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Abstract—In this paper, the phase control antenna array synthesis 

is presented. The problem is formulated as a constrained optimization 

problem that imposes nulls with prescribed level while maintaining 

the sidelobe at a prescribed level. For efficient use of the algorithm 

memory, compared to the well known Particle Swarm Optimization 

(PSO), the Accelerated Particle Swarm Optimization (APSO) is used  

to estimate the phase parameters of the synthesized array. The 

objective function is formed using a main objective and set of 

constraints with penalty factors that measure the violation of each 

feasible solution in the search space to each constraint. In this case 

the obtained feasible solution is guaranteed to satisfy all the 

constraints. Simulation results have shown significant performance 

increases and a decreased randomness in the parameter search space 

compared to a single objective conventional particle swarm 

optimization. 

 

Keywords—Array synthesis, Sidelobe level control, Constrained 

optimization, Accelerated Particle Swarm Optimization. 

I. INTRODUCTION 

DAPTIVE antenna arrays are considered the key to 

increase the capacity and efficiency of the wireless 

communication systems. Each element in the antenna array 

contributes to the total array output power to create a certain 

radiation pattern. The performance of the adaptive antenna 

arrays can be altered using digital beamforming techniques 

[1].  

Beamforming or array synthesis is a process of directing the 

antenna array radiated power in specified sectors called the 

main beam sectors while attenuating the radiated power in 

other directions called sidelobes. The interference that may 

interfere with transmission and reception can occupy narrow 

or wide beam sectors, in both cases, a null or successive beam 

nulls have to be introduced in order to minimize the sidelobe 

levels in that sector relative to the main beam level [2]. 

Recently with the fast growth of computing devices and 

digital signal processors, beamforming technique has enjoyed 

great interest to enhance the performance of wireless systems. 

The design of the antenna array tends to find the optimal array 

parameters to achieve the desired radiation pattern. 

The antenna array parameters that can be optimized for a 

given performance are the excitation current magnitude [3], 

phase [4] and both [5] and the inter-element spacing [12]. The 
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optimization process for a specified performance involves 

dealing with a min-max convex problem that is usually 

difficult to solve analytically [7]. Therefore, several numerical 

techniques such as Gradient based, Nelder-Mead and Newton-

like methods have been proposed to deal with array synthesis. 

The performance of these techniques has been presented in 

[8]. However, these techniques generally need initial solution 

that must be close to the optimal parameters, otherwise, it is 

not generally easy to find these optimal parameters, especially 

if the function to be optimized is a multimodal and contains 

many local minima and local maxima. 

In order to obtain good estimate of the array parameters, 

Metaheuristic methods such as Genetic algorithm and particle 

swarm optimization have been proposed. Particle Swarm 

Optimization (PSO) [9] and [10], simulates natural behaviors 

of bees (particles) living in a swarm and searching for flowers. 

Each particle in the swarm updates its position over time 

according to the fitness of its previous position, current 

position and the position of the particle with best fitness in the 

swarm. 

PSO has been applied to array synthesis. In [11], the array 

phases were optimized to place nulls in specified interfering 

directions. However, the null depth and the sidelobe level have 

not been controlled. In [12], the position of the antenna 

elements is estimated to place nulls in a specified direction 

while minimizing the sidelobe level.  It has also been applied 

to different array geometry such as in [13] where the relative 

distance of circular antenna array elements are optimized for a 

given first null beamwidth and sidelobe level. 

Generally, placing a null in a certain direction will increase 

the sidelobe levels relative to the main beam. Therefore, when 

a null needs to be placed in a certain direction, the sidelobe 

level have to be optimized. 

To control both nulls and sidelobe level, there will be more 

than one function to optimize (minimized or maximized), 

these functions are usually combined into a single fitness 

function with appropriate scaling factors determined by trial 

and error [14]. In this case, the obtained solution is not 

necessary a global minima or maxima that optimize the fitness 

function and all the constraints, especially in the case of 

conflicting constrained optimization. 

In this paper, the array synthesis problem will be formulated 

as a constrained optimization problem. The constraints will be 

added to the problem sequentially and each constraint will be 

assigned a penalty factor that measures its violation level to a 

prescribed specification. The phase of the excitation current 
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will be considered to control the nulls and their levels, in 

addition to sidelobe level for a specified array pattern. 

Although the PSO has been exploited in array pattern 

synthesis, to our knowledge, the accelerated particle swarm 

optimization (APSO) has not been used in array synthesis 

problem. APSO has been presented in [12] for business 

optimization and applications and it has shown to have several 

promising features including the speed of the algorithm, 

reduced memory requirements in addition to have an 

increasing deterministic behavior over time which increases 

the convergence rate compared to the conventional PSO. 

Therefore, the APSO algorithm will be used in the 

optimization of the array design presented in this paper. 

The rest of the paper is organized as follows, in section II, 

the array factor of a uniform linear array is presented, then the 

problem formulation as a constrained optimization is given in 

section III. In section IV, the accelerated particle swarm 

technique is explained. Problem is mapped into APSO 

algorithm via appropriate fitness in section V followed by the 

by the simulation results. Finally, conclusion is drawn in 

section VII.   

II. UNIFORM LINEAR ARRAY 

Consider a uniform linear array consisting of N isotropic 

radiator with fixed inter-element spacing d as shown in Fig. 1. 

 

 

Fig. 1 N- element Linear Array 

 

The array factor is the contribution of all antenna elements 

at the output of the array [15] and is given by 
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   If the array is symmetric with even number of elements, N 

as shown in Fig. 2, then the array factor can be simplified as 

����� � 2 ∑ �	
8
9
	�� cos =>?	��

? @ 1' sin � C 0	D        (2) 

In  Eq. (2) the number of unknown excitation parameters is 

reduced to instead of  , so the problem dimensionality is. 

Setting  and , Eq. (2) can be written as 

 

����� � 2 ∑ �	
8
9
	�� cos =3 >! + �

?@ sin � C 0	D          (3) 

 

 

Fig. 2 Symmetric Linear Array 

 

In this paper, the excitation phase βn,, n∈(1,N/2) will be 

optimized. Therefore, it is assumed that the excitation 

amplitude αn=1, ∀n∈(1,N/2). The array factor at any angle θ 

can be calculated relative to the main beam in decibels, dB as 

��������G � 20 log�J > KL���
KL��M�@                      (4) 

 

where �J is the main lobe direction at which the array factor is 

maximum.  

III. PROBLEM FORMULATION 

Given the array factor in Eq. (3), we need to determine the 

phase excitation vector, βn={β1, β2, . . . , βN/2} that minimizes 

Eq. (3) at the null directions and the sidelobe levels relative to 

the main beam. 

Assume k nulls located at the directions,  

Θ	 � O�	� ,   �	?  ,   … ,   �	�R, then the fitness function � to 

minimize is, 

��S� � ∑ |�
U�� ����	U�|? + |����J�|?                  (5)  

 

where �J is the direction of the main beam. 

    To specify a null depth of VWXXJ� at the 1YZ null 

direction relative to the main beam, we use the following 

constraint  

�����	����G � 20 log�J >|KL���[�|
|KL��M�| @                      (7) 

             \ VWXXJ�  

where �] belongs to the angular sector of the sidelobe regions.  

IV. ACCELERATED PARTICLE SWARM OPTIMIZATION 

Accelerated Particle Swarm Optimization (APSO), is a 

variation of the conventional Particle Swarm Optimization 

(PSO) proposed by Kennedy and Eberhart [9]. In the PSO 

technique a swarm of a certain size, typically (20-30), particle 

is created. Each particle consists of number of components 

equal to the problem dimension. The position and velocity of 

the �YZ particle with 1 components are initialized randomly 

and updated with time. Each particle updates its position and 
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velocity based on the fitness of the individual position, .U� and 

the group global best position, ._� as follows  

 

7U��! C 1� � 67U��!� 

          Ca�&��!�b.U��!� + ,Uc�!�d 

      Ca?&?�!�                                                             (8) 

 

,U��! C 1� � ,U��!� C 7U��! C 1�                (9) 

 

 

where 6 is the inertial weight used to stabalize the particle 

movements. a� and a? are the social parameters, usually set as 

a� C a? \ 4 [6]. &� and &? are random constants selected from 

a uniform distribution, &�,  &? f W�0,1�. ! is the discrete time 

for the update. The purpose of using the second term in Eq.  

(8) which contains the previous personnel best position, .U� , is 

to provide the ability to pull the particle back to its previous 

position which increases diversity in the solution. Therefore, it 

can be replaced by introducing some randomness in the update 

relations [14]. In this case, there is no need for algorithm 

memory to keep the previously explored individual best 

position.  

APSO algorithm looks similar to that of the PSO except in 

the previous best position term and the position update. The 

position of the �YZ particle at time ! C 1 is updated as, 

 

,U��! C 1� � �1 + g�,U��!� C g._� C h&          (10) 

 

the parameter g is selected in the range g ∈ �0.1 ,  0.7�, as g 

increases particle is encouraged to move toward the position 

of the best particle in the swarm, while as g decreases the 

particle tends to remain in its position. The last term in Eq. 

(10) is to give some randomness especially in the first few 

iterations to increase the diversity of the solution. Therefore, 

to increase the convergence, h is selected as exponentially 

decreasing function of the discrete time n,  h � hJ
	 ,  hJ k 1  

and &~ W�0,1�. It should be noted from Eq. (10) that there is 

no velocity term in the equation which simplifies the update 

process. The pseudo-code of the APSO is shown in algorithm 

1.  

 

Algorithm 1: Accelerated Particle Swarm Optimization 

 

V. FITNESS FUNCTION 

The fitness (cost) function to be optimized using the APSO 

algorithm to estimate the phase excitation vector, m	  ,   ! ∈

�1, V/2� is the combined function in Eq. (5) and the 

constraints in Eq. (6) and Eq. (7). The problem can be stated 

as  

           n�!�$�*
:     ��0	� 

    p%qr
-�  �):   �����	����G \ VWXXJ� 

                              �maxOpXX��]�R��G \ pXXJ       (11) 

 

Eq. (11) is a constrained optimization problem that can be 

solved using either the solution feasiblity preservation 

technique in which only the feasible solution that satisfies all 

the contrtaints  is preserved during iterations [16] and [17], or 

using the penalty functions technique where each constraint is 

weighted by a penalty factor to emphasize its violation to a 

prescribed value, in this case, the problem can be transformed 

into unconstrained optimization problem [16] and [18]. It has 

been shown in [19], that the constraints handling using penalty 

functions acheives faster convergence rate. 

In [19], the penality functions are classified into two 

catogories, the first is the static penality method which assigns 

a fixed penality to the violated constraint regardless of the 

violation value. A more effective technique, is to penalize the 

constrains according to its violation value through scaling its 

value by a fixed penaliy factor. The later technique will be 

used in this paper. 

To convert Eq. (11) into unconstrained optimization 

problem, the quadratic augmented fitness function Φ�0	� is 

introduced as 

 

Φ�0	� � ��0	� C -w�0	 �                         (12) 

 

where w�0	� is the penalty function given by 

 

w�0	� � �maxO0, �maxOpXX��]�R��G + pXXJR�?  

            C ∑ ��
U�� maxO0, �����	U���G + VWXXJ�R�? 

- is the penalty parameter selected to be a very large 

number to avoid that ��0	� from dominating the fitness 

function in Eq. (12), otherwise minimizing the fitness will not 

be the optimal solution, 0	, that satisfies all the constraints. 

The maxO. R operator is used such that the satisfied constraint 

is excluded from the overall fitness function. 

VI. SIMULATION RESULTS 

A.  The first design scenario is to synthesize the array with 

20 elements. The main beam is at �J � 0x, null is placed at an 

angle �	� � +14. 3x which corresponds to the second peak of 

the uniform weighting - zero phase array pattern, (�	 �
1 ,   0	 � 0). The required null depth is VWXXJ� � +50   'z    
and without sidelobe level control. The APSO is invoked with 

g � 0.3 ,    hJ � 0.8 , p6 &$  ��*
  )(   20 and 150 

iterations. The excitation phase vector to be estimated 

is m	 � O0�, … , 0�JR . The generated array pattern is shown in 

Fig. 3. 

It can be seen from Fig. 3, that the null depth is +50.2   'z  
which is nearly the same as specified. The maximum sidelobe 

level is +13.3   'z  which is approximately similar to that of 
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the uniform weighting array with radiation pattern plotted on 

the same graph. 

 

 

Fig. 3 20   
#
$
!��   && |:  radiation pattern using APSO (solid) 

vs. PSO  (dashed) and uniform (dashed-dotted) 

 

To compare the performance of the APSO to that of the 

PSO. The PSO is invoked with fitness proposed in [20] for 

150 iterations,  

             ���!
��}~�  

� ∑ |�
U�� ����	U�|? C ∑ �

����� � |���
�ℓ�

����]�|? '�]        (14) 

 

Δ�] is the angular sector where the sidelobe is to be 

suppressed, Δ�] � ��] + �ℓ] and  �	U  is the �YZ null direction. 

The obtained result have shown significant variations in the 

estimated parameters and the optimal fitness values. 

Therefore, the estimated parameters are averaged over 500 

runs and the result is plotted in Fig 3. As it can be seen from 

the radiation pattern plot, the null is placed at the correct 

location but the main beam is shifted by 3� to the left, in 

addition to a relatively large sidelobe level at +7   'z . 
B. The mean Fitness function is computed for both 

techniques with iterations. As it can be seen from Fig. 4 that 

the APSO technique (solid) converges faster with less 

oscillations  than that of the PSO technique (dashed) as a 

result of the particles being affected by the best particle in the 

swarm regardless of their personel best  postion. 

 

 

Fig. 4 20   
#
$
!��   r& |:  APSO (solid) and PSO (dashed) 

convergence rate 

 

C.   The second design scenario is to control the null and the 

sidelobe level. The sidelobe level is set pXXJ � +20   'z , 
null with same specifications as in the first scenario. Fig. 5, 

shows the obtained radiation pattern with null depth +50   'z  
and sidelobe level of +20.5   'z , the first null beamwidth is 

at �5.96°   with depth +70   'z , close to uniform weighting 

first null of �5.7°  . To compare with PSO, the same 

specifications are used. The radiation pattern is shown in Fig. 

6, the null depth is +77   'z  and sidelobe level is optimized 

to +17.3   'z  with first null beamwidth �6.8° . 
 

 

Fig. 5 APSO with optimized null and sidelobe level 
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Fig. 6 PSO with optimized null and sidelobe level 

   

D. Finally, the third scenario is to test the algorithm with 

more than one null. A null angles of �	� � +14. 3x, �	? �
10x with null depths VWXXJ� � VWXXJ? � +70   'z  are 

specified. The sidelobe level is set to pXXJ � +20   'z . The 

radiation pattern is generated using the phases determined by 

the APSO with same parameters used in the above two 

scenarios. Fig. 7, shows the APSO pattern with null placed at 

the desired directions with attenuation of +80 ,   + 78   'z , 
respectively, while the maximum sidelobe is maintained at 

+20   'z . The obtained radiation pattern is compared with 

uniform weighting pattern using same number of antenna 

elements, i.e. 20, to show the superimposed nulls. The 

estimated phase shifts in degrees for the APSO in the three 

design scenarios are shown in Table I. 

 

 

Fig. 7 APSO radiation pattern (solid) with �	� � +14. 3x  ,   �	? �
10xand pXX��� � +20   'z and the uniform weighting (dashed) 

 
 

 

 
 

 

 
 

 

 

TABLE I 

APSO ARRAY ESTIMATED PHASES 

Phases Scenario 1 Scenario 2 Scenario 3 

β1 

 

-7.6168 -1.7647 -2.6986 

β2 

 

-13.7979 -0.4183 1.6730 

β3 

 

-11.8411 -0.0688 3.2830 

β4 

 

-5.0774 4.2743 6.3484 

β5 

 

3.4948 13.0348 11.2185 

β6 

 

11.2955 15.9511 16.2434 

β7 

 

14.8886 22.5402 8.3881 

β8 

 

9.0160 7.6203 1.8048 

β9 

 

-5.4139 
-11.3388 -23.9382 

β10 -13.8919 -27.1066 -34.6353 

 

As it can be seen from the simulation results, the proposed 

fitness function with appropriate constraints gives an 

improved radiation pattern compared to that proposed in [9] 

for the PSO algorithm. Although the APSO used in the 

estimation process does not use the personal best position of 

the particles, so there is no need to keep them in memory, the 

results have shown a performance increase over that of the 

PSO and an improved deterministic behavior over time that 

gives almost the same estimated parameters over many 

repeated experiments. Therefore, the use of the APSO in the 

above setup is considered an advantage due to an efficient use 

of the algorithm memory.  

VII. CONCLUSION 

This paper presents the formulation of a constrained phase 

control array synthesis. Null directions with pre specified 

levels were imposed on the radiation pattern while 

maintaining sidelobe level at a desired value. The presented 

method uses the accelerated particle swarm optimization for 

efficient algorithm memory allocation. The method used the 

penalty functions constrained optimization. Simulation results 

have shown a performance increase over the single objective 

particle swarm optimization proposed in literature which  uses 

the algorithm memory inefficiently. 
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