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Abstract—To create a solution for a specific problem in machine 

learning, the solution is constructed from the data or by use a search 
method. Genetic algorithms are a model of machine learning that can 
be used to find nearest optimal solution. While the great advantage of 
genetic algorithms is the fact that they find a solution through 
evolution, this is also the biggest disadvantage. Evolution is inductive, 
in nature life does not evolve towards a good solution but it evolves 
away from bad circumstances. This can cause a species to evolve into 
an evolutionary dead end. In order to reduce the effect of this 
disadvantage we propose a new a learning tool (criteria) which can be 
included into the genetic algorithms generations to compare the 
previous population and the current population and then decide 
whether is effective to continue with the previous population or the 
current population, the proposed learning tool is called as Keeping 
Efficient Population (KEP).   We applied a GA based on KEP to the 
production line layout problem, as a result KEP keep the evaluation 
direction increases and stops any deviation in the evaluation.     
 

Keywords—Genetic algorithms, Layout problem, Machine 
learning, Production system. 

I. INTRODUCTION 
O create a solution to a specific problem in machine 
learning, the solution is constructed from the data or by use 

a search method to find nearest optimal solution. Genetic 
algorithm (GA) is stochastic search which is often used in 
machine learning application. An effective GA representation 
and meaningful fitness evaluation is the keys of the success in 
GA applications. The effectiveness of GA comes from their 
simplicity as robust search algorithm as well as from their 
power to discover good solutions rapidly for difficult 
high-dimensional problems. GA is useful and efficient in the 
following cases: ① When the search space is large, complex or 
poorly understood. ② When the domain knowledge is scarce or 
expert knowledge is difficult to encode to narrow the search 
space. ③ If no mathematical analysis is available. ④ When the 
traditional search methods fail.  

 The advantage of the GA approach is that it can handle 
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arbitrary kinds of constraints and objectives; all such things can 
be handled as weighted components of the fitness function, 
making it easy to adapt the GA scheduler to the particular 
requirements of a very wide range of possible overall 
objectives. GA is one of the wide applicability of 
knowledge-learn problem-solving tools that can provide an 
approach [1], [2]. While the great advantage of GA is the fact 
that they find a solution through evolution, this is also the 
biggest disadvantage. Evolution is inductive; in nature life does 
not evolve towards a good solution but it evolves away from 
bad circumstances. This can cause a species to evolve into an 
evolutionary dead end. In order to reduce the effect of this 
disadvantage a learning tool is add to the GA to decide whether 
is effective to continue with the generated population or the 
current population, this learning tool is called hereafter as 
keeping efficient population (KEP).    

II. GENETIC ALGORITHMS 
The GA paradigm has been proposed to solve a wide range 

of problems [2][3][4]. GA has been successfully applied to 
optimization problems in diverse fields and it is differs from 
other search techniques which depend on natural genetic 
evaluation process. GA starts with an initial set of solutions 
selected randomly called population. A suitable encoding for 
each solution in the population is used to allow computation of 
the fitness. The solution set in the population, called as 
chromosome or individual, represents a solution to the 
optimization problem. Each individual contains a number of 
genes. The individuals in the initial population are evaluated to 
measure its fitness. To create the next population, new 
individuals are formed by either merging two individuals from 
the current population using a crossover operator or modifying 
an individual solution using mutation operator. Based on the 
individuals’ fitness, the individuals to be included in the next 
population are then probabilistically selected from the set of 
individuals in current population. The iteration, called a 
generation is continued until the fitness reaches its maximum 
value, with the hope that strong parent will create a fitter 
generation of the children. The best overall solution becomes 
the candidate solution to the problem. To create the next 
generation GA based on three operations: Selection, crossover 
and mutation. 

A.  Basic Genetic Algorithm 
The outline of the basic GA is described below. 

1. [Start] Generate random population of n individuals 
(suitable solutions for the problem).  
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2. [Fitness] Evaluate the fitness f(x) of each individual x 
in the population. 

3. [New population] Create a new population by 
repeating following steps until the new population is 
complete.  

● [Selection] Select two parent individuals from 
a population according to their fitness (the better 
fitness, the bigger chance to be selected)  
● [Crossover] With a crossover probability cross 
over the parents to form a new offspring 
(children). If no crossover was performed, 
offspring is an exact copy of parents.  
● [Mutation] With a mutation probability mutate 
new offspring at each locus (position in 
individual).  
● [Accepting] Place new offspring in a new 
population  

4. [Replace] Use new generated population for a further 
run of algorithm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. [Test] If the end condition is satisfied, stop, and return 
the best solution in current population  

6. [Loop] Go to step 2  
The success of a genetic algorithm depends largely on two 

factors: 

1. The size of the population of solutions, which will determine 
the diversity of solutions that the algorithm evaluates, and 
therefore the chance of an optimal solution being found [5]. 
2. The ability of the algorithm to maintain diversity in the 
population [6]. The flow chart of GA operations is shown in 
figure 1. 

B. Using Genetic Algorithms as the Search Procedure 
Genetic algorithms typically maintain a constant-sized 

population of individuals which represent samples of the space 
to be searched. Each individual is evaluated on the basis of its 
overall fitness with respect to the given application domain. 
New individuals (samples of the search space) are produced by 
selecting high performing individuals to produce "offspring" 
which retain many of the features of their "parents". The result 
is an evolving population that has improved fitness with respect 
to the given goal. The solution process will generate a large 
amount of information that can be used to carry out some form 
of learning.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Keeping efficient population 
In the conventional GA, the set of possible solutions from 

one population are taken and are used to construct a new 
population. This is motivated by a hope that the new population 
will be fitter than the old one.  Evolution evolves away from 

Fig. 1  GA operations flow chart 
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bad circumstances. This can cause a species to evolve into an 
evolutionary dead end. This research aims to keep the 
evaluation direction increase and stop any deviation in the 
evaluation. In order to achieve this, we proposed a KEP. KEP is 
anew learning tool which can be included into the genetic 
algorithms operations to keep the efficient population. KEP is 
added to the GA to decide whether is effective to continue with 
the previous population or the current population. The main 
difference between the conventional GA and GA with KEP is 
that the conventional GA are used the current population for 
learning to produce the next generation. In contract, GA with 
KEP is first compare the current population with the previous 
population, and then decides whether is effective to continue 
with the previous population or the current population. By this 
way KEP is stopped any deviation in the evaluation.  

III. PRODUCTION LINE LAYOUT PROBLEM 
One of the problems encountered of the design and 

implementation of a flexible transfer line (FTL) is the layout of 
the FTL in the restricted area. The layout of the FTL has an 
important impact on production cost. The efficient layout 
design of the FTL can reduce the cost of material handling by at 
least 10-30%. Depending on the production system, between 
15% - 70% of the total production cost can be attributed to 
material handling [7]. Thus, the FTL layout is important to 
reduce production cost. The FTL layout problem is identified as 
a NP-complete problem [8], and many heuristic approaches 
have been developed to solve this problem for near optimum 
solution [7] – [19]. However, despite the many existing 
methodologies regarding the FTL layout problem, almost all 
approaches studing this problem neglect important operational 
details such as the buffer size between the machines and 
restricted areas in the plant area.In this paper operational details 
including the movement of the products between machines are 
considered, in addition to the restricted areas in the site. In 
order to find FTL layout including machines and a material 
handling path between each pair of machines, an efficient FTL 
layout design procedure called a One by One Layout Method 
(OOLM) in conjunction with GA is proposed. The OOLM 
generates an efficient solution for a set of irregularly shaped 
machines through a restricted plant area. The OOLM is not 
limited to a single static environment, but is highly flexible, 
within the plant structure. A CAD system is linked to the 
proposed OOLM to draw the FTL layout. 

The problem can be described mathematically as follows: 
Given: 
● A set of K irregular-shaped machines and their dimensions;  
● Spaces and machine allocation limitations; 
● The plant restrictions, such as plant columns, walls, and any 
other restrictions in the plant area; 
● The buffer size vector [B1, B2,…, BK-1]. 
Determine: FTL layout design. So as to minimize AF . With the 

following condition   
PF AA ≤  and Dk is located at or is close to the FTL end point.  

Where  
AF   The required area needed to create the new FTL layout.  
AP   The available plant area. 
Dk    The last machine drop point. 

IV. SEARCH A FTL LAYOUT USING GA 
In order to find an efficient layout of the FTL components 

through the available plant area, a GA is included into the 
OOLM. The OOLM is conducted using the following 
algorithm. Before describing the algorithm, the notations and 
terms used in algorithm are defined. 

A. Notations 
K     Number of machines in the FTL. 
Bi    Buffer allocation between machines i and i+1.  

cSl     Side length of each cell. 
Li    Overall machine length. 
Wi       Overall machine width. 
L         Overall plant length. 
W        Overall plant width. 
l         Side length of the buffer space. 
Blocked-cells(i)   Number of cells included in blocked area i. 
Machine-cells(i)   Number of cells included in machine 

layout i. 
Blocked-areas   Number of blocked areas throughout the 

extended area. 
startC    Cell through the plant area that represents 

the FTL start point.  
endC    Cell through the plant area that represents 

the FTL end point. 
i

pjc →    Location of cell j in a machine i cell map 
relative to the machine pick point.  

i
kcb         Location of cell k in blocked area i.  
icp    Cell location of the machine i pick point 

through the plant area. 
icd    Cell location of the machine i drop point 

through the plant area. 

B. Definitions 
In order to find an efficient layout of the FTL components 

through the available plant area, a GA is included into the 
OOLM. The OOLM is conducted using the following 
algorithm. Before describing the algorithm, the notations and 
terms used in algorithm are defined. 
[Definition 1] Machine pick point,Pi: The machine pick point 
is the point where the parts input into machine i. 
[Definition 2] Machine drop point,Di: The machine drop point 
is the point where the parts leave machine i. 
[Definition 3] Machine cells group, i

groupcellsM − : The machine 
cells group is the set of cells that has been mapped to machine i 
relative to the Pi cell. 
[Definition 4] Buffer-cell ratio, Bm-c: The buffer–cell ratio is 
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the smallest integer number greater than or equal to the division 
of the buffer side length to the cell length; Bm-c can be 
calculated by using equation 2. 

ccm Sl
lB =−                                                                              (1) 

[Definition 5] FTL Components: FTL components include the 
machines and buffer spaces. 
[Definition 6] FTL Component location, i

locationCOM : The 
component location is the location of the next component with 
respect to the current component in the FTL. The component 
can be located in one of four locations with respect to the 
current component (up, down, right or left). 
[Definition 7] Extended plant area, Aplant-ext : The extended 
plant area is the area of the rectangle that passes through some 
of the plant outside wall and includes all plant facilities and sub 
walls. 
[Definition 8] Blocked area: The blocked area is the area in the 
plant that has been restricted by some robstacles such as plant 
columns, partitions, and sub areas used by built stations, etc. 
The blocked areas are not usable for allocation of machines or 
buffers. In addition to the blocked areas in the plant area, the 
areas in the extended area that are not included within the plant 
area are assumed to be blocked areas. 
[Definition 9] Block area cells group, i

groupcellsBA − : The 
blocked area cells group is the set of cells that have been 
mapped to the blocked area i. 
[Definition 10] Machine cells map, i

mapM : The machine cells 
map is the set of cells that have been mapped to the machine 
layout. The location of each cell in the machine map is defined 
relative to the machine pick point. 
[Definition 11] Machine drop point possible locations, 

 )j(Ci
drop : The machine drop point possible locations are the 

locations of the machine drop points with respect to a given 
machine pick point. As follows [19], the machine can be 
located at 0, 90, 180 or 270, thus 4j 1 ≤≤ . To describe the 
machine drop point’s possible locations, the following example 
is introduced. 

Example: Based on machine i with its pick and drop points as 
shown in Figure 2. 
 
  
 
 
 

If the machine pick point is located at cell (I,J) then the location 
of the drop point possible locations are as follows:  

areas-blocked   1  k  BAM  if   3)J(I, k
groupscells

i
map K=∀∉+ − ,    

areas-blocked   1  k  BAM  if   3)-J(I, k
groupscells

i
map K=∀∉ − ,  

areas-blocked   1  k  BAM  if   J)1,(I k
groupscells

i
map K=∀∉+ − ,  

areas-blocked   1  k  BAM  if   J)1,-(I k
groupscells

i
map K=∀∉ −  

The possible locations of the drop point are cells 1, 2, 3 and 4 in 
Figure 3.  

 
 
 
 
 
 
 
 
 
[Definition 12] Buffer space possible locations,  )j(BSi

drop : 
The buffer space i possible locations are the locations of the 
buffer space i with respect to the location of the component i-1. 
To describe the buffer space possible locations, the following 
example is introduced. 

Example : Consider machine i in Figure 2 and assume that 
the buffer size next to this machine is 5. The possible locations 
of all buffers are shown in Figure 4 below. The possible 
locations of the first buffer space are the cells coded by the 
number 1, and the possible locations of the second buffer space 
are the cells that are coded by te number 2, and so on. 
 
 
 
 
 
 
 
 
 
 
 
[Definition 13] FTL area, AF: The FTL area is the area used by 
the FTL components.  
[Definition 14] Plant area, AP : The plant area is the available 
factory area. 

C. OOLM Algorithm 
Step 1:  Define the matrix that represents the extended plant 
layout area as follows : 

Following [18], the plant in this study is defined as uniform 
squares connected together and denoted in this paper as cells as 
shown in Figure 2. The restricted areas (obstacles) including 
the plant columns and any other obstacles are indicated on the 
plant layout.  The start point and the end point of the FTL 
locations are given and are represented on the plant layout. The 
plant model can be defined by using the following steps. 
1. Draw the smallest rectangle that passes through the outside 
walls to include all plant facilities and sub walls. The area 
covered by this rectangle is denoted in this paper as the 
extended plant area.   
2. Divide the extended plant area into uniform cells that are 
equal to each other and connected to each other. 
3. Define a matrix that represents the extended plant layout area 
as shown in equation 1, 

Fig. 2  Machine model 

    
Pi   Di 
    

 

Fig. 4  The possible locations of the buffers. 
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Fig. 3  Possible locations of machine drop point 
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       (2) 

  
where C(i,j) represents the cell located in row i and column j. 
Step2:Set ( ) ( )  n. , 2, 1,  j and m , 2, 1, i  n),(m , 2, 1,k   ji,CkC KKK ==×=∀=  
Step 3:  Read the FTL start point.  
Set ( ) { } { }n ,1, j ,m , 1,i ,ji,c Cstart KK ∈∈=   

and ( ) areas-blocked   1  k  BAji,c k
groupscells K=∀∉ − . 

Step 4:  Read the FTL end point.  
Set ( ) { } { }n ,1, j ,m , 1,i ,ji,c Cend KK ∈∈=   

and ( ) areas-blocked   1  k  BAji,c k
groupscells K=∀∉ − . 

Step 5:  Define the cells map for all machines, i
groupcellsM −  

relative to the Pi cell.  
Set { } K ,  1,i     c,,c,cM i

pcells(i)machine
i

p2
i

p1
i

groupcells KK =∀= →−→→− . 
Step 6:  Define the drop cell for machine i, relative to the Pi 
cell. 
Step 7: Define all blocked areas cells group through the 
extended plant area, i

groupcellsBA − . Set ext-plant
i

groupcells A BA ∈− , 

{ }i
)i(cellsBlocked

i
2

i
1

i
groupcells cb,,cb,cbBA −− = K  

areaBlocked,,2,1i −=∀ K . 
Step 8:  Set the first machine pick point at the FTL start point. 
Set start1 CP = . 
Step 9:  Find all possible locations of the first machine drop 
points, 1cd , as described in definition 11. 
Step 10:  Randomly select one of the possible locations of the 
machine drop points. 
Step 11:  Find all possible locations of the first buffer space 
with respect to the machine drop point as described in 
definition 12. 
Step 12:  Randomly select one of the possible locations of the 
first buffer space. 
Step 13:  Find all possible locations of the next buffer space 
with respect to the current buffer space location and randomly 
select one of these locations.  
Step 14:  Repeat step 13 to find one location for each space of 
buffer size. 
Step 15:  Find all possible locations of the next machine pick 
points, icp , with respect to the last buffer space and randomly 
select one of these locations. 
Step 16:  Repeat steps 13 - 15 to find one of the possible 
locations of all machines and spaces of all buffers. 
Step 17: Apply the GA operations to find the best locations for 
all of the FTL components. 
Step 18:  Calculate the FTL area by using equation 3.  

( ) ( )∑∑
−

==
×+×

1K

1i

2
i

K

1i
iiT lB WL = A                                    (3) 

Step 19: Carry out the following rule.  
If: the evaluate equation 4 is satisfied,  

0 A-A TF ≥                                                                           (4) 
Then: draw the FTL, Else: read new buffer size vector [B1, 
B2,…, BK-1]. 

V. GENETIC ALGORITHMS OPERATIONS FOR PRODUCTION 
LINE LAYOUT PROBLEM 

The GA operations for the production line layout problem 
are described in sections V.A ~ V.D. 

A. Encoding 
One of the important jobs to use GA is how to express a 

chromosome. One of the main difficulties in encoding this 
problem is that each pair of components in the FTL is located 
relative to each other, which it means that each component’s 
location should be specifically identified in the individual. This 
research adopts each component’s location in the FTL as the 
gene, each machine in the FTL represented by two genes one 
for the machine pick point location and the other for the 
machine drop point location. The other component’s locations 
are represented by one gene for each. The conventional GA 
operations are generally based on an individual with a similar 
gene size. In the case that we are studying here, namely FTL 
layout, it is difficult to use a similar gene size in individuals. 
This is because the number of possible component locations is 
not equal for all components. The number of possible location 
for next component is decided according to the state of 
locations up, down, left and right of the current component. For 
example if component i is located at cell (I , J), then the number 
of possible locations, NPL, of component i+1 is as follows: 

 

d  satisfienot  are  4 and  3,  2,  1,  costrains  the if      4
d  satisfieis 4 and  3,  2,  1,  costrains  from costrains  one if     3

d  satisfieare 4 and  3,  2,  1,  costrains  from costrains  two if     2
d  satisfieare 4 and  3,  2,  1,  costrains  from costrains  three if     1

d  satisfieare 4 and 3, 2, 1,  costrains  the  if    0

  NPL

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
 (5)   

   
Constrain 1: 

 areaBlocked,,2,1i    }cb,,cb,cb{    1)J(I, i
)i(cellsBlocked

i
2

i
1 −=∀∈+ − KK           

Constrain 2: 
 areaBlocked,,2,1i    }cb,,cb,cb{    1)J(I, i

)i(cellsBlocked
i
2

i
1 −=∀∈− − KK           

Constrain 3: 
 areaBlocked,,2,1i    }cb,,cb,cb{    J)1,(I i

)i(cellsBlocked
i
2

i
1 −=∀∈+ − KK           

Constrain 4: 
 areaBlocked,,2,1i    }cb,,cb,cb{    J)1,-(I i

)i(cellsBlocked
i
2

i
1 −=∀∈ − KK    

In this research, we propose a new individual encode method 
to express each individual. The new encode method is called a 
one to one encoding method (OOEM). The following 
paragraph describes how to use OOEM to encode the 
components in the FTL. The first element in the individual 
represents the location of the drop point of the first machine in 
the FTL. The location of the first machine drop point can be 
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determined with respect to the location of the first machine pick 
point as described in definition 11. Elements 2, 3, …, GB1+1 in 
the individual represent the location of the spaces of the first 
buffer. The location of the first buffer space is determined with 
respect to the location of machine drop point and the location of 
next buffer space is determined with respect to the current 
buffer space location and so on. Figure 5 shows the encoding 
using the OOEM.  

The number of genes in each individual, T, is calculated 
using Eq. (6).  

 

⎟
⎠

⎞
⎜
⎝

⎛
+−=

−

=
∑

1K

1i
iB1K2T                                                           (6) 

 
The number of items in the individuals is not limited, which 

means that any production line with any number of machines 
and any buffer size between each pair of machines can be dealt 
with 

 
 
 
 
 
 
 
 
 
 
 
 
 

B. Initial population 
The initial population is randomly selected. The initial 

population contains (N) number of individuals. Each individual 
expresses a buffer size as shown in Figure 6. The location of 
components should be specifically identified in the individual 
because each pair of components in the FTL is located relative 
to each other. The initial population is determined as follows: 
Set individual (i) = [G1   G2     …   GT-1   GT]  N  ,  ,2 1, i   K=∀  

Each individual in the initial population is determined by 
using steps 8 ~ 16 in section IV.C. 

C. Crossover 
The traditional crossover operation is not sutaible for this 

type of representation because the genes are selected one by 
one. The encode method to express each individual using 
OOEM is different from that which is obtained using 
conventional encoding method. The crossover operations for 
our GA system are also different. The main difference between 
the OOEM crossover and the conventional methods crossover 
is that in the conventional method the genes after the crossover 
point are swapped between the two individuals without any 
constrains. In contrast, the genes after the crossover point are 
selected one by one to avoid a restriction cells. 

OOEM crossover selects the first cell location of one parent, 

check the cell location leaving that cell location in the second 
parent. If the cell location is empty, choose the cell of the 
second parent otherwise choose the cell of the first parent. For 
example, consider the two parents as shown in Fig. 6. If the first 
individual is chosen as the template, child 1 can be generated 
using the following steps: 
Step 1: Select cell U (the first cell location in the iduvidual) as 
the first cell location of child 1.  
Step 2: Find the edges after gene 1 in both parents with respect 
to the first cell location of child 1 : (first cell location, U), read 
as the cell up to the first cell location and (first cell location, L), 
read as the cell left to the first cell location, find the cell state of 
these two edges. If the cell located left to the first cell location is 
empty (neither restricted nor used by another components) then 
it will be chosen as the second gene for the child 1, otherwise, 
the cell up to the first cell location will be chosen as the second 
gene for the child 1. Assuming that the cell up to the first cell 
location is empty, we select U as the next gene of child 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: Find the edges after gene 2: (second cell location, L), 
and (second cell location, L). The edges after gene 2 is the 
same, we select L as the next gene of child 1.  
Step 4: Find the edges after gene 3: (third cell location, D), and 
(third cell location, U). Assuming that the cell up to the third 
cell location is not empty, we select D as the next gene of child 
1.  
Step 5: Find the edges after gene 4: (fourth cell location, R), 
and (fourth cell location, L). Assuming that the cells right and 
left to the fourth cell location are not empty, we select D as the 
next gene of child 1. Note that if cell down to gene 4 is also not 
empty in this case the previouse gene (gene 3 in this example) is 
change to third possible choice which is L, and continue from 
this point again.  
Step 6: Repeat the same rule in previous step to generate all 
genes of child 1. 

We can use the same procedure to generate child 2 as shown 
in Fig. 6. After crossover, both offspring encode legal path. 

 
 
 
 
 
 

Fig. 5  OOEM Encoding method 
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D. Mutation 
The mutation of our GA system is different from the 

traditional mutation operator because the gene expression 
adopts OOEM. Instead of using the traditional mutation 
operator, we randomly select two mutation points (two genes in 
one individual) and swap their values. After swap the two 
genes, the cells locations of the two mutation points and of the 
genes between the two mutation points are test, if any of these 
cells belong to block area cells group, the two mutation points 
are reselected. The new mutation points are selected between 
the two old mutation points. This process is repeated until the 
cells belong to the genes between the two mutation points is not 
restricted. Thus, we still have legal path after swap mutation. 
The mutation is carried out using the following steps. 
Step 1: Select one individual randomly from the current 
population. 
Step 2: Select two mutation points, MP1 and MP2, randomly. 
Step 3: Swap the two mutation genes values. 
Step 4: Check the cells belong to the two mutation points and 
all cells belong to the genes between the two mutation points, if 
the cells of two mutation point and the cells between them after 
swap are empty (neither restricted nor used by another 
components) then go to Step 7, otherwise go to Step 5. 
Step 5: Select new two mutation points, but in this time 
between the current mutation points 
Step 6: Go to Step 3.  
Step 7: Accept the mutation. 
The follow chart in Figure 7 shows the mutations algorithm. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. NUMERICAL EXPERIMENTS 
We applied the developed OOEM to some of FTL examples 

as follows: 

A. Applied FTL example : 10 machines and 9 buffers 
The FTL we adopted in this example has 10 machines and 

the 9 buffers. Each buffer space is assumed to be equal of the 
plant cells, Bm-c = 1. The machines shapes and specifications are 
as shown in Figure 8. Table 1 gives the buffer size between 
each pair of machines in the FTL. 

 
 
 

Fig. 6 OOEM crossover operation 
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Fig. 7 Mutation algorithms 
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B. Results 
The 3D drawing of the FTL layout resulted by the OOLM is 

drawn by the CAD system as shown in Figure 9. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSION 
This research introduces a new learning tool which can be 

included into the genetic algorithms operations to keep the 
evaluation direction increase and stop any deviation in the 
evaluation. GA with KEP is first compare the current 
population with the previous population, and then decides 
whether is effective to continue with the previous population or 
the current population. GA operations included KEP learning 
tool is applied to solve FTL layout problem as an application of 
GA with KEP learning tool. In this application the aims is to 
find the efficient put of the FTL components including the 
machines layout and the material handling path between each 
pair of machines in the restricted area by proposing OOLM in 
conjunction with genetic algorithm. The combination of 
OOLM and GA generates an efficient solution for a set of 
irregularly shaped machines through a restricted plant area. 
This combination is efficiently solved the FTL layout. In order 

to the efficient use of the GA, new techniques of GA mutation 
and crossover are proposed. The 3D drawing of the FTL is 
drawn by link the CAD system to the proposed OOLM. We 
used our developed OOLM to determine some FTL layout 
design in different restricted areas. As a result, the FTL layout 
design achieving the best utilization of the plant area could be 
determined. The combination of the OOLM and the GA can be 
applied to obtain the layout of any FTL in any plant restricted 
area. 
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Fig. 8 Machines shapes and specifications 

Fig. 9 The 3D drawing of FTL layout 

TABLE I 
UNITS FOR MAGNETIC PROPERTIES 

B1 B2 B3 B4 B5 B6 B7 B8 B9 

3 5 5 8 10 9 4 6 9 
 


