International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:1, 2011

On the Solution of the Towers of Hanoi Problem

Hayedeh Ahrabian, Comfar Badamchi, and Abbass Nowzari-Dalini

Abstract—In this paper, two versions of an iterative loopless
algorithm for the classical towers of Hanoi problem with O(1)
storage complexity and O(2") time complexity are presented. Based
on this algorithm the number of different moves in each of pegs with
its direction is formulated.

Keywords—Loopless algorithm, Binary tree, Towers of Hanoi.

I. INTRODUCTION

HE towers of Hanoi problem is an old puzzle concerned

with moving n disks of decreasing diameter all initially
stacked on one peg to another peg in a minimal number of
moves. Disks must be moved one at a time, only the topmost
disk on each peg can be moved, and a larger disk may never
be placed on top of smaller one. A third spare peg is available
for the intermediate placement of the disks. The three pegs are
numbered 1, 2 and 3. It is assumed that the starting peg is 1,
the goal peg is 3 and the spare peg is 2. Disks are numbered
consecutively from the smallest to the largest from 1 to n.
Initially they are all stacked on peg 1, disk m stands at its
bottom and disk 1 on the top.

Since the publication of a recursive solution to this prob-
lem [5], many attempts have been made by various authors to
find simple and efficient iterative solutions [2], [6], [13], [17],
[23], [25]. The main idea of the all the iterative algorithms of
the towers of Hanoi is based on the disk transfers which can
occur in cyclically moves in two directions. For an even n the
direction of disk transfers with odd-numbers is 1 — 2 — 3 —
1, and for even-numbered disks is 1 — 3 — 2 — 1. Reversely
for an odd n the directions are reversed: For even-numbered
disks is 1 — 2 — 3 — 1, and for odd-numbered disks is
1—-3—-2-—1.

Er [9] presented a loopless algorithm that moves a disk in
a constant time independent of the number of disks. When
a disk is moved, the least significant 1 at position ¢ in the
binary number x (which shows the step number) is changed
to 0, and all 0’s in between positions 1 and (¢ — 1) inclusively
are set to 1’s. To model this fact, an auxiliary array is used
such that the contents of this array indicates the disk number
of a disk to move in each step. The computation of each
element of this array in each step depends to the previous
step. The time complexity of this algorithm is O(2") and the
space complexity of the algorithm is O(n). It should be noted
that this algorithm is performed independent of the simulation
of towers by arrays.

Then, Atkinson [1] and Gedeon [11] presented cyclic ver-
sion of tower of Hanoi, and suggested algorithms for solving

H. Ahrabian, C. Badamchi, and A. Nowzari-Dalini are with Center of ex-
cellence in Biomathematics, School of Mathematics, Statistics and Computer
Science, University of Tehran, Tehran, Iran. e-mail: {ahrabian, badamchi,
nowzari } @ut.ac.ir

the problem. Also, Sniedovich [20] reviewed the tower of
Hanoi problem from an Operational Research perspective. He
showed that this problem provides an excellent environment
for illustrating a number of fundamental Operational Research
problem solving concepts in general and dynamic program-
ming concepts in particular.

The towers of Hanoi problem was extended to four pegs
by Dudeney [4] in 1907 and to any arbitrary & > 3 pegs by
Stewart [21] in 1939. In 1941, Frame [10] and Stewart [22]
independently proposed an algorithm to the towers of Hanoi
problem with & > 4 pegs. Solutions are also given for
the extended problem [12], [26], [24]. Also, for obtaining
the minimum number of disk moves, solutions are discussed
in [14]. In addition a conjecture with this respect is suggested
in [15], and Chen and Shen presented an order for this
conjecture [3].

In this paper two versions of an iterative algorithm for
the solution of towers of Hanoi is presented. For designing
this algorithm the ideas in the Er [7], [8], [9], Mayer and
Perkins [16] and Meyer [18] are combined. The solution is
based on the binary tree to which the recursive procedure
is associated. First an iterative version of the algorithm with
an inner loop is presented, and later a loopless version of
the algorithm is given. Technically, the storage complexity
of this algorithm is O(1) and each step of this algorithm is
independently computed and does not depend to the former
computed numbers. It is proved that the time complexity of the
presented algorithm is O(2™). Consequently, according to the
presented binary tree the number of each move with different
directions is formulated.

II. ITERATIVE ALGORITHM

A full binary tree with 2" — 1 nodes can be associated to
the solution of the towers of Hanoi with n disks [16], [18].
Each node of this tree can be labeled and each label presents a
move. There are six different possible moves and each move
is labeled. The corresponding labels are shown in Table I.
Without the execution of any algorithm the corresponding full
binary tree which its nodes are labeled, can be constructed. As
it is illustrated in Fig. 1, the moves in each level has a special
pattern. For the odd levels zy'z’ are repeated and for even
levels zyz’ are repeated. The inorder traversal of this binary
tree solves the problem. We associate a binary number defined

TABLE I
THE SIX MOVE AND CORRESPONDING LABELS.
from 1 to 2 from 2 to 1 !
from 2 to 3 from 3 to 2 !
from1to3 | z || from3to1 !

39

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:1, 2011

100 1100

10 110

1 11 101 111 1001 1011 1101 1111

Fig. 1. The binary tree associated to the towers of Hanoi solution for n = 5.

by j to each node of the binary tree, which this number is the
same as the node number in an inorder traversal of the tree.
Easily the disk number and the label of the corresponding node
which shows the different moves can be computed from j.

As it is obvious, the inorder numbering of the nodes starts
from the last level (nth level). Therefore, if n is odd the
pattern of the odd’s level would be zy’z’ and for an even n
the pattern is zyz’' and this pattern alters every other one.
The algorithm should be designed to choose the correct
pattern and then the number j is converted to 0, 1 and 2,
such that in a odd pattern O stands for z, 1 for ' and 2
for z’, and in a even pattern 0 stands for x, 1 for y and 2
for 2’. For realizing the level number of j, the maximum i
which 2¢ | j (2% is a divisor of 7) is computed. Then n — i
shows the level number. It can be easily noticed that for
the odd numbers, ¢ is equal to 0 and therefore all the odd
numbers will appear in the nth level. After computing the
value of i, the variable j is shifted ¢ + 1 times and the result
is divided by 3. The reminder will be 0, 1 and 2 which is
mentioned in above. The computations for i can be performed
either with loop or loopless. The algorithm illustrated in
Algorithm 1 presents this computation with an inner loop.
It is proved that the time complexity of the algorithm is O(2").

Theorem 1.The time complexity of the algorithm hanoi-1 is
o(2m).

Proof As it is mentioned earlier, the algorithm traverses all
the nodes of the full binary tree in an inorder traversal. The
main loop of the algorithm is repeated for 2" times, and j is
an index variable in the main loop. For each odd j the internal
loop is not performed. According to the full binary tree, the
number of odd js is equal to 2"~ 1. For any even j the internal

Algorithm 1 The iterative algorithm.

void hanoi-1(int n)
{
inti, j, k[, q;
int move=(1 < n)-1;
unsigned char pegs[6]={ 1, 2,3, 1, 3,2 };
for (j=1; j <=move; j + +) {
=0 ;
while (!1(j >> 1 & 1))
14+ 4
I=n—1) & 1;
k=(j >>4++1) % 3;
k=pegs[k + (I 3)] ;
g=(k+10) %3+1;
printf (“move disk %d from %d to %d”, i, k, q) ;

loop is repeated ¢ times, where ¢ is the maximum value such
that 2¢ | 5. Obviously the number of such js is equal to 2"~ ~1
which is equal to the number of all nodes in the (n—1)th level
of the corresponding full binary tree. Assume 7'(n) be the time
complexity of the algorithm, therefore we can write:

T(n) =1.2""1 4127242273 ... 4 (n—1).2°,
T(n)y=2""t+2n"Y(14 2 +.. 4 21,

since we have:

40

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:1, 2011

therefore:
T(n) =2"~' + O(2"),
T(n) = O(2™).

|

As mentioned before, for computing the level number n — i,
first ¢ should be computed. We can also compute ¢ without any
loop. With small modification in the algorithm the inner loop
in the main loop is eliminated. In jth step of the algorithm the
level number n — ¢ can be easily obtained by the following
formula: logs (j & ! (j — 1)). The algorithm illustrated in
Algorithm 2 shows these computations. It is a loopless version
of the previous algorithm. As it is obvious from the algorithm,
the time complexity of the algorithm depends on the single
loop of the algorithm which shows the number of steps O(2").
According to both algorithms, no auxiliary array of size n is
used and all the computations can be performed with constant
storage, thus without considering the allocation space of index
7 (move counter), the space complexity of the algorithms is

o(1).

III. COUNTING THE NUMBER OF DIFFERENT MOVES

Since the full binary tree representing the performance of
the algorithm is fixed and with increasing of n by 1, just one
level is added to the binary tree, therefore the number of six
moves z, iy, ', z, y and 2z’ can be counted. This can be
done by counting the number of nodes in each level of the
corresponding binary tree. Therefore, if count(z) shows the
number of z moves, we have:

[n/2]1-1 22k
count(z) = (?],
/21
n/2]—1
2%k — 1
count(y') = [3 1,
k=0
[n/2]-1 2k
298 — 2
ta') =
count(z’) kgj [3 1,

Algorithm 2 The loopless version algorithm.
void hanoi-2(int n)
{
inti, j, k, [, q;
int move=(1 < n)-1;
unsigned char pegs[6]={ 1, 2,3, 1, 3,2 };
for (j=1; j <=move; j + +) {
i=logs (j & ! (j = 1)) :
I=(n—1) & 1;
k=(j >>++1) % 3;
k=pegs[k + (I * 3)] ;
e=k+1)%3+1;
printf (“move disk %d from %d to %d”, i, k, q) ;

n/2]—1 22k+1

count(z) = 3 1,
k=0
[n/2]-1 22k+1 -1
count(y) = —5 b
k=0
/ ln/2] =1 gokt1 _ o
count(z') = —
k=0
Clearly:
count(z) + count(+ count(z’) + count(x)+

")
count(y) + count(z') = 2™ — 1,

which enumerates the total number of moves in the solution
of the towers of Hanoi problem. For example for n = 7, we
have:

count(z) = 14+246+22=31,
count(y’) = 04+14+5+21=27,
count(z’) = 04+145+421=27,
count(z) = 143+4+11=15,
count(y) = 143+4+11=15,
count(z’) = 0+2410=12,

and

count(k) = 314-27+27+15+15+12 = 27 —1.

k=zy' 2" z,y,2’

Also, it is well know that, the number of moves of ith disk
is equal to the number of node in (n — i 4+ 1)th level of the
full binary tree, which is equal to 2"%.

IV. CONCLUSION

Two versions of an iterative algorithm for the towers of
Hanoi problem are presented. In each iteration, both versions
compute the disk number and the direction of each move, the
name of pegs are also calculated. The computations in each
iteration are completely independent of the previous iterations.
The first version of the algorithm uses an inner loop and the
second version is a loopless one. In each iteration all the
computations are done without using an auxiliary array of size
n. The storage complexity of both versions of the algorithm
is O(1) and their time complexity is O(2"). According to the
algorithm the number of different moves are formulated.

ACKNOWLEDGMENT

This research was partially supported by University of
Tehran.

REFERENCES

[11 M. D. Atkinson, The cyclic towers of Hanoi, Inform. Process. Lett. 13
(1981), 118-119.

[2] P. Buneman and L. Levy, The towers of Hanoi problem, Inform. Process.
Lett. 10 (1980), 243-244.

[3] X. Chen and J. Shen, On the Frame-Stewart conjecture about the towers
of Hanoi, SIAM J. Comput. 33 (2004), 584-589.

41

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:1, 2011

[4] H. Dudeney, The Canterbury Puzzles, Thomas Nelson & Sons, London,
1907.

[5]1 E. W. Dijkstra, A Short Introduction to the Art of Programming,
Technisch Hogeschool Eindhoven, EWD 316, 1971.

[6] M. C. Er, A linear space algorithm for the towers of Hanoi problem by
using a virtual disc, Inform. Sci. 47 (1989), 47-52.

[71 M. C. Er, A loopless and optimal algorithm for the cycle for Hanoi
problem, Inform. Sci. 42 (1987), 283-287.

[8] M. C. Er, A loopless approach for constructing a fastest algorithm for
the towers of Hanoi problem, Intern. J. Comput. Math. 20 (1986), 49-54.

[9]1 M. C. Er, The towers of Hanoi and binary numerals, J. Inform. Optim.
Sci. 6 (1985), 147-152.

[10] J. S. Frame, Solution to advanced problem 3918, Amer. Math. Monthly
48 (1941), 216-217.

[11] T.D. Gedeon, The cyclic towers of Hanoi: An iterative solution produced
by transformation, Copmut. J. 39 (1996), 353-356.

[12] P. Gupta, P. P. chakrabarti, and S. Ghose, The towers of Hanoi:
Generalizations, specializations and algorithms, Intern. J. Comput. Math.
46 (1992), 149-161.

[13] P. J. Hayes, A note on the towers of Hanoi problem, Copmut. J. 20
(1977), 282-285.

[14] S. Klavzar, U. Milutinovi¢, and C. Petr, On the Frame-Stewart algorithm
for the multi-peg towers of Hanoi problem, Discrete Appl. Math. 120
(2002), 141-157.

[15] S. Klavzar and U. Milutinovi¢, Simple Explicit Formulas for the Frame-
Stewart Numbers, Ann. Comb. 6 (2002), 157-167

[16] H. Mayer and D. Perkins, Towers of Hanoi revisited, SIGPLAN Notices
19 (1984), 80-84.

[17] S. Maziar, Solution of the tower of Hanoi problem using a binary tree,
SIGPLAN Notice 20 (1985), 16-20.

[18] B. Meyer, A note on iterative Hanoi, SIGPLAN Notices 19 (1984), 123-
126.

[19] P. H. Schoute, De ringen van brahma, Eigen Harrd 22 (1884), 274-276.

[20] M. Sniedovich, OR/MS games: 2. Towers of Hanoi, INFORMS Tran-
scations on Education 3 (2002), 34-51.

[21] B.M. Stewart, Advanced problem 3918, Amer. Math. Monthly 46 (1939),
363-363.

[22] B. M. Stewart, Solution to advanced problem 3918, Amer. Math. Monthly
48 (1941), 217-219.

[23] P. K. Stockmeyer, C. D. Bateman, J. W. Clark, C. R. Eyster, M. T.
Harrison, N. A. Loehr, P. J. Rodriguez, and J. R. Simmons, Exchanging
disks in the tower of Hanoi, Intern. J. Comput. Math. 59 (1995), 37-47.

[24] M. Saegedy, In how many steps the k peg version of the towers of Hanoi
game can be solved, Lec. Note. Comput. Sci. 1563 (1999) 356-361.

[25] T. R. Walsh, The towers of Hanoi revisited: Moving the rings by
counting the moves, Inform. Process. Lett. 15 (1982), 64-67.

[26] L. Xue-miao, A loopless approach to the multipeg towers of Hanoi,
Intern. J. Comput. Math. 33 (1990) 13-29.

