
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

596

Abstract—detecting the deadlock is one of the important
problems in distributed systems and different solutions have been
proposed for it. Among the many deadlock detection algorithms,
Edge-chasing has been the most widely used. In Edge-chasing
algorithm, a special message called probe is made and sent along
dependency edges. When the initiator of a probe receives the probe
back the existence of a deadlock is revealed. But these algorithms are
not problem-free. One of the problems associated with them is that
they cannot detect some deadlocks and they even identify false
deadlocks. A key point not mentioned in the literature is that when
the process is waiting to obtain the required resources and its
execution has been blocked, how it can actually respond to probe
messages in the system. Also the question of ‘which process should
be victimized in order to achieve a better performance when multiple
cycles exist within one single process in the system’ has received
little attention. In this paper, one of the basic concepts of the
operating system - daemon - will be used to solve the problems
mentioned. The proposed Algorithm becomes engaged in sending
probe messages to the mandatory daemons and collects enough
information to effectively identify and resolve multi-cycle deadlocks
in distributed systems.

Keywords—Distributed system, distributed deadlock detection
and resolution, daemon, false deadlock.

I. INTRODUCTION
F a process in a distributed system needs a resource, which
is located in another machine, it sends a message to that

machine through a network connection to access the required
resource. If the required resource is available, it will be
allocated to the process and if it is being used by other
processes, the requesting process will be blocked until the
resource is released and obtained. Deadlock occurs when a set
of processes wait for each other for an indefinite period of
time to obtain their intended resources. Presence of a deadlock
in the system creates at least two major deficiencies. First all
the resources held by deadlock processes will not be available
to other processes. Second, deadlock persistence time is added
to the response time of each process involved in the deadlock
Therefore, the problem of prompt and efficient detection and
resolution of deadlocks is an important issue in a distributed
system [3]

Z. R. Author is with the Department of Electrical, Computer & IT, Islamic

Azad University, Qazvin Branch, Qazvin, Iran (corresponding author to
provide e-mail: z.rahimalipour@gmail.com).

A. T. H. Author is with the Department of Electrical, Computer & IT,
Islamic Azad University, Qazvin Branch, Qazvin, Iran (corresponding author
to provide e-mail: Haghighat@qazviniau.ac.ir).

Dependence relationship between processes in distribution
systems is shown by a directed graph called Waite-For Graph
[4]. In this graph, each node corresponds to a process and an
edge directed from one node to another indicates that the first
process is waiting for the resource the other process is
holding. A cycle in this graph indicates the presence of a
deadlock in the system. There are several resource request
models defined for the process operations in Distribution
systems [6]. The simplest one is single-resource model in
which a process is only able to request at most one resource at
a time. In the AND model, a process will be able to request a
set of resources and wait until all requested resources are
provided. In OR Model, a process that needs some resources
will not be active unless at least one of its required resources
has been provided. AND-OR model is a combination of the
two models. In this model, any combination of resources is
possible. This model is the more general form of AND-OR
model in which a process simultaneously makes a request for
q resource and remains blocked until it is granted out of q
resources. Another model is called the unrestricted model. In
this model, there is no particular structure for resource
request.

Four categories have been proposed for classifying
distributed deadlock detection algorithms [6]: path pushing,
edge chasing, diffusing computing and global state detection
algorithms. Edge chasing algorithms are regarded as one of
the most important deadlock detection algorithms due to their
high application and feasibility. In this method, a special
message called probe is generated by an initiator process and
propagated along the edge of WFG. Deadlock is detected
when this probe message gets back to the initiator, forming a
dependency cycle.

Edge-chasing algorithms have been mentioned a lot in the
literature [2], [3], [4], [8], and [12]. The key limitation in these
algorithms is that they are unable to detect deadlocks
whenever the initiator does not belong to the deadlock cycle;
that is when the detector process is the same as the initiator
process. Although this problem has been solved in some
algorithms, they still detect false deadlocks [9], [10].

In addition, these algorithms cannot detect deadlocks when
a single node becomes involved in several deadlock cycles.
Another question often ignored in previous studies is how a
process can answer deadlock detection messages received
when it is stuck in a deadlock cycle and is therefore on sleep
mode?

In this paper we will try to solve these problems using the
concept of daemon in the operating system and with

Daemon- Based Distributed Deadlock
 Detection and Resolution

Z. RahimAlipour, A. T. Haghighat

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

597

introducing an applicable structure for a probe message and
providing an efficient algorithm in order for a correct
detection of deadlocks and therefore, minimizing the
possibility of false deadlock detection in distributed systems.
This study is mainly concerned with the detection of multi-
cycle deadlocks. There has been an attempt to find an
effective method for resolving such deadlocks.

The rest of the paper is organized as follows; a thorough
study of state-of-the-art probe based algorithms and the
criticisms against them are presented in section 2.section 3
include describe of the proposed algorithm with some
executions. Correctness proof of algorithm is given in section
4. A brief Performance analysis is presented in section 5 and
performance comparison with simulation presented in section
6 . Section 7 is the conclusion of this paper.

II. RELATED WORKS
The main idea of using probes was first introduced by

Chandy-Misra and Haas [3] .The key concept in CMH
algorithm is that the initiator propagates probe message in the
WFG and declares a deadlock upon receiving its own probe
back. Probe message in this algorithm has three parameters
(i,j,k), which respectively include: the blocked process ID, the
sending process ID and the ID of the process that should
receive the message. Deadlocks occur when we have a
message in the form of (i,j,i) that is when the process that has
initiated the probe operations receives the same probe
message . Therefore, a cycle is identified in the system and a
deadlock is detected.

Another algorithm was presented by Mitchell and Merritt
which is similar to Chandy-Misra and Haas algorithm except
that each process has two different labels; ‘public’ and
‘private’ [11]. The two labels have equal values in the
beginning. This algorithm is able to detect the deadlock by
propagating public labels in the backward direction in WFG.
When a transaction gets blocked, the public and private labels
of its node in WFG increase in value and undergo greater
changes than the public labels of the blocked transaction. A
deadlock is detected when a transaction receives its own
public label; this method ensures that there is only one
detector in the system.

Sinha and Natarajan presented a bipartite algorithm that
includes detecting and resolving deadlocks [12]. During the
detection step, a probe message is used and processes should
save some of the probe messages. In the deadlock resolving
step, priority is used to reduce the number of probe messages
and the process with lowest priority in a cycle is chosen as the
victim accordingly. Also unnecessary probe messages that are
stored in the system by other transactions are deleted through
the victim process.

Chadhary et.al presented a modified algorithm that
somewhat fixed the problems in Sinha and Natarajan’s
algorithm [4]; problems such as deadlock detection failure and
false deadlock detection. However, this algorithm was later
reviewed by Shemkalyani and Singhal and modified again and

its correctness was substantiated [8]. None of the algorithms
are able to identify deadlocks in which the initiator is not
directly involved in the cycle, though Lee proposed an
algorithm in which deadlocks can be detected even when the
initiator does not belong to any deadlock [9.10]. In this
algorithm a tree is generated through propagating probes in
the system and deadlocks are detected based on the
information obtained from data dependency between the tree
nodes. However, this algorithm cannot identify all the
deadlocks reachable from the initiator and may detect false
deadlocks during concurrent executions.

In the algorithm proposed by Faraj Zadeh et .al, a probe
with two parameters was introduced: initiator ID and an
integer string called Route- String which includes the IDs of
the passing edges from any of the Graph nodes [5]. In this
paper, the storage was considered for graph nodes in which
probe messages passing in any of the nodes are saved. If the
corresponding storage is empty in the passing probe of a node,
the probe is stored and forwarded to the next nodes,
otherwise, the message ID in storage and the received
message ID will be checked for correspondence. Finally, if the
path-string of the message in storage be a prefix of the
received message path-string, deadlocks are detected.
However, in the multi-cycle deadlock detection issue was
ignored this algorithm.

 The Algorithm proposed by the Abdorrazzaq et .al
addresses the multi-cycle deadlock detection issue and the
algorithm is able to identify and resolve these deadlocks
through providing structures for probe and victim messages
[1]. Although this algorithm is good at solving many of the
problems in this field, it does this at the cost of a memory
overhead for each process to achieve this goal.

III. THE PROPOSED ALGORITHM
In Distribution systems, presenting a comprehensive

algorithm that can detect a deadlock with certainty and resolve
it in an efficient manner is almost impossible [14]. The
algorithm presented in this paper is an optimal algorithm for
detecting and resolving deadlocks especially during
concurrent executions in the system.

A. System assumptions
A distributed system consists of a set of processes

connected by a network Communication delay is limited but
unpredictable. A distributed program is a set of n-
asynchronous processes (p1, p2, ... , pn) in which
communication is made through message passing. Each
Process has a unique individual ID in the system and there is
no shared memory. It is FIFO assumed that messages in the
network act as FIFO and that they are reliable i .e, messages
do not get lost or are not replicated and therefore they are
transferred in an error-free manner.

B. Daemon application
According to OS definitions, Daemon is a process that runs

in the background and is in sleep mode under normal

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

598

conditions [14]. When an event takes place in the system, it
wakes up and logs it. Each machine can host several daemons
in a distributed system. Here daemon is considered as one of
the core components of the operating system.

In this paper, a daemon is considered for each machine
having a database with the following components:

Process ID Process
Requirements Port Array of Probes

By utilizing the above definition in the database of every

daemon, probes will be easily able to engage in message
exchange between the daemons.

In this database, the name of the process includes the
process IDs for any daemon. Communication between
processes is specified by the process requirements field; so if a
Process is waiting to get more resource(s) held by one or more
other processes, the process IDs are stored in this field.
Corresponding with any requirement, if this requirement is
inside the daemon, the port field value is NULL; otherwise the
related port number of the process daemon is respectively
stored. All the probes passing through each process will be
stored in the array of probes so that the algorithm can
optimally track the daemons. In a Given distributed system, a
probe message is produced and propagated in each daemon
and the name of each probe is shown with its associated
daemon ID. For example, a probe generated in daemon No.1
and propagated in the system is named pb1.

C. Algorithm description
A process can be in two states: ruining and blocked. In the

running state (active) processes obtain all the requested
resources and are running or are ready for run. A process is
blocked when waiting to obtain some resources. Deadlock
occurs when a set of processes are waiting for each other to
obtain unspecified resources. The proposed algorithm is a
probe-based algorithm and its probe message has 4 fields:
victim ID, Maximum Requirements, Processes string and
daemon sting.

Victim ID Maximum
Requirement

Processes
String

Daemon
String

Victim ID is a process ID that must be killed to resolve a

deadlock and its value at the beginning of the algorithm is
equal to process ID from which the probe has initiated. In the
path of a probe, maximum resource requirements of a process
held by other processes are stored in Maximum Requirements
field and concurrently victim ID is updated. Maximum
Requirements value in the beginning of the algorithm shows
the number of requested resources in the first process of a
daemon. Process strings and daemon strings store the probe
routes sequentially.

When process strings reach a process that is available in the
prefix of array of probes, deadlock has occurred. This process
is called deadlock detector. After deadlock detection, a

message called "victim message" is used to resolve the
deadlock. This message leads to the removal of a process ID
which has been stored in the victim ID field. For this purpose,
the daemon in which the victim ID is available is identified by
means of daemon string, and a victim message is sent for
deleting it. If the field of victim ID contains a process that is
not in the identified process cycle, the execution of algorithms
leads to deleting a process that does not affect deadlock
resolution procedure. Therefore, victim ID field will be
updated by the detector's ID.

D. Algorithm execution
A threshold is assumed for processes in the system. If the

waiting time for acquired resources exceeds the threshold, the
daemon initiates the deadlock detection algorithm by
generating a probe message. Through requirements field, the
daemon can find out to what process to send a probe if the
specified process is outside the current daemon, the address of
the destination daemon will be available in the port field.
When a probe passes through a daemon, the information about
it will be registered in the database of the daemon.

Suppose we have a distribution system with 3 machines and
6 processes and requirements in accordance with Figure1.

Fig. 1 A distribution system with 3 machines and 6 processes

In Given Distribution System, a daemon has been assumed
for each machine. Address of the daemons is presumably
considered the same as their number. As it was mentioned,
one database is assumed for each daemon in which process
requirements for the resources available to other processes can
be found. (See figure 2)

The algorithm starts when process p1 in daemon D1 is
waiting for more than expected threshold time. In this case,
D1 will be the deadlock detection initiator. Daemon D1
creates a probe message and propagates it in the system. The
probe message created will be like ("1","1", 1, p1). This
message may be sent from the information in the database of
daemon D1 to the processes involved in the daemon. Figure 3
shows how this message is propagated in the system. Finally
when the probe gets back to p2, as the ID of this process is
available in probe processes string field, the daemon detects a
cycle and proclaims p2 as the deadlock detector process. Now
we will review cycle creation and correct deadlock detection
procedure discussed up to now. Therefore, in the daemon
initiator we will try to see if the name of the probe is available

Daemon1

Daemon 3

p1 p2
Daemon 2

p5

p3

p4

p6

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

599

in the field of the corresponding array of probes or not.

DB_D1
Process name Requirements Port Array probe

p1 p2 -
p2 p3 2

DB_D2
Process name Requirements Port Array probe

p3 p6, p4 3,-
p4 p5 -
p5 p6 3

DB_D3
Process name Requirements Port Array probe

p6 p2 1
Fig. 2 Database per Daemon

If the name of the probe is available, cycle is proved to

exist and a victim message is sent from daemon D1 to daemon
D2 in which the victim process p3 is available. Otherwise, the
probe is discarded because the cycle has already become
discrete for any reason.

Fig. 3 Propagation of probe message

Then, all the daemons available in the daemons string will
be announced to delete the probe message. All the probes in
the probe array field of p3 process are also discarded
(concurrent execution problem) and the initiator probe is
announced to remove the probes from its array of probes.

E. Concurrent execution problem
In a distributed system, concurrent execution of an

algorithm on a few machines is inevitable. As long as a
daemon in a machine sends probe messages for detecting
deadlocks, there may be other machines simultaneously
propagating other probes messages leading to false deadlock
detection, especially when we face a multi-cycle system.

We will take Figure 4 as a multi-cycle system. Deadlock
detection algorithm will simultaneously be initiated by any of
the 3 daemons of p1, p2 and p5 processes. Having finished
pb1, pb2 and pb3 probes will respectively contain process
strings of "1231", "24512", and "5645". Suppose that pb3

probe has completed its work earlier. Then daemon D3 should
victimize the p5 process. In probe array field of p5 process in
daemon D3 database, pb2 may also be available in addition to
this probe, and with the end of pb2 route, false deadlock will
be found. So a message is sent to the daemon of the second
probe i.e. D2, to remove the name of this probe from the field
array of the daemon probes.

 After detection cycle "24512" is identified by Pb2, this
probe will be discarded because p5 has been already destroyed
and the initiator daemon probes array is without pb2.

Fig. 4 Distributed multi- cycle

After the end of pb1, p2 process is victimized for resolving

the deadlock caused by the “1231” cycle and the updates are
done according to the above procedure

F. Deadlock Detection and Resolution Algorithm
For a particular node i, pseudo code for deadlock detection

and recovery algorithm is presented in Appendix.

IV. CORRECTNESS PROOF

A deadlock detection algorithm is correct if it detects every
deadlock that occurs and does not detect any false deadlock.
In this section, we will show that the proposed algorithm is
correct under the following assumptions:

Theorem 1. If a deadlock is detected, the corresponding
nodes are really in deadlocked state. Phantom deadlocks are
not detected.

Proof. Let’s prove it using proof by contradiction. A set of
nodes could be detected as in a phantom deadlock, when the
detection algorithm misinterprets the existence of a deadlock
cycle. This type of misinterpretation can be taken place in this
algorithm only and if only at least any two nodes have the
same ID. In the case, a false deadlock is detected even though
the traveling path of probe message does not make a cycle.
But this contradicts with our network model, described in
section 3.1.

Theorem 2. If a deadlock occurs, in system, (safety) it will
be detected (progress).

Proof. Using concept of daemons, all of the process
requirements in the system, are specified. Because the probe
propagation in system done by means of daemons, it can

Daemon 2

 p1

p3

p5

p2 p4

p6

D
aem

on 1 D
ae

m
on

 3

(“112223”, “123456”,2,p3)

(“1122”, “1234”,2,p3)

(“112”, “123”,2,p3)

(“1”, “1”,1,p1)

p1 p2

p5

p3

p4

p6

(“11”, “12”,1,p2)

(“11222”, “12345”,2,p3)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

600

published to all of possible route in communication network.
So, if a cycle exist in the system, prefix relationship in the
probe's process string field, eventually will be detect
deadlocks.

V. PERFORMANCE ANALYSIS
Message traffic and the amount of time required for

detecting a cycle are the factors often used for analyzing the
performance of a distributed deadlock detection algorithm [7].
In most of the papers, the number of messages in the system is
considered to be a coefficient of the number of processes in
the system, but in the proposed algorithm, the number of
messages will be a coefficient of the number of daemons in
the system. If p is assumed to be the number of the daemons
in the system, message traffic will be less or equal to p. This
number is much less than the numbers mentioned in other
algorithms. If the required time for following an edge in the
cycle process is assumed to be one unit and ‘t’ shows the
communicating time between daemon processes and ‘m’

represents the number of deadlocked processes, then required
time for detecting the cycle equals (m+t). In other words, the
order of time complexity in the algorithm is o (n).

In Table 1, a comparison between the performance of the
proposed algorithm and existing algorithms is presented. It
should be mentioned that n, d, and e respectively represent the
number of processes in the graph, graph diameter and the
number of graph edges in the system.

VI. SIMULATION AND PERFORMANCE COMPARISON

We have run the simulation program using fixed sites (20)
connected with underlying network speed of 100 Mbps, but
with varying multiprogramming level (MPL), ranges from 4 to
14. Also range of process size in experiments is varying
between of 5 to 10. Performance of our proposed algorithm
has been compared with that of Razzaq algorithm [1].

 As shown in Fig. 5, with increasing MPL or process size
value, message overhead are also increased. Increasing the
number of probe messages to detect deadlocks, lead to
increasing systems overhead communication in both
algorithms. Probes in proposed algorithm are produced by
Daemons, but each process in Razzagh algorithm is able to
probe production separately. So the number of messages

produced in our method will be less than the Razzagh
algorithm. Although messages in both algorithms (with the
use of strings) have variable size but Lee showed with
simulation tests that the average path-strings length field is
small enough that even under the heavy load can be ignored it.

 Average deadlock detection duration is shown in figure 6.
This parameter is obtained from the average blocked process
waiting time and as can be seen in the figure, with using
Daemon in proposed algorithm, deadlock persistence time in
system is almost half of similar amount in Razzaq algorithm.

0

4

8

12

16

20

24

4 6 8 10 12 14

multiprograming

m
es

sa
ge

 o
ve

rh
ea

d

razzaq our method

0

30

60

90

120

150

5 6 7 8 9 10

process size

m
es

sa
ge

 o
ve

rh
ea

d

razzaq our method

Fig. 5 Systems message overheads

Same result when variable size of process has been used is

obtained. Reduce the deadlock persistence time reason is
faster resolving deadlocks in our method. Deadlock resolution
with victimize of process that has highest demand of the other
process can lead to break more likely cycles. Thus average
blocked process Waite time on the system will be decreased
and the other process will have more chance to completion.

0

4

8

12

16

4 6 8 10 12 14

multiprograming

de
ad

lo
ck

 p
er

si
st

en
ce

 d
ur

at
io

n

razzaq our method

0

4

8

12

16

20

5 6 7 8 9 10

process size

de
ad

lo
ck

 p
er

si
st

en
ce

 d
ur

at
io

n
razzaq our method

Fig. 6 Average deadlock detection duration

VII. CONCLUSION

In this paper, a distributed algorithm was proposed for
detecting and resolving deadlocks. This algorithm is able to
discover the deadlocks in operating systems correctly using
the concept of daemon and minimizes the possibility of false
deadlock detection by presenting a suitable structure for probe
messages.

APPENDIX
Pseudo code for deadlock detection and recovery algorithm:

Struct Probe {//structure of probe
 String Daemons
 String Processes
 Int DepCount
 Index Victim
}
Algorithm Initiation () {
 Int W; //pre defined time out
}

TABLE I
 COMPARISON OF ALGORITHMS PERFORMANCE

ALGORITHM COMPLEXITY OF
MESSAGE DELAY

Chandy ,Mysra, Haas [3] <m.n 2d + 2

Sinha, Natarajan [12] Best:2 (n-1)
Worst: m (n-1) O (n)

Mitchell ,Merritt [11] M (n-1) O (n)
kShemkalyani, Singhal [8] 4e O (n)
Lee, Kim [10] 2e 2m
Lee [9] <2e d + 2
Faraj Zadeh et .al [5] ≤e O (n)
Proposed Algorithm ≤p O (n)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:3, 2010

601

Probe Probe_Initiate(Process p)
{
Probe myProbe = new probe ();
 myProbe.Daemons.ADD(p_Daemon);
 myProbe.Processes.ddADD(p);
 myProbe.DepCount = p_Requirements;
 myProbe.Victim = X;
Return myProbe;
}
Is_Exist_Cycle (Probe pb_X)
{
 Daemon d= pb_X.Daemons.firstmember();
 Process p= pb_X.Processes.firstmember();
 If ((pb_X) exist in (Array Probe) of (p) at (d))
 Return true;
 Return false;
}
Discard (Probe pb_X)
{
 Remove pb_X from all daemons' Database;
 Free (pb_X);
}
Kill (Probe pb_X)
{
 Daemon d = pb_X.Victim_Daemon
 For each (Probe pb in d.Array_Of_Probes(pb_X.Victim))
 Call Pb.Daemon.Initiator to remove pb_X From Daemon DB
 For each (Probe pb in pb_X)
 Call pb_X.Victim_Daemon to KILL x.Victim;
}
Send Probe (Probe pb_X)
{
READ DATA FROM THIS DAEMON;
SENDING PROBE TO ALL PORTS OF THIS PROCESS;
}
Receive Probe (Probe pb_X)
{
 THIS.DAEMON.Array_Probe.Add(pb_X);
 If (process.ID isn’t prefix of pb_X.Processes)
{
 If (process_Requirements > pb_X.DepCount)
{
 pb_X.DepCount = Process_Requirements;
 pb_X.victim = Process_ID;
}
pb_X.Daemons.ADD(Process_Daemon);
pb_X.Processes.ADD(Process_ID);
Send Probe (pb_X);
}
Else
{
If (Is_Exist_Cycle ())
 //Deadlock Detected;
{
 Kill (pb_X);
 Update_Probes(pb_X);
}
Discard (pb_X);
Exit;
}

}
Algorithm Main () {
//waiting_for_Requirements (p)
 While (waiting_for_Requirements (p)>W)
 {
 Probe pb_X = Probe_Initiate(p);
 Send Probe (pb_X);
 }

}

REFERENCES
[1] Abdur Razzaque. Md., Mamun-Or-Rashid. Md.,

Ch.Hong,"MC2DR:Multi-cycle Deadlock Detection and Recovery
Algorithm for Distributed Systems", LNCS 4782(HPCC2007), Sep 26-
28 2007, pp. 554-565

[2] Chandy, KM, Misra, J,"A distributed algorithm for detecting resource
deadlocks in distributed systems". In Proc. ACM SIGA CT-SIGOPS
Syrup, 1982, pp. 157-164

[3] Chandy KM, Misra .J, Haas LM, "Distributed Deadlock Detection",
ACM Transactions on Computer Systems, May 1983,Vol 1,No. 2.PP
144-156

[4] Choudhary et al," A Modified Priority Based Probe Algorithm for
Distributed Deadlock Detection and Resolution", IEEE Trans Software,
January 1989, vol.15, No.1, pp .10-17

[5] Farajzadeh. N, Hashemzadeh. M, Mousakhani.M , Haghighat, .A,"An
Efficient Generalized Deadlock Detection and Resolution Algorithm in
Distributed Systems",In: Proc.5th IEEE Int'l Conf. Computer and
Information Technology (CIT'05),2005.

[6] Knapp, E, "Deadlock Detection in Distributed Databases". ACM
Computing Surveys, Dec.1988, vol.3, no. 4, pp.303-328.

[7] Kshemkalyani AD, Singhal M ,”Distributed detection of generalized
deadlocks”. In: Proceedings of the 17th International Conference on
Distributed Computing System, IEEE Computer Society Press, 1997, pp
553–560

[8] Kshemkalyani, A. D, Singhal, M, “Invariant based verification of a
distributed deadlock detection algorithm,” IEEE Trans. Software Eng,
Aug. 1991, vol 17, pp. 789-799.

[9] Lee.S,"Fast, Centralized Detection and Resolution of Distributed
Deadlocks in the Generalized Model", IEEE Transaction on Software
Engineering, September 2004, Vol. 30 , No.9 ,pp. 561-573

[10] Lee, S., Kim, JL,"An Efficient Distributed Deadlock Detection
Algorithm". In: Proc. 15th IEEE Int'l Conf. Distributed Computing
Systems, pp. 169–178 (1995)

[11] DP Mitchell and MJ Merritt,“A Distributed Algorithm for Deadlock
Detection and Resolution”, Proc. Third ACM Symp. Principles of
Distributed Computing, pp. 282-284, Vancouver, Canada, Aug. 1984.

[12] MK Sinha and N. Natarjan, "A priority-based distributed deadlock
detection algorithm", IEEE Trans. Software Eng., Vol. SE-11, No. 1,
Jan. 1985, 67-80.

[13] Singhal, M, "Deadlock Detection in Distributed Systems", IEEE
Computer, Nov.1989, No 22, pp. 37-48.

[14] Tanenbaum ,A."Modern Operation Systems", 3 e, (c) Prentice-Hall, Inc.
2008

