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Abstract—A new data fusion method called joint probability
density matrix (JPDM) is proposed, which can associate and fuse
measurements from spatially distributed heterogeneous sensors to
identify the real target in a surveillance region. Using the probabilistic
grids representation, we numerically combine the uncertainty regions
of all the measurements in a general framework. The NP-hard
multisensor data fusion problem has been converted to a peak picking
problem in the grids map. Unlike most of the existing data fusion
method, the JPDM method dose not need association processing, and
will not lead to combinatorial explosion. Its convergence to the CRLB
with a diminishing grid size has been proved. Simulation results are
presented to illustrate the effectiveness of the proposed technique.
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I. INTRODUCTION

THE problem of multisensor data fusion has been of sig-
nificant interest over the past few years [1]-[7]. Because

all sensors have some degree of errors in their measurements,
a main challenge is how to combine measurements from
different sensors and produce good estimates of the targets.
Most of the previous works consider it as an optimization
problem with two interrelated functions of association and
estimation [4]-[5]. It has been proved that, for more than three
sensors, the association of multiple measurements is NP-hard
and will lead to combinatorial explosion [4]. If the sensors are
passive or there are electronic countermeasures (e.g., range
false targets), the association problem is especially difficult
[6]-[7]. In this paper, using probabilistic sensor models to
handle sensor uncertainty, we propose a new data fusion
method called joint probability density matrix (JPDM). The
JPDM method has been applied to a multisensor data fusion
system. Simulation results show that the accuracy of JPDM
approaches to the Cramer-Rao lower bound (CRLB) with a
diminishing grid size, and the computational complexity is
affordable.

II. PROBLEM STATEMENT

In the multisensor data fusion problem, a set of N targets
locate at unknown locations, xj ∈ R2(generalization to R3 is
easy but not explored here), j = 1, 2, . . . , N . A centralized
sensor network is composed of M sensors distributed at known
locations. The sensors can be active or passive, each with a
set of detections at the same time with Pd = 1 and Pfa ≥ 0.
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In the presence of additive noise, the measurements can be
modeled as follows:

zij = fi(xj) + vij , i = 1, 2, . . . ,M ; j = 1, 2, . . . , N (1)

where zij denotes noisy measurement of the jth target taking
by the ith sensor, fi is a possibly nonlinear function, and vij
is an zero-mean i.i.d Gaussian noise with a known covariance
matrix Qij . Thus, the probability density function (PDF) of
zij is given by

pij(zij ;xj) =
exp(− 1

2 (zij − fi(xj))
TQ−1

ij (zij − fi(xj)))

2πmi/2|Qij |1/2
(2)

where mi is the dimension of Qij .
The components of the unknown xj can be calculated

via the maximum likelihood estimate (MLE) technique. The
MLE for a vector parameter xj is defined to be the value
that maximizes the likelihood function pj(z1j , · · · , zMj ;xj)
over the allowable values of xj . Assuming a differentiable
likelihood function, the MLE is found by

∂ ln pj(z1j , · · · , zMj ;xj)

∂xj
= 0. (3)

For our case, because the measurement errors are i.i.d, we
have the following expression for the likelihood function:

L(xj) = pj(z1j , · · · , zMj ;xj) =
M∏
i=1

pij(zij ;xj)

=
M∏
i=1

exp(− 1
2 (zij−fi(xj))

TQ−1
ij

(zij−fi(xj)))

2πmi/2|Qij |1/2 .

(4)

The maximization problem to solve is

x̂j = argmax
xj

L(xj) = argmax
xj

lnL(xj). (5)

Our goal is to estimate all unknown parameters xj in a feasible
way, which will not lead to combinatorial explosion.

III. THE JPDM METHOD

A general data fusion framework is proposed in this section.
Using this framework, various kinds of measurements from
different sensors can be combined together.

A. Probabilistic Sensor Models
Each sensor has a probabilistic model, which interprets its

measurements using some PDF over the range of possible
values. Here, we state three kinds of measurements that are
often used in multisensor system. To reduce the computational
complexity, we restrict the calculation in a k − σ region. The
value of k is always set to 3, which gives a 99.7% probability
that the target falls within the gate.
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1) Angle of Arrival Measurements: Sometimes, only the
angle of arrival (AOA) is available. Suppose the measurement
error in the AOA is Gaussian. Thus, given a measurement, θi,
we can write the PDF of the target being located at some point
(x, y), as follows:

p(x, y|θi) =
{

1√
2πσθi

exp(− (θ−θi)2
2σ2

θi

), |θ − θi| ≤ kσθi

0, otherwise
(6)

where σθi is the standard deviation of AOA measurement error
for sensor i, θ = arctan((y − yi)/(x − xi)), (xi, yi) is the
location of sensor i.

Because no range information is available, we assume the
range uniformly distributed between rmin and rmax. Thus,

p(x, y|ri, θi) = p(x, y|ri)p(x, y|θi)

=

⎧⎨
⎩

exp(− (θ−θi)
2

2σ2
θi

)

√
2πσθi(rmax−rmin)

, |θ − θi| ≤ kσθi, rmin ≤ ri ≤ rmax

0, otherwise
(7)

2) Time of Arrival Measurements: Sometimes, only the
time of arrival (TOA) is available. Suppose the measurement
error in the TOA is Gaussian. Thus, given a measurement, τi,
we can write the PDF of the target being located at some point
(x, y), as follows:

p(x, y|cτi) =
{

1√
2πcστi

exp(− (r−cτi)2
2c2σ2

τi

), |r − cτi| ≤ kcστi

0, otherwise
(8)

where στi defines the standard deviation of the TOA measure-
ment error for sensor i, r =

√
(x− xi)2 + (y − yi)2, c is the

velocity of light.
Because no azimuth information is available, we assume the

azimuth uniformly distributed between θmin and θmax. Thus,

p(x, y|cτi, θi) = p(x, y|cτi)p(x, y|θi)

=

⎧⎪⎨
⎪⎩

exp(− (r−cτi)
2

2c2σ2
τi

)

√
2πcστi(θmax−θmin)

,
|r − cτi| ≤ kcστi,
θmin ≤ θi ≤ θmax

0, otherwise

(9)

3) TOA and AOA Measurements: Sometimes, both the TOA
and AOA are available. Given the measurement, τi and θi, we
can write the PDF of the target being located at some point
(x, y), as follows:

p(x, y|cτi, θi) = p(x, y|cτi)p(x, y|θi)

=

⎧⎪⎨
⎪⎩

exp(−σ2
θi

(r−cτi)
2+c2σ2

τi
(θ−θi)

2

2c2σ2
τi

σ2
θi

)

2πcστiσθi
,

|r − cτi| ≤ kcστi,
|θ − θi| ≤ kσθi

0, otherwise

.

(10)

B. Probabilistic Grids Representation

Conversion of all sensor observations to a common format
is a basic requirement for all multisensor data fusion systems
[2]. Since sensor measurements are often acquired in local
polar coordinates, a transform to Cartesian coordinates must
be included. But the transformation is nonlinear, the joint PDF
in (4) is hard to calculate. So we use a probabilistic grids
representation, which comes from the concept of occupancy

grid [8]. Occupancy grid was first introduced by Moravec and
Elfes for robotic mapping [9], and has been widely used for
environment modeling in robotics due to the simplicity of its
implementation [10].

Suppose an area of interest (AOI) have a length, L, and a
width, W . Choosing a sampling interval, d, the AOI can be
divided into a grid of equal sized spatial cells. Each cell is
indexed and labeled with a property, thus the state slw may
describe a two dimensional world indexed by lw and having
the property s. We store all the states in a KL ×KW matrix,
where KL = L/d,KW = W/d. Thus, the joint PDF in (4)
can be calculated cell by cell in a discrete sampled form.

C. PDM and joint PDM

In our case, interest is focused on the probability distribution
of possible target in each grid cell. So, given a measurement,
Θ, we let slw denote the probability that Θ comes from a
target located in cell lw:

slw =
1

C
p((l, w)|Θ) (11)

where C is a normalizing constant obtained by summing all
the conditional probabilities to one, that is

C =

KL∑
l=1

KW∑
w=1

p((l, w)|Θ). (12)

For each measurement of each sensor, using (7), (9) or (10),
we can calculate all slw cell by cell, and store them in a
KL ×KW matrix. Thus, for the jth measurement of the ith
sensor, there is a corresponding matrix, Pij . Summing all Pij
of the ith sensor together, we get

Pi =

Ni∑
j=1

Pij (13)

where, Ni is the number of measurements observed by theith
sensor, which may be larger or equal to N . Because Pi
describes the probability distribution of all measurements
acquired by the ith sensor, we call Pi the probability density
matrix (PDM) of sensor i.

Calculating PDMs of all the sensors and combining them
together, we get a joint PDM, P. Computationally, P is a
simple point-wise multiplication of every Pi, i.e., the lw
element of P is

P(l, w) =
M∏
i=1

Pi(l, w) =
M∏
i=1

Ni∑
j=1

pij(l, w) (14)

D. Peaks in the joint PDM

Peaks in the joint PDM imply that targets are more likely to
be located there, so we can take these peaks as the estimated
position of targets. Consequently, the number of peaks can be
considered as the number of targets. Mapping values of the
joint PDM to a gray map (deep color region corresponds to
large value of the density), the multisensor data fusion problem
can be converted to a peak picking problem in the grids map.
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IV. SIMULATION RESULTS

Simulations have been conducted to demonstrate the per-
formance of the proposed method, as shown in Fig. 1. In
Cartesian coordinates, three sensors with σr = 10m and
σθ = 1◦ are sited at (0, 0), (1000, 0) and (500, 866),
respectively. Four targets are randomly generated near the

Fig. 1. Sensors and measurements in the simulation scenario.

center of the common work space, each accompanied by a
range false target about 5m away from the true one in the
corresponding sensor. Therefore, each sensor can detect eight
targets at the same time.

Using (13), we can calculate PDMs of all sensors, then
simply add them together, we get the uncertainty region of
all measurements, as shown in Fig. 2. From Fig. 1 and Fig.
2, we can see that it is difficult to distinguish which three
measurements are from the same target. Fig. 3 illustrates the

Fig. 2. Uncertainty regions of all measurements.

joint PDM computed by (14). Four peaks can be seen clearly,
which denote the estimated position of four targets. All the
false targets have been eliminated successfully. Mapping Fig.
3 to a 2D map, we get Fig. 4. Compared with Fig. 2, the area
of uncertainty region in Fig. 4 has reduced remarkably, which
means that the accuracy has been improved. Four deep colored

Fig. 3. Joint PDM: four peaks corresponding to the position of four targets.

region imply that there are four real targets. The darkest
point in each region represents the estimated position of the
corresponding target. The estimated position and true position

Fig. 4. The 2D gray map of Fig. 3.

of the four targets are shown in Table I. From where we can see
that the position error is small and acceptable. The Cramer-Rao

TABLE I
POSITION ERROR OF JPDM

Position(m) Target 1 Target 2 Target 3 Target 4
True (388.6,322.4) (450.6,254.2) (514.1,273.7) (558.1,320.9)

Estimated (386,324) (460,254) (522,278) (554,330)
Error 3.05 9.40 8.99 9.98

inequality sets a lower bound for the variance of any unbiased
parameter estimations. Hence it is of interest to compare the
performance of the JPDM method with the optimum. We use
the same scenario, except that only one target is observed. In
this case, the root mean square (RMS) error was averaged over
1000 independent Monte-Carlo runs. To study the influence
introduced by the size of grid cell, two kinds of grids are used.
As shown in Table II, there is good agreement between the
simulation results and the analytical evaluation of the CRLB.
For 5m × 5m grid, the RMS error is 2.8% higher than the
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TABLE II
AVERAGE RMS POSITION ERROR OF 1000 MONTE-CARLO

JPDM (5mX5m) JPDM (1mX1m) CRLB
RMS error (m) 8.4283 8.3052 8.1960

Elapsed Time (ms) 7.80 237.2 -

CRLB, for 1m × 1m grid, it is only 1.3% higher than the
CRLB. From Table II, comparing the RMS error and elapsed
time of 1m× 1m grid with that of 5m× 5m grid, we can see
that: while the size of grid decreases to 20%, the computational
cost increases to 3000%, approximately with square of the
number of grid cells, however, the RMS error only decreases to
98.5%. So, there is a trade-off of accuracy and computational
complexity. In practice, taking d as 1/2 ∼ 1/5 of the desired
accuracy is sufficient.

V. CONCLUSION

A new multisensor multitarget data fusion method has been
presented. Since the JPDM method does not require sensor
measurement errors to be normally distributed, it is useful for
a variety of applications. Simulation results have shown that
this novel approach provides average RMS errors that are close
to the CRLB. This method does not need additional association
processing, and will not lead to combinatorial explosion. The
cost of computational complexity is of O(M × N × KL ×
KW )for M−sensor N -target over a KL ×KW grid. Like the
Hough Transform, multi-resolution technology can be used
to decrease the computational complexity further. Also, other
information, such as frequency and RCS, can be integrated
in this method. Future research includes apply it to emitter
localization and target recognition in complex electromagnetic
environment where Pd ≤ 1 and Pfa ≥ 0.
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