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Abstract—This Paper presents a particle swarm optimization 

(PSO) method for determining the optimal proportional-integral-
derivative (PID) controller parameters, for speed control of a linear 
brushless DC motor. The proposed approach has superior features, 
including easy implementation, stable convergence characteristic and 
good computational efficiency. The brushless DC motor is modelled 
in Simulink and the PSO algorithm is implemented in MATLAB. 
Comparing with Genetic Algorithm (GA) and Linear quadratic 
regulator (LQR) method, the proposed method was more efficient in 
improving the step response characteristics such as, reducing the 
steady-states error; rise time, settling time and maximum overshoot in 
speed control of a linear brushless DC motor. 
 

Keywords—Brushless DC motor, Particle swarm optimization, 
PID Controller, Optimal control.  

I. INTRODUCTION 
HERE are mainly two types of dc motors used in industry. 
The first one is the conventional dc motor where the flux 

is produced by the current through the field coil of the 
stationary pole structure. The second type is the brushless dc 
motor (BLDC motor) where the permanent magnet provides 
the necessary air gap flux instead of the wire-wound field 
poles [1].  

This kind of motor not only has the advantages of DC 
motor such as better velocity capability and no mechanical 
commutator but also has the advantage of AC motor such as 
simple structure, higher reliability and free maintenance. In 
addition, brushless DC motor has the following advantages: 
smaller volume, high force, and simple system structure. So it 
is widely applied in areas which needs high performance drive 
[2].  

From the control point of view, dc motor exhibit excellent 
control characteristics because of the decoupled nature of the 
field and armature mmf’s [1]. Recently, many modern control 
methodologies such as nonlinear control [3], optimal control 
[4], variable structure control [5] and adaptive control [6] have 
been widely proposed for linear brushless permanent magnet 
DC motor. However, these approaches are either complex in 
theorical bases or difficult to implement [7]. PID control with 
its three term functionality covering treatment to both transient  
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and steady-states response, offers the simplest and yet most 
efficient solution to many real world control problems [8]. In 
spite of the simple structure and robustness of this method, 
optimally tuning gains of PID controllers have been quite 
difficult. 

Yu et al. [9] have presented a LQR method to optimally 
tune the PID gains. In this method, the response of the system 
is near optimal but it requires mathematical calculation and 
solving equations. Lin et al. [10] have introduced GA-based 
PID control for brushless DC motor. Genetic algorithm is a 
stochastic optimization algorithm that is originally motivated 
by the mechanism of natural selection and evolutionary 
genetics. 

Though the GA methods have been employed successfully 
to solve complex optimization problems, recent search has 
identified some deficiencies in GA performance. This 
degradation in efficiency is apparent in applications with 
highly epistatic objective functions (i.e., where the parameters 
being optimized are highly correlated), the crossover and 
mutation operations cannot ensure better fitness of offspring 
because chromosomes in the population have similar structure 
and their average fitness are high toward the end of the 
evolutionary process [11], [12], [13]. PSO first introduced by 
Kennedy and Eberhart is one of the modern heuristic 
algorithms, it has been motivated by the behavior of 
organisms, such as fish schooling and bird flocking [14]. 
Generally, PSO is characterized as a simple concept, easy to 
implement, and computationally efficient. Unlike the other 
heuristic techniques, PSO has a flexible and well-balanced 
mechanism to enhance the global and local exploration 
abilities [15]. 

In this paper, a novel PSO-based approach to optimally 
design a PID controller for a brushless DC motor is proposed. 
This paper has been organized as follows: in section 2 the 
linear brushless DC motor is described and the speed model of 
it is shown. In section 3, the particle swarm optimization 
method is reviewed. Section 4, describes how PSO is used to 
design the PID controller optimally for a linear brushless DC 
motor. A comparison between the results obtained by the 
proposed method and GA method and LQR design [9] via 
simulation the DC motor is presented in section 5. The paper 
is concluded in section 6.  

II. LINEAR BRUSHLESS DC MOTOR 
Permanent magnet DC motors use mechanical commutators 

and brushes to achieve the commutation.  However, BLDC 
motors adopt Hall Effect sensors in place of mechanical 
commutators and brushes [17]. The stators of BLDC motors 
are the coils, and the rotors are the permanent magnets. The 
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stators develop the magnetic fields to make the rotor rotating. 
Hall Effect sensors detect the rotor position as the 
commutating signals. Therefore, BLDC motors use permanent 
magnets instead of coils in the armature and so do not need 
brushes. In this paper, a three-phase and two-pole BLDC 
motor is studied. The speed of the BLDC motor is controlled 
by means of a three-phase and half-bridge pulse-width 
modulation (PWM) inverter. The dynamic characteristics of   
BLDC motors are similar to   permanent magnet   DC   
motors.   The characteristic equations of BLDC motors can be 
represented as [18]: 
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where )(tappν  is the applied voltage, ( )tω is the motor 
speed, L is the inductance of the stator, i(t) is the current of the 
circuit, R is the resistance of the stator, ( )temfν  is the back 
electromotive force, T is the torque of motor, D is the viscous 
coefficient, J is the moment of inertia, Kt is the motor torque 
constant, and Kb is the back electromotive force constant. 

Fig. 1 shows the block diagram of the BLDC motor. From 
the characteristic equations of the BLDC motor, the transfer 
function of speed model is obtained  
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Fig. 1 The block diagram of BLDC motor 

 
The parameters of the motor used for simulation are as 
follows: 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

TABLE I 
PARAMETERS OF THE MOTOR 

 
 
 
 
 
 
 
 
 
 
 
 

 

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION  
PSO is one of the optimization techniques and a kind of 

evolutionary computation technique. The method has been 
found to be robust in solving problems featuring nonlinearity 
and nondifferentiability, multiple optima, and high 
dimensionality through adaptation, which is derived from the 
social-psychological theory [13]. The technique is derived 
from research on swarm such as fish schooling and bird 
flocking. According to the research results for a flock of birds, 
birds find food by flocking (not by each individual). The 
observation leads the assumption that every information is 
shared inside flocking. Moreover, according to observation of 
behavior of human groups, behavior of each individual (agent) 
is also based on behavior patterns authorized by the groups 
such as customs and other behavior patterns according to the 
experiences by each individual. The assumption is a basic 
concept of PSO [16]. In the PSO algorithm, instead of using 
evolutionary operators such as mutation and crossover, to 
manipulate algorithms, for a d-variabled optimization 
problem, a flock of particles are put into the d-dimensional 
search space with randomly chosen velocities and positions 
knowing their best values so far (Pbest) and the position in the 
d-dimensional space. The velocity of each particle, adjusted 
according to its own flying experience and the other particle’s 
flying experience. For example, the i th particle is represented 
as  ),...,,( ,2,1, diiii xxxx =  in the d-dimensional space. The 

best previous position of the i th particle is recorded and 
represented as:   

)Pbest...,,Pbest,Pbest(Pbest ,2,1, diiii = . 

The index of best particle among all of the particles in the 
group is dgbest . The velocity for particle i  is represented as 

),....,,( ,2,1, diiii vvvv = . The modified velocity and position 
of each particle can be calculated using the current velocity 
and the distance from  ddi, gbest  toPbest as shown in the 
following formulas [13]: 
 

Parameters Values and units 

R 21.2Ω  

bK  0.1433 Vs rad-1 

D 1*10-4 Kg-m s/rad 

L 0.052 H 

tK  0.1433  Kg-m/A 

J 1*10-5 Kgm s2/rad 
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where 
 

n Number of particles in the group 
d dimension 
t Pointer of iterations(generations) 

)(
,
t
miv  Velocity of particle I at iteration t 

max
d

)(
,

min
d VV ≤≤ t

div  
w Inertia weight factor 

 , 21 cc  Acceleration constant 

()
()

Rand
rand

 
Random number between 0 and 1 

)(
,
t
dix  Current position of particle i at iterations 

iPbest  Best previous position of the ith particle 

gbest  Best particle among all the particles in the 
population 

 

IV. IMPLEMENTATION OF PSO-PID CONTROLLER 

A.  Fitness Function 
In PID controller design methods, the most common 

performance criteria are integrated absolute error (IAE), the 
integrated of time weight square error (ITSE) and integrated of 
squared error (ISE) that can be evaluated analytically in the 
frequency domain [19], [20]. These three integral performance 
criteria in the frequency domain have their own advantage and 
disadvantages. For example, disadvantage of the IAE and ISE 
criteria is that its minimization can result in a response with 
relatively small overshoot but a long settling time because the 
ISE performance criterion weights all errors equally 
independent of time. Although the ITSE performance criterion 
can overcome the disadvantage of the ISE criterion, the 
derivation processes of the analytical formula are complex and 
time-consuming [21]. The IAE, ISE, and ITSE performance 
criterion formulas are as follows: 
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In this paper a time domain criterion is used for evaluating the 
PID controller [13]. A set of good control parameters 

DIP  and  ,  can yield a good step response that will result in 
performance criteria minimization in the time domain. These 
performance criteria in the time domain include the overshoot, 
rise time, settling time, and steady-state error. Therefore, the 
performance criterion is defined as follows [13]: 
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Where K is [P, I, D], and β  is the weightening factor. The 
performance criterion W(K) can satisfy the designer 
requirement using the weightening factor β  value. β  can set 
to be larger than 0.7 to reduce the overshoot and steady states 
error, also can set smaller than 0.7 to reduce the rise time and 
settling time [13]. The optimum selection of β  depends on 
the designer’s requirement and the characteristics of the plant 
under control. In BLDC motor speed control system the lower 
β  would lead to more optimum responses. In this paper, due 
to trials, β  is set to 0.5 to optimum the step response of speed 
control system. 

The fitness function is reciprocal of the performance 
criterion, in the other words: 

)(
1
KW

f =                                   (12) 

 
B.  Proposed PSO-PID Controller 
In this paper a PSO-PID controller used to find the optimal 

parameters of LBDC speed control system. 
Fig. 2 shows the block diagram of optimal PID control for 

the BLDC motor. 
 

 
Fig. 2 Optimal PID control 

 
In the proposed PSO method each particle contains three 

members DIP   and    , . It means that the search space has 
three dimension and particles must ‘fly’ in a three dimensional 
space. 

The flow chart of PSO-PID controller is shown in Fig. 3. 
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Fig. 3 Flowchart of the PSO-PID Control system 
 

V. NUMERICAL EXAMPLES AND RESULTS 

A.  Optimal PSO-PID Response 
To control the speed of the LBDC motor at 1000 rmp, 

according to the trials, the following PSO parameters are used 
to verify the performance of the PSO-PID controller 
parameters: 
 

• Population size: 20; 
• ;1.0,6.0 minmax == ww  
• C1 =C2 =1.5; 
• Iteration :20; 

 
The optimal PID controller is shown in Fig. 4. 
 
 

 
Fig. 4 Step response of BLDC motor in PSO based PID speed control 
 

Table II lists the performance of the PSO-PID controller. 
 

TABLE II 
PERFORMANCE OF THE PSO-PID CONTROLLER 

 
Fig. 5 shows the convergence graph in the PSO method. 
 

 
Fig. 5 Convergence graph in the PSO method  

 
B.  Comparison of PSO-PID Method with LQR and GA 

Methods 
To show the effectiveness of the proposed method, a 

comparison is made with the designed PID controller with GA 
and LQR methods. At first method, the PID controller is 
designed using LQR method [9] and the values of designed 
PID Controller are 70.556, 10, and 0.0212 [9]. Also, GA 
method is used to tune the PID controller.  The following GA 
parameters which are used to verify the performance of the 
GA-PID controller parameters: 

• Population size: 30 
• Crossover rate: 0.9 
• Mutation rate: 0.005 
• Number of iterations :30 

The values of designed PID Controller are 93.1622, 38.6225, 
and 0.027836. Fig. 6 shows the convergence graph in the GA 
method, Fig. 7 shows the PSO response in comparison with 

[P   I   D] [190.0176,50,0.039567] 

Rise time(ms) 0.3038 

Max overshoot (%) 0 

Steady States error 0.77186 

Settling time(ms) 0.60116 

No 

Yes 

Start 

Generate initial Population 

Run the LBDC control system model for 
each set of Parameters 

Calculate Mp, Ess, Tr, Ts  
of model's  step response  

Calculate the Pbest of each particle and gbest of 
population 

Update the velocity, position, 
gbest and pbest of particles 

Maximum iteration 
number reached? 

Stop 

Calculate the fitness function 
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GA and LQR methods and Table III lists the performance of 
the two methods.  
 

 
Fig. 6 Convergence graph in the GA method 

 

 
Fig. 7 Comparison between GA, LQR and PSO based PID control in 

speed control of LBDC motor 
 

TABLE III 
LQR AND GA PERFORMANCE 

 LQR GA 
P 70.556 93.1622 
I 10 38.6225 
D 0.0212 0.027836 
Tr (ms) 0.46786 0.46127 
Mp% 1.4186 0 
Ess 2.2513 1.5785 
Ts (ms) 0.79368 0.87404 

 

VI. CONCLUSION 
In this paper a new design method to determine PID 

controller parameters using the PSO method is presented. 
Obtained through simulation of BLDC motor, the results show 
that the proposed controller can perform an efficient search for 
the optimal PID controller. By comparison with LQR and GA 
methods, it shows that this method can improve the dynamic 
performance of the system in a better way. 
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