used 
and load the calculated compared values into the 
corresponding compare registers. 

A look-up table stores the acos function values necessary to 
get the right value for the phase of reference voltage vector, 
common modulo function technique being avoided in this 
case. Comparing theta with the sector limits, the sector s of 
theta results. 

Decomposition of the reference voltage vector onto the 
basic space vectors of the sector is done by 2-by-2 matrix 
multiplication, as shown in equation (26). 
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Based on the decomposition matrix ( )sM  the basic space 

vectors are fetched and stored in another look-up table. 
The switching patterns implementing space vector PWM 

are such that only one channel toggles at a time, except for the 
case when the reference voltage vector is one of the basic 
space vectors. This approach has chosen the switching 
direction for each sector that results in one channel toggling at 
a time, as shown in Fig. 2 above for the first sector. Therefore, 
once the sector of Uout has been determined, the channels that 
toggle first, second and third are determined too. Based on this 
analysis, two look-up tables are constructed to use the sector s 
as an index for the comparing register. The compare registers 
are then loaded with the obtained compared values. The 
correct PWM output pattern is then generated by the compare 
logic. 

III.  NUMERICAL SIMULATION RESULTS 

The optimal control PMSM drive system has been 
numerically simulated by discretization using Z transform and 
zero order hold for a starting of a 0.75 kW, 3000 rpm PMSM 
under a rating load of 2.4Nm.  The motor parameters are: Rs = 
2.83Ω, d-axis winding inductance Ld = 10.1e-3H, the rotor 
magnetic flux Ψm = 0.198 Wb.  

The PMSM drive response is shown in Fig. 3, in which the 
speed reaches the desired final value of 3000rpm, and it is also 
underlined the effect of the load compensating component for 
a full load perturbation at t=0,2[s]. The impressed three-phase 
stator voltages based on SVPWM algorithm are shown in the 
Fig.4 for the same load variation.  In Fig. 5 the optimal 
control, usq, i.e. the transversal component of the stator voltage 
is shown. Obviously, the direct voltage component usd=0. In 
Fig.6, the voltage loci locus is depicted. The same results are 
obtained for stopping and reversing periods.  

 
Fig. 3 The PMSM drive system response: speed [rev/min] under the 

load torque ml[Nm] 
 
The final time t1=0,4[s], has been chosen by physical 

reliability. For these simulations, Matlab/Simulink software 
has been used. 

 

 
Fig. 4 The optimal three-phase SVMPWM stator voltage of the 

PMSM drive 
 

 
Fig. 5 The optimal control of the PMSM drive system 
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 Fig. 6 The optimal voltage loci locus 

IV. CONCLUSIONS 

A new optimal control for PMSM drive system based on 
SVPWM is shown. The full optimal control contains three 
components:  
• the state feedback; 
• the forcing component to achieve the desired state x1; 
• the compensating feedforward of the perturbation w(t). 

The method used to generate the required voltage for motor 
feeding is based on pulse with modulation technique via space 
vector modulation approach. Space vector theory 
demonstrated a certain improvement for output crest voltage 
and the harmonic copper loss. In addition to these advantages, 
the maximum output voltage based on the space vector theory 

is 3/2  times higher than conventional sinusoidal 

modulation, and allows a higher efficiency and a higher torque 
at high speeds. 

The optimal control is orientated for dynamic regimes and it 
assures the minimization of both of the PMSM and the 
inverter losses. 
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