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Abstract—One of the most attractive and important field of 

chaos theory is control of chaos. In this paper, we try to present a 
simple framework for chaotic motion control using the feedback 
linearization method. Using this approach, we derive a strategy, 
which can be easily applied to the other chaotic systems. This task 
presents two novel results: the desired periodic orbit need not be a 
solution of the original dynamics and the other is the robustness of 
response against parameter variations. The illustrated simulations 
show the ability of these. In addition, by a comparison between a 
conventional state feedback and our proposed method it is 
demonstrated that the introduced technique is more efficient. 
 

Keywords—chaos, feedback linearization, robust control, 
periodic motion.  

I. INTRODUCTION 
ONLINEAR deterministic dynamic systems manifesting 
“chaos” do exist and are not exceptional [1]. It also 

turned out that the methods describing chaotic behavior occur 
in many areas of science and technology [2] and sometimes 
are more suitable for describing non-regular oscillations and 
uncertainties than the stochastic, probabilistic methods [3].  

Until only recently, the field of nonlinear dynamics has 
remained within the confines of academia, and has found 
limited practical application to engineering problems. 
However, this situation is now undergoing a revolution of 
sorts, given (1) the several paradigm-shifting discoveries that 
have taken place in the closely related fields of chaos, fractals, 
and wavelets; (2) the advent of powerful computing tools that 
make the complex numerical simulation of nonlinear 
phenomena possible; as well as (3) the ever more pressing 
need to account for, and deal with nonlinear effects that can 
no longer be adequately handled by mere linear approaches. 

Perhaps the most important problem in this context is 
“control of chaos” which has set up a great challenge [4]. 
After Yorke and his collaborators’ work [5] this problem has 
found its position between the other open problems. In this 
present task, we are going to present a strategy for control of a 
chaotic motion. Obviously, we can classify the control of 
chaos problems in three sets [6]:stabilization, chaotization,  
and synchronization. 
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Each problem has its specific techniques and tricks. 
However here we will concentrate on the first problem: 
stabilization. 

So far, the methods proposed for solving “control of 
chaos” is much more than we could list them here [7]. 
However, they approximately have employed the conventional 
control methods. In addition, they have tried to drive the chaos 
exhibited in an artificial or industrial system into a fixed 
equilibrium point or into one of the periodic solutions of the 
original system [8]. We will show that using the powerful 
feedback linearization method [9], it is easy to change the 
dynamic of chaos and then employ the conventional state 
feedback method [10] to replace the chaotic motion with an 
arbitrary periodic motion. 

This paper is organized as follows: in section 2 a survey of 
chaos theory is presented. Section 3 is devoted to problem 
statement. Simulations are brought in section 4. Finally some 
concluding remarks close the paper.  

II. A SURVEY ON CHAOS THEORY 

The field of dynamics concerns the study of systems 
whose internal parameters (states) obey a set of temporal 
rules, essentially encompassing all observable phenomena. 
This endeavor divides into three sub disciplines, namely: 
- applied dynamics [11], which concerns the modeling process 
that transforms actual system observations into an idealized 
mathematical dynamical system.  
-mathematical dynamics [12], which primarily focuses on the 
qualitative analysis of the model dynamical system; and 
-experimental dynamics [13], which ranges from controlled 
laboratory experiments to the numerical simulation of state 
equations on computers. 

The state temporal behavior is either viewed as a 
traditional time series or, more usually, in a phase space 
perspective wherein the system states are plotted against each 
other in an n dimensional space with time as an implicit 
parameter. 

The latter framework affords a more natural geometrical 
setting that possesses an arsenal of analysis tools. A 
dynamical system is said to be linear or nonlinear depending 
on whether the superposition rule holds.  

The latter is nonlinear dynamics; since it leads to a virtual 
universe of effects (chaos is but one) with potential practical 
import that is just beginning to be realized. 
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One of the most well known and potentially useful 
nonlinear dynamical effects is the bounded, random-like 
behavior called chaos-in essence, “deterministic noise”[7].   
Chaos has been found to occur in a whole myriad of 
dynamical systems modeling phenomena from astronomy to 
zoology [14], and in frequency ranges from baseband to 
optical. This phenomena, and its closely related  fractal cousin 
have been  put forth as a new paradigm for understanding and 
modeling the world around us [2]. This stems from their 
underlying principle of self-similarity at different scales  that 
matches closely with what is observed in nature. 
There are three fundamental characteristics of chaos: 
 

1. an essentially continuous and possibly banded frequency 
spectrum that resembles random noise;  

2. sensitivity to initial conditions, that is, nearby orbits 
diverge very rapidly; 

3. an ergodicity and  mixing of the dynamical orbits which 
in essence implies the wholesale visit of the entire phase 
space by the chaotic behavior and a loss of information. 

III. PROBLEM STATEMENT 

In the presence of external perturbation, the non-stationary 
model: 
 

)),(,( utxtFx =&  (1) 
 
is a general model for a complex dynamic system [15]. We 
implicitly assume that the system is full observable and for 
initial modeling, the parameters assumed are deterministic. 
The problems of suppressing the chaotic oscillations by 
reducing them to the regular oscillations [16] or suppressing 
them completely [7] can be formalized as follows: 

Let us consider a free (uncontrolled, 0)( ≡tu ) motion 
)(* tx of system (1) with the initial condition 0** )0( xx = . Let 

this motion be T-periodic, that is, )()( ** txTtx =+ be satisfied 
for all 0≥t . We need to stabilize it, that is, reduce the 
solutions )(tx of system (1) to )(* tx : 
 

0))()((lim * =−
∞→

txtx
t

 (2) 

 
under the initial state Ω∈= 0)0( xx where Ω  is the given set 
of initial conditions. 

If the control law would have been choosing that be able 
to vanish the nonlinearity of the given system, based on Lie 
algebra[17] and under some weak conditions the system could 
be transformed into a new linear system. 

Based upon Anosov lemma [18] there exist a periodic orbit 
as close as possible to a chaotic orbit which using a proper 
control law one can drive that chaotic orbit to that periodic 
motion [4]. However following the methods introduced in 
[19] here a new strategy is introduced as follows. Before 
starting let’s state the important key theorem in chaos study: 

Theorem [4]: Any trajectory belonging to a compact minimum 
invariant set is recurrent. Any compact invariant minimum set 
is the closure of some recurrent trajectory. 

This is called Birkhoff theorem. Upon this theorem, we 
will be able to establish the following proposed facts.  
Suppose an arbitrary periodic function )(tη (periodicity on 
time) that is not necessarily a solution of (1). Our general 
objective of control is: 
 

0)),((lim =
∞→

ttxQ
t

 (3) 
 
where Q is a proper cost function. A suitable Q  for 
converting chaos into an arbitrary periodic motion, e.g. )(tη  
is: 
 

))(())((),( ** txxtxxtxQ T −Γ−=  (4) 
 
where Γ  is a positive definite symmetric matrix [20]. In fact, 
generally for any control of chaos problems choosing a 
suitable Q   can be considered [21]. 
   To simplify the analyses we have taken an affine-control 
scheme for an arbitrary system: 
 

utxgxtfx ),(),( 11 +=&  (5) 

 

11 , gf are two nonlinear functions that play the main role in 
chaos generation. Actually we exert the control to this key 
variable according to 11 , gf . 

Let the control law be: 
 

tf uuu +=  (6) 

 
such that the feedback control fu  is chosen by the 

conventional  feedback linearization methods and feedforward 
control tu  can be chosen following [22].  
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(7) 

 

Indeed, in the linear time-varying case with periodic A-
matrix, upon the well-known Floquet theorem [9], the given 
system can be transformed to a system in which the A-matrix 
is any constant matrix. Additionally based on the fundamental 
theorems in the first course of topology and differential 
geometry [23], which is applied in nonlinear control theory, 
one can easily see that the transformed complex system into 
the new linear version of that is gratefully robust against the 
parameter variations. The simulations show these assertions 
obviously. 
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IV. SIMULATION 

A good example to simulate this technique is the famous 
Duffing’s oscillator [9] exhibiting chaos. The Duffing 
equation that has been simulated here is: 
 

xx =1&  

utaxxxx ++−−= )cos(168.5. 2
3

112 ω&  
 

(8) 

where .sec10&1,9. rada == ω  

in this example we have: 
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As previously stated we can choose the controller as: 
 

tutaxxxu +−++−= ))cos(168.5.( 2
3
11 ω  (10) 

 

In which ω is the midpoint in the interval of the frequency 
variation [ ]maxmin , ωω . Also tu  is the feedforward control 
signal. 

Fig. 1 shows the uncontrolled system for two 
cases 10&1=ω  rad/sec.  

 
Fig. 1 uncontrolled Duffing’s oscillator- 2x . 

Fig.  2 shows the uncontrolled system phase portrait where 
there exists a parameter variation in the system. It is easy to 
see the presence of chaos in both cases of frequencies. 
Fig. 3 shows simultaneously the controlled system phase 
portrait in presence of parameter variations. As can be seen 
the difference is very small and clearly depicts the robustness 
of control system. Since a quasi-circle in the phase portrait is a 
periodic motion in the time domain we see that the proposed 
method is able to drive the chaotic behavior into an arbitrary 
periodic motion which is not necessarily a solution of the 
original chaotic system. We can name this methodology a 
targeting technique which is an important tactic in open-loop 
control of chaos [24]. 
 

 
Fig.  2 uncontrolled Duffing’s oscillator phase portrait in presence of 

parameter variations. 
 
Fig. 4 shows the time series of the states of the original 
chaotic system in the presence of control signal. Also note that 
in spite of the variations of the frequencies in the Duffing’s 
oscillator, the period of the states in both cases are similar. 
This can be considered as the robustness ability of the 
proposed technique. 
 

 
Fig. 3  controlled Duffing’s oscillator using proposed method in the 

phase portrait format. 

 
Fig. 4 controlled Duffing’s oscillator- 2x . 

To prove the capability of the introduced technique, we 
compare the results with the response of the system which is 
controlled by state feedback controller [10]. In computing the 
state feedback gains it is easy to utilize the optimal control 
methods. 

As can be seen from Figures (5) and (6) the rate of 
convergence of the chaotic motion to the desired periodic 
motion in state feedback method is considerably lesser than 
that of our presented technique. 

V. CONCLUSION 

The apparently random phenomenon of chaos has become 
increasingly observed in the behavior of myriad nonlinear 
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deterministic systems, that is, those described accurately by 
partial or ordinary differential equations or difference 
equations. These observations are being made not only 
experimentally, but also by computer simulations. Examples 
abound in a wide gamut of disciplines ranging from solid state 
physics to cosmology, from electrical engineering to biology. 
Chaos is found in systems that are forced or unforced (also 
known as non-autonomous or autonomous, respectively), 
lossless or dissipative, discrete in time and of any dimension, 
or continuous in time and of dimension three or higher. 

Since “control of chaos” today is an attractive research 
field, the published papers which have tried to solve this 
problem partially is so numerous. In this task, we have 
introduced a new strategy based on feedback linearization 
methods and employing the essential concepts from 
differential geometry. The two important advantages of this 
technique are its robustness against parameter variations and 
the second is that the desired periodic motion does not need to 
be a solution of the original dynamic system. These two 
advantages have been proved by comparison with the 
conventional state feedback method. As a result, we can state 
that among other published articles [4] this technique has 
brought a novel robust chaos control method. 
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