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Abstract—Using the quantum hydrodynamic (QHD) model for 

quantum plasma at finite temperature the modulational instability of 
electron plasma waves is investigated by deriving a nonlinear 
Schrodinger equation. It was found that the electron degeneracy 
parameter significantly affects the linear and nonlinear properties of 
electron plasma waves in quantum plasma.  
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I. INTRODUCTION 
HE study of ultradense matter has been carried out quite 
extensively and intensively in the recent past. Such matter 

is found in metal nanostructures, neutron stars, white dwarfs 
and other astronomical bodies as well as in laser plasma 
interaction experiments. In such situations the average inter-
fermionic distance is comparable or even less than the thermal 
de Broglie wavelength and as a result the quantum degeneracy 
becomes important. In such extreme conditions of density the 
thermal pressure of electrons may be negligible as compared 
to the Fermi degeneracy pressure which arises due to the Pauli 
exclusion principle. However in this case the quantum effect 
can’t be neglected and proper mathematical modelling 
becomes necessary. Such quantum effects are generally 
studied with the help of two well known formulations, the 
Wigner-poisson and the Schrodinger Poisson formulation. The 
former one studies the quantum kinetic behavior of plasmas 
while the latter describes the hydrodynamic behaviour of 
plasma waves. The quantum hydrodynamic (QHD) model is 
derived by taking the velocity space moments of the Wigner 
equations. The QHD model modifies the clasical fluid model 
for plasmas with the inclusion of a quantum correction term 
generally known as the Bohm potential. The model also 
incorporates the quantum statistical effect through the 
equation of state. The model has been widely used to study 
quantum behaviour of plasma. A survey of the available 
literature [1-17] shows that most of the works done in 
quantum plasma in order to study the nonlinear behaviour of 
different plasma waves uses ultra low temperature 
approximation. But in most practical cases the temperature is 
not zero but finite. In this paper we have used the model 
developed by Eliasson and Shukla [18] to study the 
modulational instability of electron plasma waves including 
finite temperature effects.  
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II. THE FINITE TEMPERATURE MODEL 
Based on the 3D euilibrium Fermi-dirac distribution for 

electrons at an arbitrary temperature Eliasson and Shukla [18] 
derived a set of fluid equations which are valid both in the 
large and low temperature limits. When a plane longitudinal 
electron plasma wave propagates in a collisionless quantum 
plasma, it leads to adiabatic compression thereby causing a 
temperature anisotropy in the electron distribution. In quantum 
plasma the classical compressibility of the electron phase fluid 
is violated due to quantum mechanical tunnelling. However to 
a first approximation it can be assumed that the electron phase 
fluid is incompressible. Further the chemical potential (µ) 
remains constant during the nonequilibrium dynamics of the 
plasma. Under such assumptions the nonequilibrium particle 
density is given by: 
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Liγ(y) is the polylogarithm function. In the ultracold limit 

i.e T→0, we have β→∞ and µ→EF. The temperature 
anisotropy is given by:  ηex(x,t)= Te0/Tex(x,t)=[n0/ne(x,t)]  
The fermi energy is given by: 
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Now  using the zeroth and first moments of the Wigner 

equation with the Fermi-Dirac distribution function and 
assuming that the Bohm potential is independent of the 
thermal fluctuations in a finite temperature plasma one can 
derive the continuity and momentum equation in the following 
form:   
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where ne and vex are respectively the particle density and fluid 
velocity of electron; φ   is the electrostatic wave potential and  
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/Te B Te ev k T m= is the themal speed. G is the ratio of two 

polylogarithm functions given by: ( )
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The system is closed by the Poisson equation, 
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We now introduce the following normalization: 
  

0/ , , / 2 , /pe Fe pe B Fe j jx x V t t e k T n n nω ω φ φ→ → → →  and  

/j j Feu u V→ . 
Here 2

04 /pe en e mω π= the electron plasma 

oscillation frequency and  2 /Fe B Fe ev k T m= is the Fermi speed 
of electrons. Using the above normalization Eqs. (3)- (5) can 
be recast as: 
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where / 2 pe B FeH k Tω=  is a nondimensional quantum 
parameter proportional to the quantum diffraction and 

( )Te FeV Vα = . The parameter H is proportional to the ratio 
between the plasma energy 

peω  (energy of an elementary 
excitation associated with an electron plasma wave) and the 
Fermi energy B Fek T . 
 

III. DERIVATION OF THE NONLINEAR SCHRODINGER 
EQUATION 

For electron plasma waves we can assume that the ions are 
immobile. Following standard procedure we make the 
following Fourier expansions for the field variables: 
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In which ψ=kx-ωt (ω, k being the normalized wave 

wavenumber respectively), the field quantities neo, ueo, 0φ , 

nes, ues, sφ , nio and uio are assumed to vary slowly with x and 
t. i.e. they are supposed to be functions of ξ = ε(x-cgt) and τ = 
ε2t, where ε is a smallness parameter and cg is the normalized 
group velocity. 

Now substituting the expansion (7) in Eqs. (6) and then 
equating from both sides the coefficients of exp (iψ), exp (i2ψ) 
& terms independent of ψ we obtain three sets of equations 
which we call I, II and III. To solve these three sets of 
equations we make the following perturbation expansion for 

the field quantities neo, ueo, 0φ  nes, ues, sφ , nio and uio  which we 
denote by A : 

 
A =A(1) + εA(2) + ε2A(3) +…                    (8) 

 
Solving the lowest order equations obtained from the set of 

equations I after substituting the expansion (81) we get 
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And the linear dispersion relation, 
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In the dimensional form the dispersion relation becomes: 
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The degeneracy parameter G determines the transition 

between the ultra cold and thermal cases. In the low 
twmperature limit βµ→∞, µ ≈ EF ≡ (mVFe

2)/2 and G ≈ 2βEF/5, 
then the dispersion relation (11) takes the form  
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which  is similar to the dispersion relation for electron plasma 
waves in a quantum plasma obtained by using one 
dimensional QHD Model.  In the high temperature limit βµ→-
∞ so that G→1 and then the dispersion relation (11) reduces to 
the Bohm-Gross dispersion relation for electron plasma waves 
in a hot plasma 
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In the high temperature limit the last term on the  RHS may 

be neglected and then one gets the well known Bohm-Gross 
dispersion relation of electron plasma waves in a hot plasma. 
Fig. 1 shows the linear dispersion characteristics for different 
values of G. The electron degeneracy parameter is found to 
increase the slope of the dispersion curve. i.e.as the value of G   
increases the wave frequency increases for a given k. 
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Fig. 1 Linear dispersion curve for different value of G 

  
The group velocity /gc d dkω=  is obtained from the 

dispersion relation (13) as: 
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Fig. 2 shows the plot of group velocity versus wavenumber 

for different values of electron degeneracy parameter G. It is 
found that in the high k-region quantum diffraction term 
dominated and the group velocity is almost independent of G. 
In the small wavenumber region the G term dominates thus 
contributing to the nonlinear effect due to degeneracy 
pressureIn this region group velocity increases with increase 
in G. 

Fig. 2 Group velocity versus wavenuber for different G 
 
We now obtain the second harmonic terms in the lowest 

order equation which are obtained from the set of equations II 
by substituting the perturbation expansion.     
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The zeroth harmonic quantities are obtained from the 
solutions of the lowest order equations obtained from the set 
of equations III after substituting the perturbation expansion 
(8) 

 

( )

(1) (1)

(1) (1) (1)

(1) (1)

(1) (1)

2
0 0 1

2
0 0 1 1

3 2
0 1 1

2
0 1 1

2

=

= =

= −

=

e i

e g

i g

b

n n b

u b c k

u b c

φ φ

φ

ω φ

φ

                     (17) 

 
Where 
 

( ) ( )
( ) ( )( )

( )

2 2 2 2 3 2

0 2 2 2

0
1 2

1 12 3
 

3

g

g g

g

k G k H k
b

G

bb

c

c c

c

α σ

σ μ α

μ

σ

+ ⋅ + −
=

− + −

=
−

              (18) 

 
The first harmonic quantities in the second order are 

obtained from the solutions (9) by replacing –iω by 
2( )gi cω ε ε
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picking out order ε terms. Thus we obtain   
 

(2)
1

(1)
(2) 1
1

(1)
(2) 1
1

0

2

( )

e

e g

n ik

u i kc

φ

φ
ξ

φω
ξ

=

∂
=

∂

∂
= +

∂

                    (19)  

 
 Now collecting coefficients of ε3 from both sides of the sets 
of equations I after substituting the perturbation expansion (8) 
we get a set of equations for the first harmonic quantities in 
the third order. Using the above solutions and after proper 
elimination we obtain the following desired Nonlinear 
Schrödinger equation (NLSE) describing the nonlinear 
evolution of the wave amplitude  
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and the nonlinear coefficient 
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Note that both the coefficients P and Q depend on the 
quantum parameter H. 

IV. MODULATIONAL INSTABILITY 
The amplitude modulation of electron plasma waves can be 

investigated by using the NLS equation (20) which includes 
corrections due to finite temperature and quantum diffraction. 
The NLS equation has been studied extensively by many 
authors in connection to the nonlinear propagation of varies 
types of waves in plasma. It has been found that under certain 
conditions, an initially uniform wavetrain gets converted into a 
spatially modulated wave; such modulated waves are found to 
be energitically favourable. This effect is known as 
modulational instability. It is well known from the available 
literature that a uniformly propagating plasma wavetrain is 
modulatioanally stable when PQ>0 and unstable when PQ<0. 
The growth rate of such modulational instability attains a 
maximum value, 2

0.mg Q α=  corresponding to the 

wavenumber 1 / 2
0/ .ml Q P α=  of the modulation. Thus we 

find that the instability condition depends on the sign of the 
product PQ. Numerical computation of P and Q by using the 
expressions (21) and (22) for different values of k in terms of 
the system parameters shows that in low and high k-regions 
seperated by a stable region in k-space. The stability region in 
k-space increases with increase in the degeneracy parameter G 
but it decreases with increase in the quantum diffraction 
parameter H. The dependence of growth rate of instability on 
G depends on the region of instability in k-space. In the low k-
region the instability growth rate is higher for higher G (Fig.3) 
but in the high k-region the instability growth rate decreases 
with increase in G (Fig.4).  

 
Fig. 3 Growth rate of instability vs. k for different G for low k 

 

 
Fig. 4 Growth rate of instability vs. k for different G for high k 

V. DISCUSSION AND CONCLUSION 
As the degeneracy parameter G determines the transition 

from ultracold to thermal cases it is important to know its 
value. Table I shows the values of G for certain practical 
plasmas. Finally we would like to point out that the 
investigation presented here may be helpful in the 
understanding of the basic features of long wavelength 
electron plasma waves in dense and hot plasmas such as can 
be found in white dwarfs, neutron stars and intense laser-solid 
plasma experiments. 

TABLE I 
DEGENERACY PARAMETER FOR DIFFERENT KIND OF PLASMA 

Type of Plasma 
Density (m-

3) 
Temperature (K) G 

Tokamak 1020 1018 1 

Inertial Confinement 

Fusion 
1032 108 1 

Metal and Metal clusters 1028 104 1.4 

Jupiter 1032 104 1.4 

White Dwarf 1035 108 4 
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