International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

An Improved Conjugate Gradient Based
Learning Algorithm for Back Propagation
Neural Networks

N. M. Nawi', R. S. Ransing* and M. R. Ransing*

Abstract—The conjugate gradient optimization algorithm is
combined with the modified back propagation algorithm to yield a
computationally efficient algorithm for training multilayer perceptron
(MLP) networks (CGFR/AG). The computational efficiency is
enhanced by adaptively modifying initial search direction as
described in the following steps: (1) Modification on standard back
propagation algorithm by introducing a gain variation term in the
activation function, (2) Calculation of the gradient descent of error
with respect to the weights and gains values and (3) the determination
of a new search direction by using information calculated in step (2).
The performance of the proposed method is demonstrated by
comparing accuracy and computation time with the conjugate
gradient algorithm used in MATLAB neural network toolbox. The
results show that the computational efficiency of the proposed
method was better than the standard conjugate gradient algorithm.

Keywords—Adaptive ~ gain variation, back-propagation,
activation function, conjugate gradient, search direction.

I INTRODUCTION

RADIENT based methods are one of the most widely

used error minimization methods used to train back
propagation networks. The back-propagation (BP) training
algorithm is a supervised learning method for multi-layered
feed-forward neural networks [1]. It is essentially a gradient
descent local optimization technique which involves backward
error correction of network weights. Despite the general
success of back-propagation method in the learning process,
several major deficiencies are still needed to be solved. The
convergence rate of back-propagation is very low and hence it
becomes unsuitable for large problems. Furthermore, the
convergence behavior of the back-propagation algorithm
depends on the choice of initial values of connection weights
and other parameters used in the algorithm such as the
learning rate and the momentum term.

! Faculty of Information Technology and Multimedia, Kolej Universiti
Teknologi Tun Hussein Onn (KUITTHO), P. O. Box 101, 86400, Parit Raja,
Batu Pahat, Johor Darul Takzim, Malaysia
E-mail:matyie.usm97@gmail.com, currently PhD student, University of
Wales, Swansea, UK

* Civil and Computational Engineering Centre, University of Wales,
Singleton Park, Swansea, SA2 8PP, United Kingdom.
E-mail:R.S.Ransing@swansea.ac.uk

Improving the training efficiency of neural network based
algorithms is an active area of research and numerous papers
have been proposed in the literature. Early days of back
propagation algorithms saw improvements on: (i) selection of
better activation function [2-4]; (ii) selection of dynamic
learning rate and momentum [5-7].

Later, as summarized by Bishop [8] various optimization
techniques were suggested for improving the efficiency of
error minimization process or in other words the training
efficiency. Among these are methods of Fletcher and Powel
[9] and the Fletcher-Reeves [10] that improve the conjugate
gradient method of Hestenes and Stiefel [11] and the family of
Quasi-Newton algorithms proposed by Huang [12].

Recently, the influence of gain was studied by few
researchers [13-15]. The gain parameter controls the steepness
of the activation function. It has been shown that a larger gain
value has an equivalent effect of increasing the learning rate.

This paper suggests that a simple modification to the initial
search direction, i.e. the gradient of error with respect to
weights, can substantially improve the training efficiency. It
was discovered that if the gradient based search direction is
locally modified by a gain value used in the activation
function of the corresponding node, significant improvements
in the convergence rates can be achieved. It has also been
shown that the proposed method is robust, easy to compute,
and easy to implement into the well known nonlinear
conjugate gradient algorithms.

The remaining of the paper is organised as follows: Section
Il illustrates the proposed method. Sections Il discuss the the
implementation of the proposed method with Conjugate
gradient method. Experiments and simulation results are
discussed in section IV. The final section contains concluding
remarks and short discussion for further research.

Il. THE PROPOSED METHOD

In this section, a novel approach for improving the training
efficiency of gradient descent method (back propagation
algorithm) is presented. The proposed method modifies the
gradient based search direction by changing the gain value
adaptively for each node.

The following iterative algorithm is proposed by the authors
for changing the gradient based search direction using a gain
value. The gradient based search direction is a function of
gradient of error with respect to weights.

2106

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Step 1 Initialize the weight vector with random values and
the vector of gain values with one.

Calculate the gradient of error w.r.t. to weights using
Equation (4), and gradient of error w.r.t. to gain
using Equation (8).

Use the gradient weight vector and gradient of gain
calculated in step 2 to calculate the new weight
vector using equation (6)and vector of new gain
values using equation (10) for use in the next epoch.
Repeat the following steps 2 and 3 on an epoch-by-
epoch basis until the selected error minimization
criteria is satisfied.

Step 2

Step 3
Step 4

With an optimisation perspective, the objective of a learning

process in neural networks is to find a weight vector w that
minimizes the difference between the actual output and the
desired output on both training and testing data sets. Namely,

min E(w) (1)

weR"

Consider a multilayer feed forward neural network(FNN)
[1] with one output layer, one input layer and one or more
hidden layers. Each layer has a set of units, nodes, or neurons.
It is usually assumed that each layer is fully connected with a
previous layer without direct connections between layers
which are not consecutive. Each connection has a weight.

For a particular input pattern, define an error function
on that pattern as,

E:%Zk(tk oy (2)

where o be the activation of the k™ node of layer L.
Let wijL be the weight on the connection from the j®

node in layer L-1 to the j" node in layer L. The

overall error on the training set is simply the sum,
across patterns, of the pattern error E.
The net input to the j" node of layer L is defined

L _ L oAL-1y _ L ~L-1 : :
as net; =(w;,0)= kaj,kok , The activation of
a node ojL is given by a function of its net input,

o; = f(cjnet]) (3)

where f is any function with bounded derivative, and
cJ.L is a real value called the gain of the node. Note that
at ch =1 this activation function becomes the usual logistic

activation function.

The weight update expression in equation (6) with a non-
unit gain value is derived by differentiating the error term as
given in Equation (2) with respect to w; as follows:

oE OE onet“* o] onet;
ows onet™ dob onet: ow;
W1I.j+1
=[-5 ..o fr(cinet])ct .o (4)
WL+1

nj
In particular, the first three factors of (4) indicate that

5t =0 8w fr(cinet]) ()
k

As we noted that the iterative formula (5) for & is

the same as standard back propagation [16] except for
the appearance of the value gain. By combining (4) and
(5) yields the learning rule for weights:

L LALAL-1
Awy =nd5¢;0;
oE
ow;

Wnew = Wold + AWIIJ_ (6)

=7

where 7 is a ‘learning rate’ and the search direction or
OE
=9

i
In the proposed method the calculation of the gradient of
L(n
;-

gradient vector at point WUF isd=

error g™ at step n is a function of gain ¢

oE L(n)
L(n) (i
ij

d(n) —_

=97

The gain value at step n is calculated using gradient of
error w.r.t. to gain,

;EL = Q8w Fr(cinet])net | (8)
c} - ‘

Then the gradient descent rule for the gain value becomes,

nett
Aci =ns; —2 9

L
i

At the end of each iteration the new gain value is
updated using a simple gradient based method as given
by the formula,

™ =cf +Ac} (10)

j j

2107

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

Il. THE IMPLEMENTATION OF THE PROPOSED
ALGORITHM WITH THE CONJUGATE GRADIENT

One of the remarkable properties of the conjugate gradient
method is its ability to generate, in a very economical fashion,
a set of vectors with a property known as conjugacy [8]. Most
widely used conjugate gradient algorithms are given by
Fletcher and Powel [9] and Fletcher-Reeves [10]. Both these
procedures generate conjugate search directions and therefore
aim to minimize a positive definite quadratic function of n
variables in n steps.

The proposed algorithm referred to CGFR/AG begins the
minimization process with an initial estimate w, and an initial

search direction as:
d, =-VE(W,) =-9, (11)

The search direction at (n+1)" iteration is calculated as:

oE
d(n+1) :_m(ci,nu) +ﬂ(n+1)dn(ci,n) (12)

where the scalar By is to be determined by the requirement

that d, and d_, must fulfil the conjugacy property [8].
There are many formulae for the parameter By and the
choice of the formulae for selection of By is problem

dependent [17].
In this paper, common formula as referred by Fletcher and
Reeves [10] and is used:

o = J2a0s (13)
9, 0n
Like By the computation of learning rate 7 also
requires knowledge as that of By The learning rate 7
can be optimally chosen so as to minimise the error E(#)
along the chosen search direction d .

E(77) = E(W(n+1) (77)) = E(Wn + nndn) (14)

This gives us an automatic procedure for setting the learning
rate, once the search direction is chosen. This procedure is
also referred to as ‘line search’ method.

In this paper we used Golden section search
technique to obtain optimized learning rate [18]. The
golden section search technique starts by restricting » in
[17,,m,]- In this paper we set », >0 and 7, <1, then the

following steps are performed.
e Compute E(n,), E(,)

 If E(,)<E(n,) thenset 5, =n, —0.618(y, —1,)
. If E(n,)>E(n,), then set 5, =7, +0.618(y7, —7,,)

The process is repeated until (7, —7,)<e and

/L

then set
=7

The complete CGFR/AG algorithm works as follows;
Step 1 Initialize the weight vector randomly, the gradient
vector g, to zero and gain vector to unit values.

Let the first search direction d, be g, Set
B, =0, epoch=1and n=1. Let Nt be the total

number of weight values. Select a convergence
tolerenceCT .
Step 2 At step n, evaluate gradient vector g (c,)-

Step 3 Evaluate E(w,).- If E(w,)<CT then STOP

training ELSE go to step 4.

Step 4 Calculate a new gradient based search
direction which is a function of gain parameter:
dn = _gn(cn) +ﬂndn—l

Step 5 IF n>1 THEN,

T
Update IBn+1 — gn+1gcn+1)gn+l(cn+1) ELSE go to
9, (€1)9,(c,)

step 6.
Step 6 IF [(epoch+1)/Nt]=0 THEN ‘restart’ the

gradient vector with d_=-g,,(c,,) ELSE go

to step 7.
Step 7 Calculate the optimal value for learning rate 5

by wusing line search technique such as
described in Equation(14).

Step 8 Update W, W, =W, —7.d,

Step 9 Evaluate new gradient vector g (c,) With
respect to gain value ¢_,.

Stepl0Calculate new search

dn+1 =—0Ona (cn+1) + /Bn+1 (Cn)dn
Stepll Set n=n+1 and go to step 2.

direction:

V. PRELIMINERIES

The performance criterion used in this research focuses on
the speed of convergence, measured in number of iterations
and CPU time. The benchmark problems used to verify our
algorithm are available in the open literature [19]. To perform
the experiments the data is divided into training and testing
sets. After each system processes a training set, its
performance is measured on the corresponding test set. To
reduce statistical fluctuations, results are averaged over
several training and testing sets. In this case two-thirds of the
examples in each category are randomly placed in the training
set, and the remaining once are placed in the corresponding
test sets. Four classification problems have been tested
including Iris classification problem, 7 bit parity problem,
Wisconsin breast cancer classification problem and diabetes
classification problem.

2108

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

The simulations have been carried out on a Pentium IV
with 3 GHz PC, 1 GB RAM and using MATLAB version
6.5.0 (R13).

On each problem, three algorithms have been simulated.
The first algorithm is standard conjugate gradient with
Fletcher-Reeves update(‘traincgf’) from MATLAB Neural
Network Toolbox version 4.0.1. The other two algorithms are
standard conjugate gradient (CGFR) and our proposed
conjugate gradient method with adaptive gain (CGFR/AG).
To compare the performance of the proposed algorithm with
respect to those other two algorithms, network parameters
such as network size and architecture (number of nodes,
hidden layers etc), and gain parameters were kept same. For
all problems the neural network had one hidden layer with five
hidden nodes and sigmoid activation function was used for all
nodes.

Prior to training, the weights are initialized to small random
values. The reason to initialize weights with small values is to
prevent saturation (where one or more hidden nodes is highly
active or inactive for all patterns and therefore insensitive to
the training process) and random to break symmetry [20]. In
order to reduce statistical fluctuation, all algorithms were
tested using the same initial weights that were initialized
randomly from range [0, 1] and received the input patterns for
training in the same sequence. Toolbox default values were
used for the heuristic parameters, of the above algorithms,
unless stated otherwise. For the proposed of comparison and
hence there were no particular reason for their choice, all
tested algorithms were fixed with the values of learning rate
was 0.3 and momentum term was 0.4. The initial value used
for the gain parameter was one.

For each run, the numerical data is showed in two files; (1)
the summary results file, and (2) the detail version of the
results for that particular algorithm. The number of iterations
until convergence is accumulated for each algorithm from
which the mean, the standard deviation and the number of
failures are calculated.

For each run also, the generalization accuracy of all
algorithms is calculated adopted from Watkins [21] paper.
Watkins determined generalization accuracy by the inverse of
the distance of the simulations result from the real answer,
expressed as a percentage of the limits of the range.

1—‘tk -0,

Accuracy(%) = ‘ *100 15
y(%) UB (15)

where UB and LB represent the upper bound and the
lower bound. Both are defined based on the type of
activation function that is used during the simulations,
in this case all simulations is run using sigmoid
activation function so UB is defined as one and LB is
defined as zero. The final accuracy is reached by taking the
mean of all the runs.

V. SIMULATION RESULTS ON BENCHMARK

For each problem, 100 different trials were run, each with
different initial random set of weights. For each run, the

number of iterations required for convergence is reported. For
an experiment of 100 runs, the mean of the number of
iterations, the standard deviation, and the number of failures
are collected. A failure occurs when the network exceeds the
maximum iteration limit; each experiment is run to one
thousand iterations except for back propagation which is run
to ten thousand iterations; otherwise, it is halted and the run is
reported as a failure. Convergence is achieved when the
outputs of the network conform to the error criterion as
compared to the desired outputs. For each of the database used
in the simulations, the web site is given on which they can be
downloading with a brief description. Further details are
available in the original web sites. Two of the four data sets
come from UCI repository of machine learning databases.

A. IRIS CLASSIFICATION PROBLEM

(ftp://ftp.ics.uci.edu/pub/machine-learning-
databasesl/iris/iris.data)

This is a classical classification dataset made famous by
Fisher [22], who used it to illustrate principles of discriminant
analysis. This is perhaps the best-known database to be found
in the pattern recognition literature. Fisher's paper is a classic
in the field and is referenced frequently to this day. The
selected architecture of the FNN is 4-5-3 with target error was
set as 0.05 and the maximum epochs to 1000.

TABLE|
THE SUMMARY OF CPU TIME NEEDED TO CONVERGE FOR IRIS
CLASSIFICATION PROBLEM

IRIS classification problem
(target error=0.05)
Mean CPU Total CPU
time(s)/Epoch | time(s) to
converge
traincgf 70 7.52 x10° 3.83
CGFR 39 4.59 x10” 1.93
CGFRIAG | 29 4.85 x10” 1.42
TABLE Il
THE DETAIL VERSION OF THE RESULTS FROM TABLE |
traincgf CGFR CGFR/AG
g| E|s8| 5| &|s8| g| & 58
z g 23| & g g9 | % § €9

44 0.12 5.22 25 0.05 1.16 37 0.04 1.66

44 0.12 5.44 73 0.05 3.83 29 0.04 1.28

44 0.11 4.97 24 0.05 113 38 0.05 172

26 0.04 1.14 32 0.04 1.41

261 0.04 9.72 30 0.05 1.39 34 0.05 153

27 0.15 3.92 42 0.05 1.95 28 0.04 1.25

66 0.07 4.78 29 0.05 1.36 26 0.04 114

39 0.08 2.94 28 0.05 1.42 22 0.04 0.97

70 0.05 3.70 34 0.05 1.58 28 0.04 119

88 0.07 5.75 34 0.04 1.50 28 0.04 1.22

77 0.05 3.94 41 0.05 1.91 21 0.04 0.88

102 0.05 4.70 33 0.04 1.47 35 0.04 1.55

620 0.03 | 21.31 36 0.04 1.59 36 0.05 1.64

2109

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:2, No:6, 2008

70 [006 | 405 | 38 [006 | 217 | 33 004 | 148 89 | 004 | 361 | 28 [004 [119 | 35 006 | 197

47 0.07 3.31 54 0.05 2.69 20 0.04 0.86 101 0.04 3.88 55 0.06 3.33 - - -

16 0.16 2.63 32 0.04 1.39 38 0.04 1.70 132 0.03 3.46 24 0.04 1.03 32 0.06 1.81
44 0.07 3.28 39 0.05 1.81 36 0.05 1.72 - - - 64 0.05 3.08 29 0.06 1.64
87 0.04 3.64 26 0.04 1.16 27 0.05 1.23 131 0.03 4.41 46 0.04 2.05 20 0.05 1.08
18 0.13 2.25 43 0.05 2.00 22 0.05 1.02 134 0.03 4.56 44 0.04 1.95 26 0.06 1.44
40 0.07 2.99 29 0.04 1.25 22 0.04 0.95 130 0.03 4.16 34 0.04 1.50 24 0.06 1.36
98 0.04 | 4.06 37 0.05 181 24 0.04 1.06 70 | 0.075 | 3.83 39 0.045 | 1.93 29 0.049 1.42
41 0.07 2.83 29 0.04 1.27 26 0.04 1.16
38 | 007 | 253 B B - 27 0.04 1.19 . . .

141 | 004 | 552 | 37 | 006 | 206 | 25 004 | 108 Table (1) illustrates the benefit of using the proposed method

23 | 016 | 373 | 28 | 004 | 123 | 26 004 | 113 in comparison the conjugate gradient method The proposed
20 | 014 | 272 | 40 | 004 | 180 | 20 004 | 084 algorithm reached the target error after only about 29 epochs
20 0.12 2.33 30 0.04 1.31 28 0.05 1.36
100 | 0.07 | 689 | 26 | 004 | 111 | 35 005 | 158 as opposed to the standard CGFR at about 39 epochs and
13 | 024 | 316 | 27 | 004 | 119 | 29 | 005] 155 clearly we see that there is an improvement ratio, nearly 2.4,
89 0.05 4.78 27 0.04 1.17 33 0.04 1.48
2 T o 263 T 30 1 ooz 1 130 1 20 002 T oss for the number of epochs compare to neural network toolbox,
66 | 006 | 394 | 27 | 004 | 117 | 27 004 | 120 and almost 2.6749 for the convergence time. Table (I1) clearly
44 | 016 | 697 | 114 | 007 | 795 | 26 | 005] 117 shows that even though the proposed method required more
13 0.19 247 36 0.04 1.58 35 0.05 1.61 . . H
57 T o002 388 T 31 | ooz | 134 | 3 005 173 CPU time per epoch to calculate the function of gain value but
31 | 008 | 256 | 33 | 004 | 144 | 26 004 | 116 it converged more faster as compared to other methods. This is
37 | 008 | 303 | 30 | 004 | 138 | 32 | 004 | 142 because the proposed method improved the search direction
16 0.14 2.19 24 0.04 1.03 34 0.04 1.52 . . .

26 T 009 [308 T 31 1 00a | 1324 | 22 005 T 192 for each iteration which reduced the total number of epochs.

38 | 008 | 322 | 25 | 004 | 108 | 28 005 | 127 Figure 1 shows that all algorithms performed almost the
18 | 025 | S22 | 29 005 | 131 | 24 | 004 10 same accuracy in generalizing the testing data. The neural
44 0.07 3.02 33 0.04 1.47 28 0.04 1.22 B .)

- N - 220 | 006 | 1280 | 22 004 | 095 network toolbox ‘traincgf’ performed worst as the standard
130 | 004 | 564 | 26 | 004 | 113 | 36 004 [158 deviation for epochs is the highest as compared to others. The
48 | 006 | 305 | 27 | 004 | 114 | 38 | 005] 149 number of failures for the proposed method is also small as
130 | 0.04 | 459 24 004 | 1.02 23 0.04 0.98 o , o)
3 1 017 | 227 | 24 | 004 | 105 | a8 005 | 220 compared to ‘traincgf’. It can also be seen that ‘traincgf
51 | 006 [298 [24 [004 | 103 | 28 | 004 | 122 failed to converge at certain trials and performed a wide range
37 0.07 2.44 44 0.05 2.02 56 0.05 2.66 H iati
T o0 T 5 ooe T 24 <8 ST 577 of epoch (higher standard deviation) to reach the target error.
59 0.07 3.98 27 0.04 1.17 21 0.04 0.89
37 0.08 2.97 39 0.04 1.72 21 0.04 0.91 . o
23 0.09 205 76 0.06 564 37 0.05 178 ‘- STD [Failures —— Genaralization Accuracy ‘

44 0.08 3.42 32 0.04 1.36 24 0.05 1.13 97.2
46 0.07 3.02 30 0.04 1.31 33 0.05 1.58
36 0.09 3.22 259 0.06 14.64 38 0.05 1.89 l 96.7
65 0.08 5.33 26 0.04 1.11 24 0.06 1.33 > 9
22 0.11 2.45 28 0.04 1.22 28 0.06 1.55 5 | 96.2 M)

132 0.04 5.20 41 0.06 2.38 33 0.06 1.86 S By
156 0.03 5.23 25 0.04 1.08 22 0.06 1.23 < g

44 | 006 | 270 | 46 | 006 | 2.67 - - - e r957 g
89 0.04 3.50 25 0.04 1.06 28 0.06 1.58 « <
173 0.03 5.38 44 0.04 1.94 27 0.05 1.48 r 95.2
175 0.03 5.27 39 0.04 1.72 26 0.05 1.42
102 0.04 3.99 81 0.07 5.38 29 0.06 1.66 t 947
51 0.06 3.30 28 0.04 1.22 26 0.05 1.38 .

80 | 005 | 361 | 28 | 004 | 110 | 20 | 005 1.09 traincgf CGFR CGFRIAG
17 | 014 | 233 | 24 | 004 | 103 | 25 0.06 138 Methods
23 0.09 2.12 41 0.04 1.80 27 0.06 1.52 H :

5 T o009 T 511 > oor T 117 >3 008 T3 Fig. 1 Summary of algorithms performance on IRIS problem
14 0.20 2.77 36 0.05 1.64 27 0.06 1.55
47 | 007 | 319 32 0.05 | 159 34 0.06 1.89 B. 7BIT PARITY PROBLEM
46 0.06 2.77 22 0.05 1.11 29 0.05 1.59
34 0.06 2.11 43 0.05 2.05 22 0.05 1.19 . R
192 0.03 581 27 0.04 119 25 0.06 141 (http://homepages.cae.wisc.edu/~ece539/data/parity7r-

- - - 41 0.05 | 1.92 25 0.05 1.34 training data)

29 0.11 3.13 32 0.04 1.42 29 0.06 1.61 . H H
30 003 T4z T 25 T oos T 125 T a1 006 T 120 (http.//homepaqes.cae.W|sc.edu/~ece539/data/par|tv7t-
Ti1 | 003 | 312 | 26 | 004 | 109 | 25 | 005 | 136 testing data)

60 0.05 3.27 32 0.04 1.36 25 0.06 1.38
54 0.05 2.95 28 0.05 1.38 24 0.06 1.34 . : P
1 T oos 265 35 T oos 200 T a1 oo T Loo T_he parity problem is also one of the m_ost_popular initial

5 5 z 28 005 | 1.33 22 0.05 1.20 testing tasks and very demanding classification for neural
44 | 007 | 330 | 39 | 005 | 202 | 34 006 | 191 network to solve, because the target-output changes whenever
>4 | 006 | 317 | 33 | 005 | 167 | 32 | 006 | 178 a single bit in the input vector changes and this makes
12 | 019 | 228 | 47 | 004 | 208 | 19 | 006 | 108 gle bit in i p C 9
23 | 011 | 253 | 24 | 004 | 1038 | 27 005 | 147 generalization difficult and learning does not always converge

- - - 54 | 005 | 247 | 23 | 005] 124 easily [23]. The selected architecture of the FNN is 7-5-1. The
gé 882 ggé gg 882 i:ig gg ggg 1‘152 target error has been set to 0.1 and the maximum epochs to
15 | 015 | 230 45 0.06 | 261 31 0.06 1.75 2000.

87 0.04 3.88 - - - 28 0.06 1.61
88 0.04 3.72 25 0.05 1.13 35 0.06 1.97

2110

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

TABLE I
THE CPU TIME NEEDED TO CONVERGE FOR 7 BIT PARITY
PROBLEM

Table (111) shows that the proposed algorithm exhibit very
good average performance in order to reach target error with
only 114 epochs as opposed to the standard CGFR at about
148 epochs and ‘traincgf’ with 283 epochs. The result clearly
shows that the new algorithm outperforms other two
algorithms with an improvement ratio, nearly 1.3, with respect
to total convergence time.

TABLE IV
THE DETAIL VERSION OF THE RESULTS FROM TABLE IlI

traincgf CGFR CGFR/AG
(@] (@) (@]
m = =3 E m = =3 §,‘ m 9 =3 E
3 S| 38 3 S |38 3 S| 38
o .8 Jo8 @) Q -g 2 O S % = o
2 o |23 3 s | L3 73 s | £xn
5 c £ c S <

7 bit parity (target error=0.1) - - 75 | 007 | 499 | 76 | 007 | 536

_ 526 | 003 | 1563 | 111 | 006 | 694 | 320 | 007 | 2353

Number CPU Total time 1381 | 003 | 3500 | 116 | 007 | 836 | 117 | 0.08 | 958

of time(s)/Epoch of 104 | 004 | 402 | 102 | 007 | 705 | 97 | 009 | 9.03

340 | 0.03 | 1025 | 109 | 008 | 823 | 87 | 008 | 681

: Epochs - converge 650 | 003 | 1934 | 119 | 006 | 7.72 | 161 | 007 | 1Lil
traincgf 283 6.06x10 10.9697 = = 92 | 008 | 7.00 | 200 | 0.07 | 1341
CGFR 148 7.00)(10-2 10.7365 152 0.04 5.47 126 0.08 9.50 126 0.10 12.33
> 97 004 | 361 | 93 | 007 | 645 | 65 | 007 | 445

CGFR/AG 114 7.56x10 8.7778 120 | 004 | 455 | 98 | 0.07 | 663 | 115 | 008 | 9.03

185 0.04 6.80 207 0.07 | 13.46 99 0.09 9.31

333 0.03 9.52 239 0.07 | 16.56 171 0.08 13.89

1189 0.03 | 29.88 103 0.08 8.11 59 0.08 4.44

158 0.05 8.00 96 0.07 7.11 185 0.07 13.25

67 0.06 3.99 78 0.07 5.56 50 0.07 3.58

60 0.05 2.97 49 0.07 3.63 59 0.07 4.06

5.73 147 0.07 10.59

694 0.03 19.92 146 0.07 10.67 115 0.11 12.23

60 0.07 4.00 143 0.07 10.55 72 0.08 5.73

188 0.03 6.11 367 0.07 | 25.69 158 0.07 1141

121 0.04 4.94 135 0.08 10.38 156 0.07 10.89

405 0.03 13.22 305 0.08 | 23.44 79 0.06 5.09

500 0.03 16.13 105 0.07 7.14 98 0.10 9.98

188 0.03 5.88 74 0.07 4.84 63 0.07 4.50

46 0.08 3.56 413 0.07 | 29.55 129 0.08 10.56

102 0.03 3.52 72 0.07 5.11 88 0.07 6.31

283 0.061 | 10.97 148 0.070 || 10.74 114 0.070 8.78

From Figure 2, we find that the proposed method can
provide essentially the same generalization results as those of
the standard conjugate gradient and neural network toolbox.
With lower standard deviation and lower number of failures as
we can see from Figure 2, the convergence of the proposed
method is not only faster than other two but also much more
stable. It should also be pointed out that although all
algorithms particularly CGFR and CGFR/AG demonstrate
similar generalization percentage during testing, the correctly
and incorrectly classified vectors in CGFR can be correctly
classified by the CGFR/AG and vice versa. This is due to the
improved strategies involved in CGFR/AG in obtaining the
optimal search direction for each iteration.

2111

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

- — 123 004 | 478 | 50 | 006 | 280 | 23 | 005 | 112
B STD 3 Failures —+— Generalization Accuracy ‘ 110 0.04 211 39 0.05 214 o1 0.04 0.94
350 - 7 015 | 263 | 67 | 006 | 423 | 34 | 003 | L12
T 914 45 006 | 2.75 64 | 005 | 352 36 | 005 | 188
315 7 | 90.6 30 0.08 | 2.49 55 004 | 2.23 22 | 004 | 098
280 7 | 34 008 [278 74 | 006 | 4.09 16 | 005 | 073
& 245 898 < 45 007 | 311 | 33 | 005 | 174 | 7 | 0.04 | 030
S 210 4 - 89.0 & 56 007 | 410 | 78 | 007 | 534 | 14 | 0.05 | 0.69
= | | oy 5 z 5 121 | 005 | 645 | 16 | 0.06 | 100
g ars 88.2 &
& 140 < 41 0.06 | 2.63 2 2 E 21 | 004 | 094
= r87.4 E 315 0.03 | 9.50 63 0.05 | 3.44 - - -
& 105 7 | 866 39 0.07 | 2.63 67 006 | 4.16 36 005 | 164
70 - ' 55 009 | 522 | 62 | 005 | 334 | 20 | 004 | 089
35 1 r 858 10 024 | 244 41 0.05 | 225 23 0.04 1.03
0 L 85.0 89 004 | 358 | 65 | 006 | 375 | 19 | 004 | 084
) 66 005 | 305 | 26 | 005 | 141 | 18 | 005 | 083
traincgf CGFR CGFRIAG 28 010 | 292 | 68 | 006 | 392 | 28 | 005 | 142
Methods 19 012 | 219 | 45 | 008 | 377 | 64 | 003 | 216
69 005 | 3.78 | 128 | 006 | 7.78 | 33 | 005 | 150
Fig. 2 Summary of algorithms performance on 7-bit parity problem 132 | 004 | 466 | 21 | 005 | 111 | 22 | 005 | 100
156 003 | 523 | 62 | 006 | 353 | 23 | 005 | 1iL
41 007 | 802 | 124 | 006 | 753 | 111 | 0.02 | 212
C. WISCONSIN BREAST CANCER PROBLEM 63 0.05 | 3.24 63 0.06 | 361 25 008 | 211
40 011 | 430 | 17 | 005 | 089 | 18 | 005 | 083
. . 19 011 | 208 | 125 | 006 | 764 | 54 | 005 | 261
Th_|s da_ta§et was created based on the_ breast cancer 8 006 T4 2 "o T 17 T a1 o0 | 192
Wisconsin’ problem dataset from UCI repository of machine 65 007 | 452 | 38 | 005 | 208 | 63 | 005 | 309
learning databases from Dr. William H. Wolberg [24]. This 3 | 010 | 374 | 36 | 006 | 232 | 30 | 005 | 138
- : - - - 187 004 | 741 | 66 | 006 | 381 | 18 | 005 | 084
problem tries to diagnosis of breast cancer by trying to classify 6 005 | 347 T 005 088 1 005 | 356
a tumor as either benign or malignant based on cell 67 005 | 3.39 - - - 66 | 0.03 | 222
descriptions gathered by microscopic examination. The | 45 | 006 | 288 | 65 | 006 | 363 | 56 | 002 | 112
. . . 133 004 | 555 | 63 | 006 | 363 | 13 | 0.05 | 059
selected architecture of the FNN is 9-5-2. The target error is 20 012 | 241 2 006 | a8l 24 T 004 | 108
set as to 0.015 and the maximum epochs to 2000. - = = 66 | 005 | 356 | 71 | 0.04 | 278
33 008 | 253 | 19 | 004 | 084 | 44 | 005 | 2.12
TABLEV 300 |27 [25 |00 [e | 3 | oo [185
THE CPU TIME NEEDED TO CONVERGE FOR BREAST CANCER 67 0'05 3.06 1 0'05 2l56 3 0.06 2'00
PROBLEM [23] 139 | 003 | 472 | 67 | 005 | 334 | 31 | 005 | 144
123 006 | 745 | 124 | 005 | 647 | 65 | 008 | 211
Breast cancer problem 11 024 | 261 | 42 | 005 | 195 | 63 | 004 | 2.2
r 14 015 | 213 | 45 | 005 | 209 | 33 | 005 | 155
target error=0.015) 43 006 | 269 | 19 | 004 | 084 | 63 | 0.03 | 199
Number CPU Total time 44 0.06 2.83 195 0.05 | 10.45 67 0.03 2.12
; 28 013 | 359 | 121 | 004 | 523 | 37 | 005 | 1oL
of time(s)/Epoch of 132 004 | 513 | 73 | 005 | 852 | 74 | 008 | 221
Epochs converge 20 012 | 241 | 171 | 004 | 6.73 18 0.06 | 108
traincgf 71 7.15x1072 3.7843 22 010 | 2.30 | 233 | 003 | 645 | 18 | 005 | 081
= 20 016 | 327 | 45 | 008 | 343 | 64 | 003 | 209
CGFR 65 5-02)(10_2 3.3184 66 005 | 358 | 72 | 005 | 336 | 60 | 004 | 222
CGFR/AG 39 4.28x10 1.5501 128 003 | 445 63 0.05 | 2.92 13 004 | 058
32 007 | 225 | 34 | 004 | 152 | 22 | 004 | 097
189 004 | 717 | 66 | 008 | 201 7 0.04 | 0.28
TABLE VI
16 013 | 209 | 77 | 003 | 212 | 14 | 004 | 063
THE DETAIL VERSION OF THE RESULTS FROM TABLE V > oo T 330 T 17 T oo T oa T 25 o5 | 127
13 016 | 212 | 87 | 005 | 423 | 23 | 012 | 277
traincgf CGFR CGFRIAG 67 005 | 309 | 62 | 005 | 288 | 36 | 005 | 170
213 004 | 868 | 30 | 004 | 1.33 | 63 | 003 | 2.09
Q - Q 4 Q 4 129 004 | 478 | 19 | 004 | 083 | 16 | 004 | 0.70
m c |58 m c 58 m c |58 121 003 | 412 65 0.05 | 2.98 13 0.04 | 056
8 o | 24 8 o | 245 3 o | @~ 32 0.09 2.86 36 0.04 1.61 18 0.05 0.83
= ° = O S ° w O S - o O
3 g |2 3 g |22 3 g | 2z 32 000 | 299 | 18 | 004 | 077 | 23 | 004 | 100
= = = 65 0.05 | 328 66 0.05 | 356 71 0.04 3.15
65 005 | 341 | 65 | 003 | 222 | 69 | 003 | 211
68 009 | 634 | 33 | 005 | 181 | 62 | 002 | 111 67 006 | 3.75 | 125 | 005 | 5905 | 12 | 004 | 053
65 006 | 389 | 62 | 006 | 372 | 24 | 005 | 1.09 7 010 | 323 | 74 | 005 | 342 | 67 | 005 | 336
- - - 34 | 005 | 18 | 12 | 004 | 052 76 005 | 3.75 | 63 | 005 | 202 | 70 | 004 | 277
46 006 | 277 | 3 | 006 | 211 | 19 | 005 | 0.97 70 004 | 314 | 88 | 005 | 466 | 56 | 002 | 112
69 004 | 294 | 62 | 006 | 384 | 19 | 005 | 098 32 010 | 334 | 62 | 005 | 28 | 63 | 003 | 199
122 006 | 7.45 - - - 18 | 005 | 083 77 005 | 349 | 63 | 005 | 295 | 69 | 003 | 201
12 017 | 2.08 | 44 | 005 | 211 | 53 | 005 | 253 71 007 | 531 | 19 | 004 | 083 | 62 | 005 | 305
141 004 | 505 | 46 | 012 | 533 | 34 | 006 | 212 141 003 | 458 | 130 | 005 | 622 | 14 | 004 | 063
75 005 | 341 | 38 | 006 | 211 | 66 | 003 | 2.28 42 006 | 253 | 65 | 003 | 212 15 | 004 | 067
23 010 | 233 | 19 | 005 | 100 | 17 | 004 | 0.75 30 000 | 275 | 121 | 005 | 641 | 35 | 005 | 163
47 006 | 286 | 62 | 006 | 355 | 70 | 0.04 | 2.55 32 010 | 323 | 68 | 005 | 366 | 17 | 004 | 075
7 005 | 355 | 15 | 005 | 078 | 45 | 002 | 112 135 004 | 481 | 124 | 005 | 589 | 130 | 0.02 | 3.19
- - - 53 | 006 | 297 | 47 | 005 | 216 66 005 | 325 | 87/ | 003 | 200 | 78 | 003 | 221
75 004 | 311 9 005 | 045 | 45 | 005 | 205 26 011 | 2.78 | 124 | 005 | 507 | 64 | 003 | 198
65 009 | 591 | 62 | 006 | 359 | 14 | 005 | 0.66 25 010 | 245 | 62 | 005 | 284 | 22 | 005 | 100

129 0.04 4.61 70 0.06 411 8 0.05 0.42

2112

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

44 0.07 2.89 135 0.05 6.45 10 0.04 0.44

70 0.05 3.52 34 0.04 1.52 75 0.04 2.88

87 0.05 4.09 13 0.04 0.55 67 0.03 2.12

71 0.06 3.78 65 0.05 3.32 f) 0.04 1.55

Table (V) and (V1) shows average number of iterations as well
as the average CPU time taken by all three algorithms in
reaching the target error. Observe that the proposed method
(CGFR/AG) clearly outperforms the classical conjugate
gradient method as well as neural network toolbox. Both
methods exhibits a linear convergence to reach the target
error, but CGFR/AG algorithm takes significant smaller
number of iterations. The CGFR/AG training algorithm takes
only 39 epochs to reach the target error as compared to CGFR
at about 65 epochs and worst for “traincgf’ that need about 71
epochs to converge. Still the proposed algorithm outperforms
other two algorithms with an improvement ratio, nearly 2.5,
for the total time of convergence.

As for generalization performance, all algorithms achieved
the similar results, but ‘traincgf’ had the highest standard
deviation of epochs and the highest number of failures which
indicate that it is more unstable as compare to the proposed
method. This make CGFR/AG method a better choice since it
has two failures for 100 different trials.

‘- STD 3 Failures —— Generalization Accuracy‘

60 T T 90.4
50 1 - 903
Z 401)
3 F90.2 3
£30 g
2 L t 901 3
T o
& <

10 7 r 90.0

0 - r 89.9

traincgf CGFR CGFR/AG
Methods

Fig. 3 Summary of algorithms performance on cancer problem
D. DIABETES CLASSIFICATION PROBLEM

(ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/diabetes)

This dataset was created based on the ‘Pima Indians
diabetes’ problem dataset from the UCI repository of machine
learning database. From the dataset doctors try to diagnose
diabetes of Pima Indians based on personal data (age, number
of times pregnant) and the results of medical examinations
(e.g. blood pressure, body mass index, result of glucose
tolerance test, etc.) before decide whether a Pima Indian
individual is diabetes positive or not. The selected architecture
of the Feed-forward Neural Network is 8-5-2. The target error
is set to 0.01 and the maximum epochs to 1000.

TABLEVII
THE CPU TIME NEEDED TO CONVERGE FOR DIABETES
PROBLEM [23]

Diabetes classification problem
(target error=0.01)
Number CPU Total time
of time(s)/Epoch of
Epochs converge
traincgf 98 4.77x10° 4.0280
CGFR 51 4.93x10” 2.6095
CGFR/IAG 40 4.85x10” 2.0121

Table (VII) shows that the CGFR/AG reached the target
error after only about 40 epochs as opposed to the standard
CGFR at about 98 epochs and clearly we see that there is an
improvement ratio, nearly 2.5, for the number of epochs
compare to neural network toolbox, and almost 2 for the
convergence time.

TABLE VIII
THE DETAIL VERSION OF THE RESULTS FROM TABLE VII

traincgf CGFR CGFR/IAG

(@] — (@] — (@) —

o) = o) = o) =
g| <|58| ®| <|58| 8| <|58
8 2 | &5 8 o | 25 8 2 | 25
3 E o] 3 E O} 3 § Zy
= c = c > c
64 0.10 81 0.05 3.94 29 0.04 1.30

0.05 2.16 38 0.04 1.70

=}
=3
o
=}
o
R

| w|h
S|
S
N

48 0.05 2.19 25 0.05 1.16

=
=3
S
o
Q
@®
w
w
©
ey
>

0.05 2.09 29 0.04 1.28

~
3
o
(=
o
w
a
©
a
o

0.05 2.28 58 0.05 2.70

-
=)
o
o
=3
¢
©
pid
a1
©

0.05 2.78 27 0.05 1.33

=
o
>
o
o
w
w
o
©
[N
=
~

0.06 6.92 =

0.05 2.72 17 0.04 0.75

N
IN]
©
¢
Q
®
o
@©
®
o
©

w
N}
g
o
N
N
e
w
w
a

0.05 1.58 48 0.05 2.17

N
a
o
=3
©
INdB
N
o
2]
2

0.05 3.19 48 0.05 2.20

w
o
©
¢
Q
]
©
o
N
@
a

0.05 3.13 46 0.05 2.09

o2}
=}
g
o
a
N
)
53
o
N

0.05 2.67 37 0.04 1.66

o
@
o
=3
=
INdB
®
=
N
N

0.04 1.06 22 0.04 0.97

-
N
o
o
=
N
©
N
w
©

0.04 1.75 28 0.04 1.25

~
N
o
o
S
e
o
®
]
o

0.04 1.16 43 0.04 1.92

~
al
o
=3
=
I
@
©
a
&

0.05 2.52 61 0.05 2.89

(=23
=
o
o
=
N
w
[
D
>

0.05 3.17 71 0.05 3.39

©
N
o
o
=
N
©
o
N
[

0.05 2.13 22 0.04 0.97

o2}
=}
O
<
S
N
w
©
©
N

0.06 5.36 46 0.05 2.13

N
N
o
o
®
N
=
G
’d
&

0.05 2.47 46 0.05 2.08

w
e
o
o
N
N
w
s
£
J

0.05 2.39 32 0.05 1.61

N
[
a
ol
o
w
[oe]
ey
&
B
(2]

0.05 2.33 44 0.05 2.17

°d
&
o
=
5]
w
=
5]
w
iy

0.05 1.69 33 0.05 1.63

[=2]
3
o
o
=
N
@©
5
S
ha]

0.05 2.39 28 0.05 1.38

=
o
a
¢
=3
S
w
o
w
N
N

0.05 1.34 55 0.05 2.89

N
ha]
o
(=
>
N
©
©
w
©

0.05 1.91 26 0.05 131

N
N
OS¢
o
®
N
N
o
~
3

0.05 4.02 44 0.05 2.31

~
o
o
o
r
w
=
i
IN
S

0.05 2.02 37 0.05 1.88

a
>
o
o
o
N
@
o
a
s3]

0.05 3.00 46 0.05 241

-
@
b
o
S
w
e
w
w
o

0.05 1.94 28 0.05 1.39

524 0.03 16.91 54 0.05 2.88 54 0.05 2.80

182 0.04 7.81 43 0.05 2.19 38 0.05 1.94

63 0.08 5.11 46 0.05 2.33 25 0.05 1.23

70 0.05 3.84 45 0.05 241 37 0.05 177

73 0.05 3.33 36 0.05 1.80 21 0.05 1.06

63 0.05 2.97 32 0.05 1.63 42 0.05 2.08

115 0.04 4.72 55 0.05 2.94 53 0.05 2.77

66 0.05 3.33 49 0.05 2.55 43 0.05 2.22

83 0.04 3.39 66 0.05 3.58 28 0.05 1.49

39 0.07 2.88 37 0.05 1.91 28 0.05 1.39

60 0.06 3.49 =

28 0.12 341 51 0.05 2.67 41 0.05 2.09

82 0.04 3.34 45 0.05 2.25 54 0.05 2.86

43 0.06 2.70 64 0.05 3.50 =

144 0.03 4.98 79 0.06 4.63 34 0.07 2.55

92 0.04 3.59 45 0.05 2.23 19 0.05 0.92

2113

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

98 0.05 4.03 51 0.05 2.61 40 0.05 2.01

‘- STD E= Failures —+— Generalization accuracy ‘
100
90 4 91.0
38 A - 90.0
2 A S
< L <
é 60 89.0 >
© 50 7 1]
2 > - 88.0 £
E 40 3
» 30 A r87.0 <
207 L 86.0
10 +
0 - r 85.0
traincgf CGFR CGFR/AG
Methods

Fig. 4 Summary of algorithms performance on diabetes problem

Figure 4 shows that all algorithms performs similar results in
classified the testing data correctly. The CGFR even though

has only three failures and with a standard deviation of 17.03
as compared to ‘traincgf’, it produced acceptable results. Yet
the CGFR/AG outperformed the CGFR with a standard
deviation of 15.94 epochs, and with four failures. The small
value of the standard deviation says that the 100 different
trials were very consistent.

VL. CONCLUSION

In this paper, a new fast learning algorithm for neural
networks based on Fletcher-Reeves update with adaptive gain
(CGFR/AG) training algorithms is introduced. The proposed
method improved the training efficiency of back propagation
neural network algorithms by adaptively modifying the
gradient search direction. The gradient search direction is
modified by introducing the gain value. The proposed
algorithm is generic and easy to implement in all commonly
used gradient based optimization processes. The simulation
results showed that the proposed algorithm is robust and has a
potential to significantly enhance the computational efficiency
of the training process.

ACKNOWLEDGMENT

The financial support offered by University of Tun Hussein
Onn Malaysia (UTHM), towards the research studies of first
author is gratefully acknowledged.

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning internal
representations by error propagation. in D.E. Rumelhart and J.L.
McClelland (eds), Parallel Distributed Processing, 1986. 1: p. 318-362.

[2] A.van Ooyen and B. Nienhuis, Improving the convergence of the back-
propagation algorithm. Neural Networks, 1992. 5: p. 465-471.

[3] M. Ahmad and F.M.A. Salam, Supervised learning using the cauchy
energy function. International Conference on Fuzzy Logic and Neural
Networks, 1992.

[4] Pravin Chandra and Yogesh Singh, An activation function adapting
training algorithm for sigmoidal feedforward networks.
Neurocomputing, 2004. 61: p. 429-437.

[5] R.A. Jacobs, Increased rates of convergence through learning rate
adaptation. Neural Networks, 1988. 1: p. 295-307.

[6] M.K. Weir, A method for self-determination of adaptive learning rates
in back propagation. Neural Networks, 1991. 4: p. 371-379.

[71 X.H. Yu, G.A. Chen, and S.X. Cheng, Acceleration of backpropagation
learning using optimized learning rate and momentum. Electronics
Letters, 1993. 29(14): p. 1288-1289.

[8] Bishop C. M., Neural Networks for Pattern Recognition. 1995: Oxford
University Press.

[9]1 R. Fletcher and M. J. D. Powell, A rapidly convergent descent method
for nlinimization. British Computer J., 1963: p. 163-168.

[10] Fletcher R. and Reeves R. M., Function minimization by conjugate
gradients. Comput. J., 1964. 7(2): p. 149-160.

[11] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systerns. J. Research NBS, 1952. 49: p. 409.

[12] HUANG H.Y., A unified approach to quadratically convergent
algorithms for function minimization. J. Optim. Theory Appl., 1970. 5:
p. 405-423.

[13] Thimm G., Moerland F., and Emile Fiesler, The Interchangeability of
Learning Rate an Gain in Back propagation Neural Networks. Neural
Computation, 1996. 8(2): p. 451-460.

[14] Holger R. M. and Graeme C. D., The Effect of Internal Parameters and
Geometry on the Performance of Back-Propagation Neural Networks.
Environmental Modeling and Software, 1998. 13(1): p. 193-209.

2114

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:6, 2008

[15] Eom K. and Jung K., Performance Improvement of Back propagation
algorithm by automatic activation function gain tuning using fuzzy logic.
Neurocomputing, 2003. 50: p. 439-460.

[16] Rumelhart D. E., Hinton G. E., and Williams R. J., Learning internal
representations by back-propagation errors. Parallel Distributed
Processing, 1986. 1 (Rumelhart D.E. et al. Eds.): p. 318-362.

[17] C.H. Chen and Hongtao Lai, An empirical study of the Gradient Descent
and the Conjugate Gradient backpropagation neural networks. IEEE,
1992: p. 132-135.

[18] Curtis F. Gerald and Patrick O. Wheatley, Applied Numerical Analysis.
Seventh Edition. 2004: Addison-Wesley.

[19] L.Prechelt, Probenl - A set of Neural Network Bencmark Problems and
Benchmarking Rules. Technical Report 21/94, 1994: p. 1-38.

[20] Adrian J. Sheperd, Second Order Methods for Neural Networks-Fast
and Reliable Training Methods for Multi-layer Perceptrons, ed. J.G.
Taylor. 1997: Springer. 143.

[21] Dave Watkins, Clementine's Neural Networks Technical Overview.
Technical Report, 1997.

[22] Fisher R.A., The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 1936. 7: p. 179 -188.

[23] Erik Hjelmas and P.W. Munro, A comment on parity problem. Technical
Report, 1999: p. 1-7.

[24] Mangasarian O. L. and W.W. H., Cancer diagnosis via linear
programming. SIAM News, 1990. 23(5): p. 1-18.

Nazri Mohd Nawi received his B.S. degree in Computer Science from
University of Science Malaysia (USM), Penang, Malaysia. His M.Sc. degree
in computer science was received from University of Technology Malaysia
(UTM), Skudai, Johor, Malaysia. He has been working toward his Ph.D.
degree in Mechanical Engineering department, University of Wales Swansea.
At present, his research interests are in optimisation, data mining and neural
networks

Rajesh S. Ransing is a Senior Lecturer at the University of Wales Swansea.
He received his B.E in Mechanical Engineering from University of Poona,
Pune, India, he received his M.E. from Indian Institute of Science, Bangalore,
India and his Ph.D. from University of Wales Swansea in 1989, 1992 and
1996. He has published over 40 papers in refereed journals, one patent and has
organised many symposiums, workshop, and conferences on this topic. He is
also on the executive committee of Natural Computing Applications Forum.
His research interests are in the fields of data analysis, optimisation methods,
natural computing and nano-meso scale computation.

Meghana R. Ransing received the B.E. in Computer Engineering from
University of Poona, Pune, India and the Ph.D. degree in engineering from the
University of Wales Swansea in 1995 and 2003. She is currently a senior
research officer in school of engineering at the University of Wales Swansea.
She has published over 10 papers in refereed journals. Her research interests
are in data analysis and natural computing.

2115

