
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

922

Abstract—This paper investigates the problem of sampling from
transactional data streams. We introduce CFISDS as a content based
sampling algorithm that works on a landmark window model of data
streams and preserve more informed sample in sample space. This
algorithm that work based on closed frequent itemset mining tasks,
first initiate a concept lattice using initial data, then update lattice
structure using an incremental mechanism.Incremental mechanism
insert, update and delete nodes in/from concept lattice in batch
manner. Presented algorithm extracts the final samples on demand of
user. Experimental results show the accuracy of CFISDS on synthetic
and real datasets, despite on CFISDS algorithm is not faster than exist
sampling algorithms such as Z and DSS.

Keywords—Sampling, Data Streams, Closed Frequent Itemset
Mining

I. INTRODUCTION
NCREMENTAL mining on data streams is one of the most
interesting research issues of data mining in recent years.

Data streams have the specific features such as: rapid
incoming rate, unbounded amount of input data, limitation in
main memory usage, one step scanning process, uncontrolled
order of arrival data. Due to these reasons, it’s necessary to
use a reduction process to reduce the size of data streams.
Sampling is one of the effective methods to reduce the cost of
stream mining process. But, Simple random sampling or its
similar reservoir sampling in streaming data has a few
weaknesses. An SRS sample may not sufficiently represent the
content of dataset due to random fluctuation in the sampling
process. This difficulty is particularly apparent at small sample
ratios which are the case for very large databases with limited
memory.Several sampling algorithms have been presented for
sampling over data streams. The first algorithm was
introduced by Vitter [1] in 1985. The algorithm presented in
this paper requires one data scanning and the samples are kept
in fixed space. High speed was one of the advantages of this
algorithm and information loss sampling process was one of
its disadvantages.Counting and concise [2], Sample-and-hold
[3], Sticky sampling [4] and Probabilistic-Inplace [5] that
presented for sampling over stream of data, keep information
of data statistically and algorithmically to sample based on
content of data.

M. Tarafdar is MS student in Islamic Azad University, Qazvin branch,
Qazvin, Iran (e-mail: tarafdar.mansour@gmail.com).

M. S. Abadeh is Assistant Professor of Faculty of Electrical and Computer
Engineering ,Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran,
Iran (P.O.Box: 14115-143 ,Phone: +98 21 8288 4349, Fax: +98-21-82884325,
e-mail: saniee@modares.ac.ir)

In 2006, DSS Algorithm [6] was introduced which took
samples based on contents of transactional data streams. In

this algorithm efforts were made to approach the sampling
distance to data stream space. Calculations have shown that
this algorithm is more efficient in discovering of frequent
items in normal and noisy data [7] than Z [1] and LCA [4]
Algorithms but It suffers from low speed execution. The
author shows the proposed sampling method is accurate than
approximate counting for frequent itemset mining task.
Frequent itemset mining (FIM) over streaming data is popular
particularly among researchers of data mining. However,
mining the complete set of frequent itemsets in data streams is
practically impracticable in some cases. To efficiently solve
this problem, closed frequent itemsets was focused on as
condensed illustration. An itemset is closed if none of its super
itemsets has the equal support value with it, and a CFI is both
closed and frequent. Many researches on CFI mining over
static dataset have been proposed such as Closet[8],
Closet+[9] , Charm[10], DCI-Closed [11] , FP-Close [12],
LCM [13] and Recently, some CFI mining approaches over
stream’s sliding window were presented include Stream-
Close[14] , Moment+[15] and Moment[16]. Although these
algorithms taking advantages from efficient data structure and
mechanism, the obtained CFI is not acceptable set of entire of
data stream because of using sliding window. On the other
hand, the mining process over whole dataset is extra time
consuming for each run and minimum support value.In this
paper, due to massive size of data streams and the complexity
of closed frequent itemset mining tasks over data streams, we
propose CFISDS to speed-up mining process using various
minimum support values and improve the efficiency of closed
frequent itemset mining algorithm results over transactional
data streams. CFISDS is the first closed concept based
sampling algorithm that initiate a concept lattice as synopsis
data structure and update the concept lattice in batch manner.
The algorithm is based on sound mathematical foundation of
Formal Concept Analysis and stores the closed itemsets in a
lattice based synopsis. CFISDS utilize landmark window
model over data streams and extract samples on demand of
user. Experimental results show the accuracy of CFISDS on
synthetic and real datasets.The rest of this paper is organized
as follows. Definition of the problem describe in section 2. In
section 3, we discuss the proposed method and we introduce a
new approach to evaluate our sampling algorithm in Section 4.
We report our experimental results in Section 5 and conclude
our work in Section 6.

II. PROBLEM DEFINITION
Suppose ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ is a set of items. One transaction

in the form of ܶ ൌ ሼܶ݅݀, ,ଵݔ ,ଶݔ … , ௜ݔ ௡ሽ in whichݔ א , ܫ 1 ൑
݅ ൑ ݊ is defined. The number n shows the transaction length

Content Based Sampling over Transactional
Data Streams

Mansour Tarafdar, Mohammad Saniee Abade

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

923

and ܶ݅݀ is unique identifier of transaction. An itemset that
contain k items called k-itemset that includes (k-1)-itemsets,
(k-2)-itemsets… 2-itemsets and 1-itemsets. In transactional
data stream TDS ൌ ሼ ଵܶ, ଶܶ, … , ேܶሽ, TDS is a continuous stream
and ேܶ is the last incoming transaction. According to the
definition for an itemset, frequent itemset is defined as
follows. Itemset X is a frequent itemset if can obtain support
value more than user defined minimum support. The support
value of itemset X is equal to the number of transactions that
contain itemset X as a sub itemset. In this case we define
absolute minimum support value for support checking process.

Itemset X is called a closed frequent itemset if (a) it is
frequent and (b) there’s no proper superset like Y for X such
that support value x and y are equal. Information lossless
result and non-redundant Itemset X is called a closed frequent
itemset if (a) it is frequent and (b) there’s no proper superset
like Y for X such that support value X and Y are equal.

A formal concept, which is show by tripleሺܶ, ܱ, ሻ, containܫ
two sets T (itemsets) and O (properties) and the relation I
between two sets T and O. For a set ܺ ك ܶ of itemsets,
common properties sets to the objects in X is defined as
ܺᇱ ൌ ሼ݋ א ݐ ݈݈ܽ ݎ݋݂ ݋ܫݐ|ܱ א ܺሽ, and for set ܻ א ܱ of
properties, the set of itemsets common to the properties in Y is
defined as ܻᇱ ൌ ሼݐ א ݋ ݈݈ܽ ݎ݋݂ ݋ܫݐ|ܶ א ܻሽ. A formal concept
of the context ሺܶ, ܱ, ,ሻ will be showed by pairሺܺܫ ܻሻ in which
ܺ ك ܶ, ܻ א ܱ , ܺᇱ ൌ ܻ. In concept ሺܺ, ܻሻ, ܺ is known as
extent and ܻ is known as intent.

Suppose ሺܺଵ, ଵܻሻ and ሺܺଶ, ଶܻሻ are two concepts of a context,
and if ܺଵ ك ܺଶ (or ଶܻ ك ଵܻ), then ሺ ଵܺ, ଵܻሻ will be known as
subconcept of ሺܺଶ, ଶܻሻ and ሺܺଶ, ଶܻሻ will be known as
superconcept of ሺ ଵܺ, ଵܻሻ. This relation is shown as ሺ ଵܺ, ଵܻሻ ൑
ሺܺଶ, ଶܻሻ in which ൑ is called hierarchical order of the content.
The set of all triple concepts of ሺܶ, ܱ, ሻ will be arranged inܫ
this way and form a concept lattice. In a dataset, if we define
the transactions identifiers as T set, and the features set as ܱ
set, we define a procedure to extract the content of datasets
using concept lattice.

III. PROPOSED METHOD
In this section CFISDS will be presented for sampling over

stream data. Some characteristics of this algorithm are as
follows:
• Using a data structure similar to concept lattice to keeping

initial transaction in sampling space.
• Insert transactions in concept lattice in batch manner.
• Updating support value and deletion of recently

infrequent nodes from concept lattice in a batch manner.
• Using decay mechanism for processing transactional data

streams in Landmark window model.
• Using indexing table of concept lattice for fast search in

lattice structure
• Sample extraction on demand of user

In the following of describing CFISDS algorithm, first,
primary definitions from the used data structure will be
explained. Then, the procedure of creating the primary data
structure will be discussed. After demonstrating the inserting,

updating and incremental deletion of concept lattice, finally
the extraction of samples will be explained.

A. Initial Data Structure
The data structure used in CFISDS Algorithm contains two

parts:
• A concept lattice which primarily created by an extended

Charm-l and then update by an incremental algorithm.
• A sorted array of items with set of pointers assigned to

each item. This pointer set, points to some nodes of
concept lattice that contain current index table entry.

Fig. 1 shows an example of initiated data structure. In this
figure, in order to clarify the figure, just the pointers of item B
are shown.

Fig. 1 Table of pointers to nodes in the concept lattice

There are some definitions for a node such as X In a concept

lattice, such as ancestors (anc (X)), descendents (desc (X)),
parent (parent (x)) and child (child (x)). In the following ܫ௑
denote object-set of node X.

Definition 1: Node X is the ancestor of node Y, if and only if
௑ܫ ؿ ௑ܫ ௒ andܫ ് .௒ܫ

Definition 2: Node X is the descendant of node Y, if and
only if ܫ௑ ـ ௑ܫ ௒ andܫ ് .௒ܫ

Definition 3: If for a node X, ܺ א ܽ݊ܿሺܻሻ and ܼ ് ܺ, ܼ׍ א
ܽ݊ܿሺܻሻ: ܺ א ܽ݊ܿሺܼሻ, node X considered as parent of node Y.

Definition 4: If for a node X, ܺ א ܼ ሺܻሻ andܿݏ݁݀ ് ܺ, ܼ׍ א
:ሺܻሻܿݏ݁݀ ܺ א .ሺܼሻ, node X considered as child of node Yܿݏ݁݀
The following relationship is established in Fig. 2.

Fig. 2 Example of concept lattice and definitions of ancestor, descendant,

parent and child

Data structure used in this algorithm is very important. The
data structure, consist of constrained concept lattice and the
table of pointers to lattice nodes, causing high-speed search
operation, insertion and deletion. There is another algorithm
[17] to create concept lattice, but according to the massive
number of transactions and objects, the Charm-l has lower
memory consumption.

ହሻܥሺݐ݊݁ݎܽ݌ ൌ ሼܥଵ, ,ଷܥ ସሽܥ

ܽ݊ܿሺܥହሻ ൌ ሼܥ଴, ,ଵܥ ,ଶܥ ,ଷܥ ସሽܥ
ଶሻܥሺܿݏ݁݀ ൌ ሼܥଷ, ,ସܥ ହሽܥ
݄݈ܿ݅݀ሺܥଶሻ ൌ ሼܥଷ, ସሽܥ

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

924

Input: D- Transactional data stream ,
 S_min– Minimum support threshold,
 batch_size – Size of batch execution,
 d – Decay rate,
 S_sig – Significant support threshold,
 R – Sample size

Output: Sample – Selected transaction

CFISDS_ALGORITHM (D, S_min, batch_size, d, S_sig, R)
 Dr = first R transaction;
 [Concept_lattice, tblptr]= Modified_Charm_L (Dr, S_min);
 Initiate support for Concept lattice’s nodes regard to decay
mechanism;
 D = D-Dr;
 For each block B from D with size batch_size
 search_lattice_and_insert (&Concept_lattice, tblptr, B);
 update_lattice (&Concept_lattice, tblptr, d, S_sig,|ܦ|௞);
 Next block
 Recent_Frequent_node_Selection (&Concept_lattice,
S_min,|ܦ|௞);
 Sample = Select_more_relevant_transaction
(Concept_lattice, R);

In Charm-l [18], in first step, for each object a set of
transactions (TIDset) has created, then using a recursive
algorithm called Charm-l-Extend, closed frequent Itemset of
objects adds to the lattice. With some modification was made
in Charm-l-Extend routine, we can add closed frequent
itemsets to lattice and store corresponding transactions in
sampling space to build a complete concept lattice. Fig. 3
shows concept lattice created from the original data set.

B. Incremental Updates of Data Structure
In CFISDS algorithm, after the initial data structure created

by Charm-l, the incremental update process begins. Each
incoming transaction is a closed itemset [19] and according to
the decay mechanism [20], the concept insert in the lattice.
Decay mechanism helps us to maintain itemsets that have been
recently frequent and closed and control the size of the
concept lattice. Since the intersection of transactions in the
concept lattice structure used to update concept supports,
decay mechanism and redundant/non-closed node elimination
procedures is significant influence on quality of samples.

Decay mechanism, delete transaction with fewer repetitions
by applying incoming time in support value using parameter d.

Parameter d defined as ሺܾ ൐ 1, ݄ ൒ 1ሻ ݀ ൌ ܾ
షభ
೓ ; where decay-

base b determines the amount of weight reduction per a decay-
unit and decay-base-life h is defined by the number of decay-
units that makes the current weight be ܾିଵ. In addition to the
parameter d, there is another effective parameter calledܵ௦௜௚.
This parameter is defined by the user and used to value
initialization, lattice pruning and transaction support update
process. In addition, this parameter effect on nodes lifecycle in
concept lattice that causes fluctuation in concept lattice size.

In decay mechanism, we use the decay parameter d to
update the current number of arrived transactions rather than
calculating the number of transactions in linear form. |ܦ|௞ that
represents the current number of transactions calculate using
(1).

௞|ܦ| ൌ ൜ 1 ݇ ൌ 1
௞ିଵ|ܦ| כ ݀ ൅ 1 ݇ ൐ 1 (1)

Due to changes made in data structure and mechanism of

reference [26], when transaction T୩ (where k is the transaction
arrival time)insert in concept lattice for the first time, the
support value f୩ calculate using (2).

௞݂ ൌ ௞|ܦ| כ ܵ௦௜௚ כ ݀ ൅ 1 (2)

In the process of updating the support value for the nodes in
concept lattice, the value of this parameter calculate according
to the two last incoming transactions related to corresponding
node. In (2), p is time of transaction arrived before the
transaction T୩ and update support value of node. Also k,
shows the current transaction time.

௞݂ ൌ ௣݂ כ ݀ሺ௞ି௣ሻ ൅ 1 (3)

In this algorithm, removal process includes 3 mechanisms.

In first mechanism, we check the nodes of concept lattice after
batch insertion and remove non-frequent nodes according to
decay mechanism support value. Elimination of the nodes
from concept lattice reduces the support value of transactions
related to nodes, and gradually removes linked nodes from the
sample space. The second mechanism occurs in the user's
request, selects the frequent nodes and eliminates non-frequent
of them regard to relative minimum support. By removing
nodes, the transactions associated with them are removed from
the sample space. The third mechanism also occurs in the user
demand; leaves the final samples in sampling space by
selecting more related transactions to lattice nodes. More
detailed explanation will be given in next session. Fig. 3
depict general procedure pseudo code of the CFISDS
algorithm.

Fig. 3 pseudo code of CFISDS Algorithm

1) Transaction Processing
Since in our algorithm each incoming transaction t assumed

as a closed itemset and will be processed, If this transaction
exists as a node in concept lattice, CFISDS updates support
value using (3). But in the transaction absence in concept
lattice, CFISDS search the lattice structure and insert the
transaction in appropriate location. Initial support value of
such transactions calculated using (2) according to decay
mechanism.

One of the main advantages of the CFISDS algorithm is the
index tables of concept lattice. We use Items as entry of index
table to find all nodes related to transaction itemset. Equation
(4) shows how to obtain these nodes.

ܶ ݊݋݅ݐܿܽݏ݊ܽݎܶ ݎ݋݂ ݏ݁݀݋ܰ ݁ݐܽ݀݅݀݊݋ܥ ൌ ڂ ்אሺ݅ሻ௜ݎݐ݌݈ܾݐ (4)
It’s Necessary to obtain all nodes of concept lattice linked

to transaction items. With these nodes we can calculate child
and parent relation between nodes. The following example
shows importance of using the pointer table.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

925

Suppose we have a concept lattice like Fig. 4.a and
transaction ሼA, B, Cሽ has been arrived. If we use our approach
and use nodes set ሼܥଵ, ,ଶܥ ,ଷܥ ,ସܥ ହሽ to search, the latticeܥ
would be like 5.3 and the lattice structure transform like Fig.
4.b as a complete concept lattice structure.

By increasing the number of nodes in concept lattice, the
number pointers and the complexity of search procedure
increases subsequently. To solve this problem, we eliminate
nodes that contain non-used in transaction from candidate
node list. Using this procedure, the number of pointers to
lattice substantially reduced.

 (a) (b)
Fig. 4 Effect of presented method in integrity of concept lattice linkages

In batch search and insertion operation of transactions, in

the first step we prepare the list of candidate parents and childs
for current node, then reduce this candidate nodes by
eliminating nodes contain items that non-used in transaction.
At the next step we utilize subset/superset checking procedure
to eliminate remained redundant nodes and finally immediate
childs and parents remain to make complete links in concept
lattice structure for new node.

The growth in concept lattice size cause to increase nodes
number in candidate list as child/parent of arrival transaction
and increase in search and insert runtime procedure
consequently. After an incoming transaction inserted in
concept lattice as a new node, the transaction identifier adds to
intent part of ancestor nodes. Hence the transaction t
considered as support of these nodes. We use the batch
processing to speed-up of algorithms and then add the
informed content to concept lattice.
2) Update and Delete Process

As mentioned in previous section, after batch processing of
incoming transactions, the algorithm updates the support value
of nodes in concept lattice. During this procedure, we process
all nodes in lattice and calculate new support value of updated
nodes using (3). After this calculation, we must delete the
node if the expression ௞݂ ⁄௞|ܦ| be lower than ܵ௦௜௚, otherwise
we update ௞݂ to new value according to two last incoming
transaction time. In addition, the CFISDS algorithm eliminates
the childs of deleted nodes from the lattice. This operation
reduces the support value of related transactions in sampling
space.

C. Transaction Extraction on User Demand
One of the important features of CFISDS is not only use

batch processing in node elimination step of incremental
section, but also it can extract recently frequent nodes in any
time. If p and k be two last transactions ID in intent of node e,
where ݌ ൏ ݇, the relevant support value of node e calculate as

൫ ௣݂ כ ݀ כ ሺ݇ െ ሻ൯݌ ⁄௞|ܦ| according decay mechanism. If this
value was lower than minimum support value ܵ௠௜௡, CFISDS
eliminate this node and reduce the support value of related
transaction consequently. By reduction of transaction support
value, we can remove these samples from sampling space. Fig.
8 illustrates the pseudo code of this algorithm.

Since we know support value of more relevant transactions
in sampling space, we can leave top R transaction in sampling
space according to relative support value. Here, R is the size
of our sampling space.

IV. CONCEPT LATTICE EVALUATION
The concept lattice is the result of closed frequent mining

task. Since we use minimum support value to remove
infrequent nodes from concept lattice, finally we have a
constrained concept lattice. We expect the similarity of
concept lattice was obtained using a closed frequent itemset
mining algorithm over CFISDS samples will be more similar
to result of these algorithms over original data compare to
non-content or other task based sampling algorithms. Despite
we have different similarity measures to compare discrete sets
e.g. Symmetric difference [21], there aren’t a particular
measure to compare two concept lattices. Equation (5) show
above measures which use x,y as two input discrete sets.
Symmetric difference ܵ௑௢௥ሺݔ, ሻݕ ൌ 1 െ |௫ٓ௬|

|௫ڂ௬|
 (5)

We represent new form for above equations.
Let ݔ|ܵ׌, ݕ ك ܵ, and for x,y as two discrete sets, Maxሺx,yሻ

return the maximum value of two sets x,y. Now we define two
number ݉, ݊ א ܵ such that ݔܽܯሺݔ, ሻݕ ൑ ݉ כ ݊. Using this
definition, discrete set x reshape to its binary form like (6).

௫ݐܽܯ݊݅ܤ ൌ ܯܤൣ ௜ܺ,௝൧

௠כ௡

ܯܤ ௜ܺ,௝ ൌ ቊ
1 ൫ሺ݅ െ 1ሻ כ ݊ ൅ ݆൯ א ݔ
0 ൫ሺ݅ െ 1ሻ כ ݊ ൅ ݆൯ ב ݔ

 (6)

With binary representation of sets x and y, we define Union

and Exclusive-Or Matrices.

,௫ݐܽܯ݊݅ܤ௎௡௜௢௡൫ݐܽܯ ௬൯ݐܽܯ݊݅ܤ ൌ
௜,௝൧݊݋ܷ݅݊ܯൣ

௠כ௡
௜,௝݊݋ܷ݅݊ܯ ൌ

ቊ
1 ௫௜,௝ݐܽܯ݊݅ܤ ൌ 1 OR ݐܽܯ݊݅ܤ௬௜,௝

ൌ 1
0 ௫௜,௝ݐܽܯ݊݅ܤ ൌ 0 AND ݐܽܯ݊݅ܤ௬௜,௝

ൌ 0 (7)

,௫ݐܽܯ݊݅ܤ௑௢௥൫ݐܽܯ ௬൯ݐܽܯ݊݅ܤ ൌ ௜,௝൧ݎ݋ܺܯൣ

௠כ௡

௜,௝ݎ݋ܺܯ ൌ ቊ
1 ௫௜,௝ݐܽܯ݊݅ܤ ് ௬௜,௝ݐܽܯ݊݅ܤ

0 ௫௜,௝ݐܽܯ݊݅ܤ ൌ ௬௜,௝ݐܽܯ݊݅ܤ

 (8)

According these definitions we define “Ones” function on

binary matrix of a discrete set like (7).

Ones(ݐܽܯ݊݅ܤ௫)= ∑ ∑ ܯܤ ௜ܺ,௝
௡
௝ୀଵ

௠
௜ୀଵ (9)

Clearly, “Ones” function enumerates 1 values in a binary

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

926

matrix. Suppose we have two concept lattices ࣜሺܩ, ,ܯ ଵሻ andܫ
ࣜሺܩ, ,ܯ .ଶሻ that we name them as ࣜଵ and ࣜଶ respectivelyܫ
Since the relation of concept lattice is similar to a binary
matrix, (5) reform to (10) to compare binary relation matrices
of lattice ࣜଵand ࣜଶ.

ܵ௦௬௠஻௜௡ெ௔௧
൫ ࣜݐܽܯଵ, ଶ൯ࣜݐܽܯ ൌ

Onesቀெ௔௧಺೙೟ೝೞ೎೟൫ ெ௔௧ࣜభ,ெ௔௧ࣜమ൯ቁ

Onesቀெ௔௧ೆ೙೔೚೙൫ ெ௔௧ࣜభ,ெ௔௧ࣜమ൯ቁ
 (10)

As described above, relation matrix of concept lattice is

convertible to discrete set and vice versa, therefore the
presented approach to compare two concept lattices, has
essential features of similarity measures.

V. EXPERIMENTAL RESULTS
The Sampling test was carried out on a PC with 2.6 GHz

processor, main memory of 2 GB and Windows XP as OS. All
algorithms was implemented in Matlab. To accuracy
Improvement results for each dataset, the sampling operation
runs on 10 shuffles of each dataset. Based on the presented
definitions in section 4, we use ܵ௦௬௠஻௜௡ெ௔௧

 to compare the
obtained concept lattices.

In order to perform practical experiments four synthetic
datasets used in which generated by IBM Quest synthetic
dataset generator [22]. As well as these, two datasets BMS-
Pos and BMS-Web-View-1 were also used. Table II shows the
features of these datasets.

TABLE I
 CHARACTERISTICS OF USED DATASETS

The distribution of the range of datasets was selected

variously to show its effects on algorithms. Since CFISDS
algorithm is a sampling algorithm over data stream, in
practical tests we compare this algorithm to Z and DSS
algorithms. The size of sampling space was selected 7000, and
in DSS R=1000. The specific parameters of CFISDS are as
follows: b=2, h=10000, batch-size=1000. Table 3 shows the
parameters in CFISDS for each datasets.

TABLE II
OPTIONS CFISDS ALGORITHMS FOR DIFFERENT DATA SETS

As was expected and are shown in Fig. 5, the runtime of
CFISDS algorithm is more than DSS and Z. These differences
clearly are seen in dense datasets, namely T10, T8, T5 and
BMS-Pos. This is due to expansion of concept lattice in which
causes increase in the time of search process and creation and
deletion of transactions.

In T3 and BMS-Web-View-1 datasets, the runtime of our
algorithm is less than DSS. It’s duo to the low time to create
initial data structure in CFISDS compare to corresponding
time in DSS. The small length of transactions effects on the
speed of search procedure and creation and deletion.

Eventually, the proposed algorithm initiate its data structure
and insert them in sampling space regard to initial data
contents. However, DSS create a histogram and use it for
keeping information using statistical features of data.

The obtained samples from sampling algorithms with
original data set are given to Charm-l algorithm to extract their
concept lattice. Table 4 shows the minimum support for each
dataset. The selected minimum supports for Charm-l in all
dataset are equal to minimum support in CFISDS. In BMS-
Pos dataset, due to high density of data in CFISDS samples,
the runtime of Charm-l over samples of 400k and 500k
datasets is too high. Due to this, we use 0.025 as minimum
support.

TABLE III
SELECTED MINIMUM SUPPORT IN CHARM-L ALGORITHM FOR DATA SETS

After Charm-l execution over samples and original data, the

size of concept lattices was presented in Fig. 6. As expected,
the sizes of obtained concept lattices from CFISDS are larger
than those were obtained from other samples and original
datasets. On the other hand, CFISDS operate on landmark
window model therefore the informed contents of its samples
increase with growth size of datasets and, in contrast with
other sampling algorithms it’s not fixed.

Unique
Items # Trans Max len

of Trans
Avg len
of Trans Data Set

1000 69283 19 3 T3I4D100K
1000 84040 22 5 T5I4D100K
1000 95510 25 8 T8I4D100K
1000 98297 28 10 T10I4D100K

497 95602 267 2.5 BMS-Web-
View-1

1657 515597 164 6.5 BMS-POS

Ssig Minimum
Support Dataset

0.3 0.005 T3I4D100K
0.3 0.005 T5I4D100K
0.3 0.005 T8I4D100K
0.3 0.005 T10I4D100K
0.5 0.005 BMS-Web-View-1
0.5 0.01 BMS-POS

Minimum
Support Dataset

0.005 T3I4D100K
0.005 T5I4D100K
0.005 T8I4D100K
0.005 T10I4D100K
0.005 BMS-Web-View-1
0.025 BMS-POS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

927

In BMS-Pos dataset in 100k, 200k and 300k dataset size
like other datasets, we are seen increase in the size of concept
lattice, but due to high amount of minimum support in 400k

and 500k , the size of concept lattice are reduced extremely.
The obtained concept lattice from original datasets compare

with concept lattice of samples using ܵ௦௬௠஻௜௡ெ௔௧
 measure,

are presented in Fig. 7.
As we see in Fig. 7, the value of ܵ௦௬௠஻௜௡ெ௔௧

 measure for
concept lattice of CFISDS samples is clearly higher than of
those of the other two algorithms. The proposed algorithm
could obtain the better result in both synthetic and real
datasets. CFISDS algorithm keep more informed samples of
transactional data streams using landmark model. In BMS-Pos
and BMS-Web-View-1 which considered as sparse dataset,
there’s high difference between other algorithms in both
measures. Although, with increase in average of transactions’
length in synthetic datasets the average of
ܵ௦௬௠஻௜௡ெ௔௧

consequently decreases, the presented algorithm
has shown a higher efficiency than the other algorithms.

VI. CONCLUSION
In this paper, we describe CFISDS algorithms to extract

appropriate and effective samples for closed frequent itemset
mining task over data streams. The algorithm, use the concept
lattice structure preserves more relevant samples to concept
lattice in sampling space. Search, insert, update and delete in
batch manner are the most important features of our algorithm
in which effect the speed of algorithm. Also due to the
algorithm is proposed on landmark model, the obtained
contents by our algorithms are more informed compare to
other sampling algorithms. Moreover, the CFISDS algorithm
can extract the samples which associated with the lattice on
demand of user. As disadvantages of this algorithm, we can
state several user-defined parameters and weakness to handle
massive number of features or transactions.

Fig. 5 Runtime per transaction in datasets

Fig. 6 Size of the concept lattice obtained by execution of extended Charm-l algorithm on the original data and samples

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

104000 208000 312000 416000 515596

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

#Points

BMS‐POS

CFIS‐
DS
DSS

Z

0

0.0005

0.001

0.0015

0.002

12000 24000 36000 48000 59601

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

#Points

BMS‐Web‐View‐1 CFIS‐DS

DSS

Z

0

0.001

0.002

0.003

0.004

14000 28000 42000 56000 69283

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

#Points

T3I4D100KCFIS‐DS

DSS

Z

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

16800 33600 50400 67200 84040

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

Points

T5I4D100K

CFIS‐DS

DSS

Z

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

19100 38200 57300 76400 95510

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

#Points

T8I4D100K

CFIS‐DS

DSS

Z

0

0.005

0.01

0.015

0.02

0.025

19600 39200 58800 78400 98297

Ru
nt
im

e
pe

r
Tr
an

sa
ct
io
n
(s
ec
)

#Points

T10I4D100K

CFIS‐DS

DSS

Z

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

104000 208000 312000 416000 515596

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

BMSPOS Z

DSS

CFIS‐DS

Ord

0

10000

20000

30000

40000

50000

60000

70000

80000

12000 24000 36000 48000 59601

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

BMSWebView1

Z

DSS

CFIS‐DS

Ord

0

100

200

300

400

500

600

700

800

900

14000 28000 42000 56000 69283

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

T3I4D100K
Z

DSS

CFIS‐DS

Ord

0

200

400

600

800

1000

1200

16800 33600 50400 67200 84040

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

T5I4D100K
Z

DSS

CFIS‐DS

Ord

0

200

400

600

800

1000

1200

1400

1600

19100 38200 57300 76400 95510

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

T8I4D100KZ

DSS

CFIS‐DS

Ord

0

500

1000

1500

2000

2500

19600 39200 58800 78400 98297

#n
od

es
 o
f c
on

ce
pt
 la
tt
ic
e

Number of points

T10I4D100KZ

DSS

CFIS‐DS

Ord

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

928

REFERENCES
[1] J. Vitter; “Random sampling with a reservoir”, ACM Transactions

on Mathematical Software, Vol 11(1), pp.37– 57, 1985 .
[2] P.B.Gibbons, Y. Matias. “New sampling-based summary statistics

for improving approximate query answers”. In Proceedings of
ACM SIGMOD international conference on management of data,
1998, pp.331–342.

[3] C. Estan, G. Varghese. “New directions in traffic measurement and
accounting” . In: Proceedings of 1st ACM SIGCOMM workshop
on Internet measurement, 2001, pp. 75–80.

[4] G.Manku, R.Motwani. “Approximate frequency counts over data
streams”. In Proc. 2002 Int. Conf. Very Large Data Bases, 2002,
pp. 346-357.

[5] E.D.Demaine, A.L’opez-Ortiz, J.I.Munro. “Frequency estimation
of Internet packet streams with limited space”. In: Proceedings of
10th European symposium on algorithms, 2002, pp. 348–360.

[6] M. Dash, W. Ng. “Efficient Reservoir Sampling for Transactional
Data Streams” . Sixth IEEE International Conference on Data
Mining - Workshops, 2006, pp. 662-666 .

[7] W.Ng, M.Dash. “Which Is Better for Frequent Pattern Mining:
Approximate Counting or Sampling?”. In Proceedings of the 11th
international Conference on Data Warehousing and Knowledge
Discovery , 2009, p.p. 151-162.

[8] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for
mining frequent closed itemsets. In ACM SIGMOD the Internatial
Workshop on Data Mining and Knowledge Discovery, 2000.

[9] J.Wang, J.Han and J.Pei: CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets; In Proceeding of
ACM SIGKDD the InternationalConference on Knowledge
Discovery and Data Mining, 2003

[10] M.J.Zaki and C.Hsiao: Charm: An efficient algorithm for closed
itemset mining; In Proceedings of SDM the SIAM International
Conference on Data Mining, 2002

[11] C. Lucchesse, S. Orlando, and R. Perego. DCI-Closed: A fast and
memory efficient algorithm to mine frequent closed itemsets. In B.
Goethals, M. J. Zaki, and R. Bayardo, editors, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI 2004), volume 126 of CEUR Workshop
Proceedings, Brighton, UK, 1 November 2004.

[12] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining
frequent itemsets. In B. Goethals and M. J. Zaki, editors,
Proceedings of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations (FIMI 2003), volume 90 of CEUR
Workshop Proceedings, Melbourne, Florida, USA, 19 November
2003.

[13] T.Uno , T.Asai , Y.Uchida , H.Arimura . LCM: An efficient
algorithm for enumerating frequent closed item sets , In

Proceedings of Workshop on Frequent itemset Mining
Implementations , 2003 .

[14] B.N. Ranganath, M.N. Murty. “Stream-Close: Fast Mining of
Closed Frequent Itemsets in High Speed Data Streams”. ICDM
Workshops 2008, 2008, pp. 516-525.

[15] H.Li, H.Chen. “Moment+: Mining Closed Frequent Itemsets over
Data Stream”, ADMA 2008, 2008, pp. 612-619.

[16] Y. Chi, H. Wang, P.S. Yu, R.R. Muntz. “Moment: Maintaining
Closed Frequent Itemsets over a Stream Sliding Window”, In Proc.
Fourth IEEE Int’l Conf. Data Mining, 2004, pp. 59-66.

[17] V. Choi. (2006, Jun) “Faster Algorithms for Constructing a
Concept Galois Lattice.” CoRR .vol abs/cs/0602069. Available:
http://arxiv.org/abs/cs/0602069 [Jun. 1,2006].

[18] M.J. Zaki. C.-J. Hsiao. “Efficient Algorithms for Mining Closed
Itemsets and Their Lattice Structure”. IEEE Trans. on Knowl. and
Data Eng. Vol.17, No.4. pp. 462-478. 2005.

[19] P. Valtchev, R. Missaoui, R. Godin. “A framework for incremental
generation of closed itemsets”. Discrete Applied Mathematics
vol.156 (6). pp. 924–949. 2008.

[20] J.H. Chang, W.S. Lee. “Finding recently frequent itemsets
adaptively over online transactional data streams”. Inf. Syst.
Vol.31, No.8. pp. 849-869. 2006.

[21] F. Alqadah , R. Bhatnagar. “Similarity Measures in Formal
Concept Analysis”. ISAIM 2010, Fort Lauderdale, Florida , 2010.

[22] IlliMine. Package for Data Mining in C++ ,[Online] Available:
http://illimine.cs.uiuc.edu.

Fig. 7 Comparison of the concept lattices obtained from the original datasets and samples using ௃ܵ௔௖஻௜௡ெ௔௧

 measure

0

0.05

0.1

0.15

0.2

0.25

104000 208000 312000 416000 515596

S_
Sy
m

Number of points

BMSPOS Z

DSS

CFIS‐DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12000 24000 36000 48000 59601

S_
Sy
m

Number of points

BMSWebView1
Z

DSS

CFIS‐DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

14000 28000 42000 56000 69283

S_
Sy
m

Number of points

T3I4D100K Z

DSS

CFIS‐DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16800 33600 50400 67200 84040

S_
Sy
m

Number of points

T5I4D100K Z

DSS

CFIS‐DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

19100 38200 57300 76400 95510

S_
Sy
m

Number of points

T8I4D100K Z

DSS

CFIS‐DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

19600 39200 58800 78400 98297

S_
Sy
m

Number of points

T10I4D100K Z

DSS

CFIS‐DS

