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Abstract—Logic based methods for learning from structured data 

is limited w.r.t. handling large search spaces, preventing large-sized 
substructures from being considered by the resulting classifiers. A 
novel approach to learning from structured data is introduced that 
employs a structure transformation method, called finger printing, for 
addressing these limitations. The method, which generates features 
corresponding to arbitrarily complex substructures, is implemented in 
a system, called DIFFER. The method is demonstrated to perform 
comparably to an existing state-of-art method on some benchmark 
data sets without requiring restrictions on the search space. 
Furthermore, learning from the union of features generated by finger 
printing and the previous method outperforms learning from each 
individual set of features on all benchmark data sets, demonstrating 
the benefit of developing complementary, rather than competing, 
methods for structure classification.    

Keywords—Machine learning, Structure classification, 
Propositionalization. 

I. INTRODUCTION 
EVERAL machine learning algorithms have been 
introduced to extract relevant information from structures 

for classification tasks. Inductive logic programming 
approaches [2], [3], [4] are quite popular for this purpose due 
to their relative simplicity and efficiency in representing data 
and due to the comprehensibility of resulting models. Another 
logic based approach to learning from structured data is to 
transform structured data into feature vectors by 
propositionalization [5], [6]. However, these, as well as the 
standard ILP methods, often encounter huge search spaces, 
for which constraints have to be imposed [7]. The limits on 
search depth and clause length, commonly referred to as 
search bias, typically result in that the substructures 
discovered by ILP methods are quite small and usually are 
limited to 5-6 structural relations [8]. This limitation prevents 
the discovery of large discriminatory substructures. Therefore 
new search methods and reasoning methods needs to be 
investigated, as suggested by Page and Srinivasan [1], or 
different data representation methods should be explored [8]. 
The method presented in this paper, which extracts features 
from structures by a method called finger printing, is 
motivated exactly by this need and follows the second line of 
research.  
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The purpose of the work reported in this paper is to develop 
a method for classification of structured data that successfully 
overcome the limitations of existing classification algorithms 
such as search bias.  

The remaining of the paper is organized as follows. The 
finger printing method is introduced in the next section. In 
section 3, an empirical evaluation of the method on some 
standard benchmark datasets is presented. Finally, in section 
4, we give concluding remarks and outline future work.   

II. FINGER PRINTING  
Motivated by the limitations of current logic based methods 

for learning from structured data, our approach to structure 
classification employs a method of structure transformation 
into feature vectors by a method called finger printing, which 
does not require any constraints to be imposed on the search 
space. The method follows a data to model (bottom – up) 
search strategy and digs down any potential substructures 
irrespective of its length, in the following way. 

Structured data is assumed to be represented by nodes (e.g., 
an atom in a molecule) and edges (e.g. a bond connecting two 
atoms). Furthermore, it is assumed that all nodes have been 
given labels, allowing similar nodes in different graphs to be 
handled in a similar way (e.g., an atom could be given the 
label ‘carbon’). Each example is represented by the set of all 
pairs (Li,Lj), such that there is an edge in the graph of the 
example between nodes Ni and Nj that are labeled Li and Lj 
respectively. We refer to such a set as a finger print.  

The finger prints are used for substructure search in the 
following way. For all pairs of examples, the intersection of 
their finger prints, which is referred to as the maximal 
common substructure, is formed, and ranked according to 
their frequency in the entire set of examples (i.e., the number 
of finger prints for which the maximal common substructure 
is a subset). It should be noted that no constraints are applied 
on the length of the substructures considered during this 
process. Therefore the discovered substructures are not 
subjected to pruning the search space beforehand in any 
manner. 

III. EMPIRICAL EVALUATION  
A feature construction and classifier system called DIFFER 

(DIscovery of Features using FingER prints) has been 
developed that incorporates the finger print method. The input 
to DIFFER consists of examples, containing structured data. 
From this, DIFFER produces a set of features together with an 
encoding of the examples using these features, in the form of 
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a text file on .arff format which is the recognizable format for 
WEKA data mining toolkit [13]. 

A. Data Sets 
We have used four benchmark datasets to compare the 

performance of DIFFER with other available methods for 
learning from structures. The first benchmark dataset concerns 
predicting mutagenicity on Salmonella typhimurium [9]. The 
second benchmark data set concerns the popular east-west 
train problem [10]. The third dataset, carcinogenesis is also, 
like the first, from the domain of chemo-informatics and was 
originally developed within the US national toxicology 
program [11]. The fourth dataset we selected for this study 
concerns predicting Satellite faults [12].  
 

B. Experimental Setup and Results 
Graphs were generated from the four datasets in the 

following way: For the first and third datasets, the graphs 
represent molecules and consist of nodes that correspond to 
atoms, which are labeled with the atom type and the 
properties of bonds attached to the atom. For example, a 
carbon atom with two single bonds, one double bond and no 
aromatic bonds is labeled by atom(c, 2, 1, 0).  In the second 
dataset, the structures represent trains, and each train has a set 
of cars which are labeled by a set of properties, e.g., shape, 
no. of wheels etc. A node in this domain is represented by a 
tuple car(<properties>). For example, a car with a long 
rectangular shape, a flat roof, sides that are not double and 3 
wheels, is labeled by car(rectangle, long, not_double, flat, 3). 
Structures of the last dataset represent the states of 29 sensors 
at a give time instant as and is on the form of a tuple fault(S1, 
..., S29), where each Si is a boolean feature. For each 
benchmark dataset, all examples were given as input to 
DIFFER in order to generate a feature set. The training and 
test examples were expressed using these features, and 
classification models were generated from the training 
examples in this experiment by random forest, as 
implemented in the WEKA data mining toolkit [13], with 50 
trees in each model and 10 random features evaluated at each 
node. Due to the limited number of examples in the data sets, 
we used 10 fold cross validation as the evaluation method. It 
should be noted that the accuracy estimates will not be biased 
even though the feature generation method is given all 
examples as input, since class labels are not taken into 
account1. The results we obtained with DIFFER were 
compared to that of RSD [5], a state-of-the-art logic-based 
propositionalization method, which similarly to DIFFER, 
transforms structured examples into feature vectors, and for 
which the same learning method (random forest) and 
experimental setup was used. The results are summarized in 
Table I. 
 
 
 
 
 
 

1 Having access to unlabeled test examples during training is sometimes 
referred to as transductive learning. 

TABLE I 
ACCURACIES FOR DIFFER RSD AND DIFFER + RSD 

Accuracy Dataset 
DIFFER RSD DIFFER + RSD 

Trains 80% 75% 85% 
Mutagenesis  80.61% 88.86 92.76% 

Carcinogenesis  65.25% 54.37 65.33% 

Satellite faults 71.43% 71.43 80.95% 

 
The results show that DIFFER performs comparably to 

RSD when used on its own (two wins, one loss and one tie) 
without having to impose constraints on the search space2. 
Since RSD generates features in an orthogonal way (by using 
background knowledge expressed in first-order logic together 
with constraints on the search space), these do not necessarily 
overlap with the features constructed by DIFFER. By 
inspecting the features generated by the two methods in the 
mutagenesis domain, it was noticed that RSD’s features 
concern global properties of molecules, which are not directly 
related to the structures, while DIFFER’s features express 
relationships between atoms. We investigated the effect of 
merging these complementary feature sets, and it was 
observed that for all four benchmark data sets, the models 
generated from each individual feature set were outperformed 
by the models generated from the merged feature set (see 
third column in Table I). The experiment hence demonstrates 
the benefit of treating these methods as complementary, rather 
than competing. 

The obtained results also seem to compare well with those 
reported for state-of-the art graph based structure 
classification methods [14], [15]. Tree2χ2 was reported to 
obtain an accuracy of 80.26% on the mutagenesis dataset [15] 
and SUBDUE-CL was reported to obtain an accuracy of 
61.54% on carcinogenesis [14]. The results are not surprising 
since the graph based methods suffer from the constraint of 
requiring that discovered sub-graphs are connected, while 
models generated by DIFFER and RSD may include non-
connected sub-graphs as well.  

IV. CONCLUDING REMARKS 
Logic based techniques for learning from structured data is 

limited w.r.t. searching for large substructures. In order to 
overcome these limitations, a novel method that transforms 
structured data into a form called finger prints, has been 
presented. The new method, which has been implemented in a 
system, called DIFFER, was shown to perform comparably to 
an existing state-of-the-art method on four standard 
benchmark data sets, without having to impose constraints on 
the search space. The reason for its effectiveness can be 
explained by its ability to mine large–sized substructures by 
searching bottom-up. A very interesting observation is that 
the classification performance can be improved by merging 
the features generated by DIFFER with features generated by 

 
2 We did not achieve the same accuracy for RSD as reported in [5] for the 

mutagenesis dataset although the same code and files were used in 
reconstruction of features. 
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other methods and thereby integrating the different qualities 
of several methods.  

There are a number of possible directions for future work. 
At present DIFFER’s substructure search is a pair-wise 
approach, for which the computational cost grows 
quadratically with the number of examples. A more efficient 
procedure could be obtained by incrementally searching for 
the substructures, or by sampling of the pairs to consider (cf. 
[3]). Alternatives to the ranking criterion for generated 
features could be investigated. Candidates for this include 
model driven approaches such as voting by the convex hull or 
a coverage measure. Currently the edges in the graphs are 
assumed to be unlabeled, and any relationship between the 
objects in a graph has to be encapsulated in the node labels 
(e.g., properties of the bonds are used when labeling the 
nodes of molecules). By also considering labels of the edges 
(e.g. whether it is a single or double bond), more general node 
definitions could be obtained allowing further generalization 
from the examples. 

The promising result of combining the features generated 
by DIFFER and RSD also points to considering merging the 
features of DIFFER with those of other methods, perhaps 
improving the predictive performance even further.  
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